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CHARACTERIZING THE DISTRIBUTIONS OF THREE
INDEPENDENT #-DIMENSIONAL RENDOM VARIABLES,
X1, X2, X3, HAVING ANALYTIC CHARACTERISTIC
FUNCTIONS BY THE JOINT DISTRIBUTION OF
(Xl + X3, Xo + Xg).

PaurL G. MILLER

Kotlarski characterized the distribution of three inde-
pendent real random variables X;, X;, X; having nonvanish-
ing characteristic functions by the joint distribution of the
2-dimensional vector (X; + X;, X; + X;). In this paper, we
shall give a generalization of Kotlarski’s result for Xi, X,, X,
n~-dimensional random variables having analytic characteristic
functions which can meet the value zero,

In [3], Kotlarski shows that, for three independent random
variables X, X,, X;, the distribution of (X, + X;, X, + X,) determines
the distributions of X,, X, and X, up to a change of the location if
the characteristic function of the pair (X, + X,, X, + X;) does not
vanish. Kotlarski also remarks that this result can be generalized
in two ways. The statement remains true if the requirement that
the pair (X, + X,, X, + X;) has a nonvanishing characteristic function
is replaced by the requirement that the random variables, X,, X;, X,
possess analytic characteristic functions. The statement also remains
true if X,, X, and X, are n-dimensional real random vectors such
that the pair (X, + X, X, + X,) has a nonvanishing characteristic
function. In this paper, Kotlarski’s result is generalized to the case
where X,, X,, and X, are n-dimensional real random vectors possessing
analytic characteristic functions.

1. Some notions and lemmas about analytic functions of several
complex variables. Let R, denote n-dimensional real Euclidean space,
C, denote n-dimensional complex Euclidean space, and let f(¢,--+,t,)
be defined on some domain D in C,. The function s is said to be
analytic at the point (£,---,t,) in D if f can be represented by a
convergent power series in some neighborhood of (&,---,%)). The
function f is said to be analytic on the domain D if it is analytic
at every point in D. We now list several lemmas concerning analytic
functions of several complex variables; for a discussion of these
lemmas and further exposition on this theory, see [2].

LEmMMA A. If f(t, +--,t,) and g(t, ---,t,) are analytic at the
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DOInt (8, =+, 1), and if fF(t3, -+, t3) + 0, then the quotient “‘]]c is also
analytic at (£, «--, t3).

LeMMA B. (Principle of analytic continuation). If f and g are
analytic on some domain D in C, and if f(tyee+,t,) = glye++,t,)
at every point in some subdomain of D, then f(t,+-, t,) = g€+, t,)
at all points of D.

2. The main theorem and its proof.

THEOREM. Let X,, X,, X, be three independent, real, n-dimen-
stonal random wvectors, and let Z, = X, + X, Z, = X, + X;. If the
random vectors X, possess characteristic jfunctions ¢, which are
analytic on domains D,, with OeD,, (k=1,2,3), then the dis-
tributions of (4, Z,) determines the distributions of X,, X, and X;
up to a change of the location.

Proof. Let t = (t, ty +++yt,), 8= (S, Sy +++, 8,) denote arbitrary
points in C, and 0 = (0,0, - -+, 0) denote the origin in C,; let

[t = VIt P+ [+ e+ [t Fand let t s = £,8, -+ t8,+ + o+ + 1,8, .

Let ¢, = FEe® *r, the characteristic function of X,, be defined on
the domain D,eC,, (k=1,2,3). Then, letting (¢, s) denote the
characteristic function of the distribution of the pair (7, Z,), we
have

é (t, s) = Eoitt-Zits-2y)

— ottt Xite Tytitta) Xy
= FKeit*1 Feis ¥z Fgitt+s-Xs
= 0,(t) $:(s) 43t + 9)
where this function is defined on the domain
D={t s): teD,se D, (t+ s)e D;}eC,, .

Let U, U,, U, be three other independent, real, n-dimensional
random vectors possessing characteristic functions 4, v, ¥, which
are analytic on domains Dy, D¥, D¥. Let V,=U,+ U, V,= U, + U,
and let (¢, s) = Ee!*71t="2_  (Calculations analogous to those above
yield

V(t, 8) = Vu(t) Vls) Va(t -+ )

on

D* = {(t,s): te D, se D¥, (t + s)e Di}e C,, .
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Suppose that the pairs (7, Z,) and (V, V,) have the same
distribution; we shall show that the distributions of X, and U,,
(k = 1,2,3) are equal up to a shift. If the pairs (Z,, Z,) and (V,, V)
have the same distribution, their characteristic functions are equal
so that D = D* and

(1) V(@) Vos) Vst + 5) = 9u(t) 6:(5) Go(t + 5) .

Since each of the functions in equation (1) is analytic and equal
to 1 at 0, there exists a domain D**e C,, of the form

{&8): VTIETF+Ts[F<e, a> 0}

such that, on D**, [g.(t)| > 1/2, [g:(s)| > 1/2, | gt + s)| >1/2 and
similar conditions hold for 4, ¥, ¥,. Then on D** equation (1) can
be rewritten

(2) Vi) Vi) _ ot )
B.(t) Bs(s) Yyt + )

Letting X1(t) = ’llb\l(t)/sjl(t)! Xz(t) = "/fz(t)/ﬁzsz(t)y Xs(t) = ¢3(t)/"‘/’3(t)!
Lemma A asserts that each y,, (k¢ = 1, 2, 3), is analytic for || ]| < a.
Then on D** equation (2) becomes

(3) X:(@) xa(s) = At + 8) «

For s = 0, this equation reduces to ¥,(t) = ,(¢); similarly, setting ¢ =10
yields y.(s) = y.(s) so that, on D**,

(4) 2:(0) Aa(s) = xat + s) «

In [1], it is shown that the only nonzero analytic solutions of (4)
are the exponential functions, ¢t where ce C,.

Therefore, for |[t|| < a, ¥:(t) = et ¢4(t); since V¥, and ¢, are
analytic on D,, Lemma B asserts that v,(t) = e~ ¢,(¢) for all te D..
Since y;(t) = y.(t) for ||t]] < a, y.(t) = e so that V¥,(t) = e* ¢.(t) for
llt]] < «. Again, Lemma B asserts that () = e ¢,(¢) for all te D,.
A similar argument yields ¥,(t) = ¢°* ¢,(t) for all te D,.

Since ¢(—t) = 4(t), the conjugate of ¢(t), for any characteristic
function ¢ and any teR,, it follows that ¢ = ib where beR,.
Therefore, v,(t) = €'t ¢,(2), V¥u(t) = e 3,(t), V() = 7" ¢4(t). From
this it follows that the distributions of X, are equal to those of U,
(k=1,2,3), up to a change of the location, and the proof is com-
plete.

3. Applications of the theorem. The following two examples
show how the theorem can be applied to random vectors X, X;, X,
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of the same dimension, which possess analytic characteristic functions
and for which the characteristic function of (X, + X,, X, + X,) as-
sumes the value zero.

Let X = (X, -+-, X,) denote a random vector; then X has mul-
tinomial distribution, Mu(»; P, ---, P,), of order » with parameters
P, -P,0<P, P+ P+ ... + P, <1,if, for every set of integers

kit §=1,2 oo, m, ;20,3 <7},

P(Xi=Fy ooey X, = o) = T Pitee o Pin Pihae e o7t
ol Toole K (7 — Fopmeeenley)]

where P,=1— P, — P,—...—P,. The characteristic function of X,
Bty +o, t,) = (Py + Pe't + -« 4+ P,e'n), is clearly an analytic func-
tion on C,. Notice that, for the choice of parameters P, = P, =
«ee =P, =1/2n, P,=1/2, ¢ has zeros at the points ((2m, + 1) =,
@m, + 1w, -, 2m, + 1) 7), where m,, m,, ---,m, are integers.
Let Mu*(r,. vy r4; P, P,, +-+, P,) denote the joint distribution of the
pair (Z,Z, where Z =X + X,,Z,=X,+ X, and each X,
(k =1, 2, 3) has distribution Mu(r,; P, +--, P,). With these defini-
tions, the above theorem asserts the following result.

COROLLARY 1. Let X, X,, X, be three independent, n-dimensional,
random wvectors and let Z, = X, + X, Z,= X, + X,. If the pair
(Z.,, Z,) has distributton Mu* (v, vy 175, P, <+, P,), then, except for
perhaps a change of locaiton, the distribution of X, 18 Mu
(’rk; Pu "'7Pn): (k =1,2, 3)°

As another application of the above theorem, let X be a 2 di-
mensional real random vector and let us say that X has distribution
U(a), a > 0, if its distribution has density funection

Lfor (o] + |y|=a
flo,y) =20 .
0 for ||+ |y|>a

If X has distribution U(a), its characteristic function
sin [(tl + 1) %] sin [(tl — tz)—;—]

2 t1+t?> <t1_t2>
“< 2 2

is an analytic function defined on C, with zeros at the points (¢, ¢,)
where (¢t,+t,) = 2n/a m, m = +1, +2, .... Let U*(a, a, a;) denote
the joint distribution of the pair (Z, Z,) where Z, = X, + X, and

¢X(t1) tz) -
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Z, = X, = X, and each X, has distribution U(a,), (k = 1, 2, 3). With
these definitions, the above theorem asserts the following result.

COROLLARY 2. Let X, X,, X, be three independent 2-dimensional
random vectors and let Z, = X, + X3y Z, = X, + X;. If the pair
(Z,, Z,) has distribution U*(a,, a, as), then, except for perhaps a change
of location, the distribution of X, is U(ay), (k =1, 2, 3).

The author is indebted to Professor Ignacy Kotlarski for sug-
gesting the problem discussed in this paper and for several helpful
comments pertaining to its solution.
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