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PERFECT SUBSETS OF DEFINABLE SETS OF
REAL NUMBERS

RICHARD MANSFIELD

There has been some interest in trying to see which sets
of real numbers contain perfect subsets. In this paper we
prove a theorem which might be able to solve this problem
in some generality.

As of the moment however, the only sets to which it applies
are the ΣJ sets and the Σs sets. A somewhat weaker version of
our specialization to Σ2 has been proven by R. M. Solovay [16].
The proof given here (which differs greatly from Solovay's proof)
has been known to me for several years but is as yet unpublished.
It has the advantage of being a special case of a much more general
theorem.

A tree is a set of finite sequences which contains every initial
subsequence of each of its members. A sequence t is an extension
of the sequence s if both are in the tree and s is an initial sub-
sequence of t t is an immediate extension if t Φ s and there are
no sequences in the tree which are between s and t. A tree has
finite branching if every element has only finitely many immediate
extensions. For / an arbitrary function with domain the set of
integers we let f(n) be the finite sequence </(0), /(I), •••,/(»>.
A path through the tree T is a function / such that for arbitrarily
large n f{n) is in T. The set of paths through T will be written
[T]. A closed tree is a tree in which every sequence in the tree
has a proper extension. Given an arbitrary set A we can put the
discrete topology on A and form the product space AN where N is
the set of nonnegative integers. It is easily seen that any closed
subset of AN can be uniquely written as the set of paths through
a closed tree, and conversely that the set of paths through a closed
tree is always a closed subset of AN. Furthermore a closed set will
be compact if and only if its tree has finite branching. A perfect
set is a closed set with no isolated points. Alternatively, a perfect
set is a closed set whose tree has the property that every sequence
in the tree has at least two incompatible extensions.

For cartesian products AN x BN we shall use trees of pairs.
That is a tree of pairs is a set of pairs of sequences containing the
pair « y,ζ yy the two entries of each pair are required to be
of the same length. All the notions and statements of the preceed-
ing paragraph have an obvious analog for trees of pairs. Such a
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tree is called perfect in the l s ί coordinate if every member of the
tree has at least two extensions with incompatible l s ί coordinates.
The following easy proposition contains the combinatorial part of
our method.

PROPOSITION 1. // the tree of pairs T is perfect in the 1st coor-
dinate, then the projection of [T] onto the 1st coordinate contains a
perfect subset.

Proof. This proof is perhaps best seen in the privacy of one's
own mind, but at the risk of confusing matters we give it on paper.
A function H from the set of finite sequences of O's and l's into T
is defined by induction. H(( » = « >, < » (where < > is the
empty sequence). Given H(s), choose H(sO) and H(sl) to be two
extensions of H(s) which are incompatible on the l s ί coordinate.
The set of initial subsequences of the sequences in the range of H
is a finite branching tree and so the set of its paths is a compact
set. The projection of this compact set onto the l s ί coordinate is
also a compact set and the incompatibility requirement on H(sO) and
if (si) implies that it has no isolated points.

Now that this rather simple-minded proposition has been proven,
we are left with the more difficult task of finding appropriate trees
which project into given sets of reals. (The words "real number"
are used here in a loose sense to mean a function from N into N.
Such functions can be identified with the continued fraction expan-
sions of irrational real numbers.) In order to illustrate the method,
let us prove a known theorem.

THEOREM 2. Every Σ ί s e i °f rea>l numbers which contains a
nonhyperarithmetic element contains a perfect subset [2]

LEMMA. NO Σ ί set contains exactly one nonhyperarithmetic
element.

Proof. Suppose otherwise that A is a Σί set and a is its only
nonhyperarithmetic element. The set of hyperarithmetic reals is Πί>
so A ~ HYP is Σί a n d a ί s i t s o n l y element. Thus,

a{n) = m = 3/3[/5 e A ~ HYP A β{n) = m]

ΞΞ Vβ[βe A - HYP->β(n) = m]

so aeHYP.

Proof of Theorem 2. For any Σί s e t A there is a recursive tree
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T of pairs of sequence of integers such that

άe A = lβVn[ζa(n), β(n)>e T]

We define

Tr = {<s, u>eT: la,β[a$ HYP A <s, u> c <a, /S>

Λ<a,β>e[T]}.

Tr is a subtree of T, so its projection onto the l s ί coordinate is a
subset of A the lemma guarantees that it is perfect in the 1s t coor-
dinate.

This theorem required us to use only trees of sequences of
integers. For what follows we shall use ordinal sequences as the
second elements of the sequence pairs. For Σl s e ^ s the ordinals
may be all countable, for Σs it is necessary to use ordinals up to
the first cardinal after the first measurable cardinal. If our con-
jecture turns out to be correct and all definable sets can be analyzed
in this way, Σίr might require very large ordinals indeed. Or again
it might require ordinals no larger than for Σl but very large car-
dinal assumptions might be necessary to prove that the process
works.

For the next sequence of results we assume that T is a fixed
tree of pairs, the first element of each pair consisting of integer
sequences and the second of ordinals, and that <s0, uo> is a fixed
element of T.

LEMMA 3. If (any is an infinite sequence of reals and if there
is a pair ζa, fy satisfying the conditions:

(1) Vn[anΦά\

< 2) <s

then there is a pair in L{(any, T) satisfying the same conditions.

Proof Let,

S = {<(s, £>: s,t are sequences of integers Λ length (s)

= length (t) A Vn[n < length (ί) Λ ί» < length (s)

-> an(tn) Φ stj\ .

Condition (1) is equivalent to
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Let

T1 = {<s, ί, t6> : <s, £>G S Λ <s, %>e Γ

Λ <so> ^o> S

T1 is in L(<(any, T) and the existence of an a satisfying conditions
(1), (2), and (3) is equivalent to " T1 is not well founded." But any
tree is well-founded if and only if it is well-founded in at least one
transitive model for set theory containing it as an element. Thus,
in particular, " T1 is not well-founded " is equivalent to its relativi-
zation to L((any, T), completing the proof of the lemma.

Let us now define a condition θ on L(T). We say that L(T)
satisfies condition θ if there are two sequences <αn> and <£»> each
consisting of exactly the reals in L(T) such that all reals that are
in both L « O , T) and L«/5W>, T) are already in L{T). One instant
consequence of θ is that the reals in L{T) are countable; it can
be shown that it is in fact equivalent to θ. We are using θ in
order to avoid giving that proof.

LEMMA 4. Condition θ implies that if there is an agL(T) and
an f with < 0̂, uoy c ζa, /)> and ζa, /̂ >6 [T], then there are at least
two such a.

Proof. Letting <(any and (βny be as in condition θ, Lemma 3
implies that there is one such a in L(<(any, T) and another in

LEMMA 5. There is a homogeneous Boolean valued extension of
set theory in which condition θ is valid.

Proof. The following proof relies heavily on standard theorems
about Boolean valued set theory. For the basic construction of
Boolean valued set theory we refer the reader to Rosser [10]. The
actual theorems used can be mainly found in Solovay [18], especially
§ 2. For the material on Boolean algebras the reader may refer to
Halmos [1],

Given any set A there is a canonical Boolean extension of set
theory in which A is countable. Namely, we let B be Boolean
algebra of regular open subsets of the topological space AN. Then
we can introduce a function symbol F and an assignment of truth
values to statements of the form F(n) = a in such a way that the
Boolean value of the statement " F is a function from N onto A "
is 1. The assignment is
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The R.H.S. of this equation is a clopen, hence regular open, subset
of AN and as such is a member of B. One easily checks that each
clause of the statement " F is a function from N onto A " has value
1.

Now we take A = L(T) Π NN and define C = B © B (i.e., C is
the completion of the direct sum of B with itself.). In C there are
two canonical counting functions for L(T) Π NN viz,

\\F2{n) = a\\ = l®\\F(n) = a\\ .

Since B is homogeneous one can easily check the C is also homo-
geneous. So in order to complete the proof of the lemma we must
show that in B-valued set theory L(F19 T) Π L(F2, T) = L(T).

B 0 1 and 1 0 B are both complete subalgebras of C. Hence an
easy transfinite induction on σ proves that all sets in Lσ(Flf T) take
on values only in B 0 1 and all sets in Lσ(F2, T) take on values only in
1 0 B: Hence any set in L(F19 T) Π L(F2, T) takes on values only in
B 0 1 Γ ) 1 0 B = 2. Thus any set in both is standard. But now a
basic result of Boolean valued set theory says that any standard
element of L(Fi, T) is already in L(T) (This is another way of saying
that the forcing relation for formulae relativized to L(Fiy T) can be
defined in L(T).).

THEOREM 6. If {a : 3/[<α:, />e [T]]} contains an element not in
L(T), then it contains a perfect subset.

Proof. Let Tr be the set defined within the Boolean extension
of the previous lemma with the formula,

This formula has only standard parameters and hence, since C
is homogeneous, it takes on only the values 0 and 1. That is to
say, even though we used C-valued set theory to define Tr, it is a
member of the 2-valued universe. In the C-valued extension it is a
subtree of T and is perfect in the l s ί coordinate. But this state-
ment can be expressed by a formula of set theory having no un-
bounded quantifiers. Being true in C-valued set theory it is also
true in any transitive model containing all its parameters hence it
is true in the 2-valued universe.

DEFINITION. An S-set is a set of real numbers such that there
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is a tree of pairs of ordinal sequences T with

THEOREM 7. Any Σl set with a nonconstructible element con-
tains a perfect subset.

Proof. J. R. Shoenfield in his proof that any Σl formula is
equivalent to its relativization to L [15], proves that any Σ2 set is
an S-set with a constructible tree.

In a forthcoming paper entitled " A Souslin operation for Π2V
the author proves with the aid of a measurable cardinal that any
Π2 s e ^ is a n S-set with an ordinal definable tree this construction
easily yields that any Σl s e ^ is also an $~set with an ordinal
definable tree. Thus,

THEOREM 8. The existence of a measurable cardinal implies
that any Σl set with a non-ordinal-definable element contains a
perfect subset.

«
Unfortunately Theorem 8, unlike Theorem 7, is not a best possible

result. It is an easy exercise to show that if V Φ L for reals, a
Πί set contains a perfect subset if and only if it not is a subset of L.
Moreover if ^ X

( L ) = ^ x there is an uncountable Πί set with no
perfect subsets. These results do not seem to be true if we replace
Πί by Π2 and constructible by ordinal definable. However Theorem
8 does allow some flexibility in finding a non-ordinal-definable element
of a given Σs s e t For instance it is acceptable to look for this
member in any homogeneous mild Cohen extension of set theory.
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