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GENERIC SPLITTING ALGEBRAS FOR PIC

GERALD GARFINKEL

Our purpose is to develop a splitting theory for the functor
Pic. For each rank one projective module P, we exhibit a
generic splitting algebra T^iPjR). Whenever n is a multiple
of the order of P in PicCR), it has a splitting algebra which
is a rank n projective module. We then show the relationship
of the latter algebra to the usual splitting ring of an ideal
in a Dedekind domain.

Throughout this paper all rings and algebras are commutative
and associative and have identities. The symbol "jβ" will always
denote a fixed but arbitrary ring and all modules and algebras are
over R. An unadorned tensor product sign " ® " is to be interpreted
as " ® Λ " . If M is an JS-module we let Mn be Λf® ®ilf (n

times), M* be Horn (M, R) and e:M®M* >R be the evaluation
map (i.e., e{x ®/) = f(x) for all xeM and fe M*).

An R-module P is a rank n projective if it is finitely generated
and if for each prime ideal m of R, Pm is a free Rm module of rank
n. If P is a rank one projective, so is P* and e:P(g)P* >R is
an isomorphism. Thus Pic(lϋ), the set of isomorphism classes (P) of
rank one projectives P, is a group under the multiplication rule:
(P)(Q) = (P(g)Q). If P is a rank one projective we write P~n for

p*n (cipn*). An i2-algebra S splits (P) in Pic(β) if P<g)S = S as
S-modules. See [3] for more details.

A final note on general notation: If {A*} is a collection of R-
modules, by ^Σi@AiU

i is meant the iϋ-module whose elements are
all finite sums Σ α ^ ^ where ^eA^ Addition and scalar multiplica-
tion are defined as for polynomials in the indeterminant U. Some-
times the U may be in lower case and it may or may not have a
subscript. Clearly the notation is such that Σ φ i J ί 7 { is the module
of ordinary polynomials over R in the indeterminant U.

In § 2 we define for each rank one projective P an algebra
T^iP/R) which by Theorem 1 is a generic splitting algebra for the
module Q in the same sense that Fm{A) is a generic splitting algebra
for the central simple algebra A in the works of Amitsur [1] and
Roquette [8]. If T'(P/R) is the tensor algebra of P, Theorem 2
characterizes the splitting algebras of P as those commutative al-
gebras S such that S ® T'(P/R) is isomorphic to S[X].

In § 3 it is shown that for every isomorphism f: Pn > R, P has
a splitting algebra Tn(P/R,f) which is a rank n projective module.
This algebra is separable if and only if n is a unit of R. We close
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370 GERALD GARFINKEL

the section with some information about when two of the generic
or finite splitting algebras are isomorphic (as graded algebras).

We define Picard ideals as those which are rank one protective
modules. Our last section is concerned with the case in which I is
a Picard ideal with In = Rw and T = Tn(I/R, w-1). We give some
information about when T is a domain and in Theorem 4 show that
if R is Dedekind and n is both the order of (I) in Pic (R) and is a
unit of R, then T is the usual splitting algebra for I. We give two
examples illustrating what may happen to T when R is Dedekind
but n fails to satisfy the hypotheses of Theorem 4.

2* Generic splitting algebras* Throughout this section P is a
rank one protective. Before we can define the generic splitting al-
gebra we need the following rather technical lemma.

LEMMA 1. ( i ) Suppose a is any permutation of the first n
integers and let θ: Pn > Pn be the unique homomorphism with

θ(%ι ® ® #Λ) = #«i ® ® ®a« Then θ is the identity map.
(ii) If m and n are any two integers, the various maps from

pn ^ pm £0 pn+m in^uce(i fry interchanging factors and applying the
evaluation map e and the identity map are all the same. We de-
note this map by tn,m: Pn ® Pm > Pn+m.

(iii) If σ:Pn(g)Pm >Pm(&Pn is the "switch" map, then

(iv) If q is also an integer, the following diagram commutes:

Pn<g>Pm<& Pq
 J^L®L, pn+m ^ p q

\l<8)tm,q \tn+m,q

Proof. For (i) we need only show thatlfor each maximal ideal
m, the map θm: P£ > P£ is the identity. Since Rm is local, Pm =
Rmx for some x in Pm. Thus P£ = Rmy where y = x ® ® x and
clearly θm(y) = y. The proofs of the other parts of the lemma are
clear from the statement and proof of (i).

We can now make the following definition.

DEFINITION. Suppose (P) is in Pic (R), let T^P/R) =
as an ϋJ-module, and define a multiplication by:

( Σ α, 170 ( Σ h 170 = Σi,i
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Lemma 1 shows that T^iP/R) is a commutative, associative R-
algebra. Let T{PjR) = Σiΐ-oP'U*. Clearly T'(P/R) is an .β-subalgebra
of T^iP/R) which is isomorphic to the tensor algebra of the iί-module
P.

REMARK. It is clear that up to isomorphism T^PjR) depends
only on the isomorphism class of the lϋ-module P and if S is any com-
mutative .β-algebra, then S ® T^P/R) ~ T^S® P/S). Similar facts
hold for T". In fact T^P/R) and T(P/R) are both natural in the
following sense. For any commutative ring R, let PCA(R) be the
set of isomorphism classes of commutative _β-algebras which are pro-
jective and countably generated as i?-modules. If ^Γ is the category
of commutative rings with identity and £f the category of Sets,
then Pic and PC A can be considered functors from 3ίΓ to S? and
T and T then induce natural transformations from Pic to PC A.

PROPOSITION 1. If S is any commutative R-algebra splitting P,
then S ® T^P/R) ~ S[Z] (the group ring over S of the additive
group of integers Z) = S[X, X"1] the polynomial ring over S in the
indeterminants X and X'1). Also S(g) T'(P/R) = S[X].

Proof. By the above remark,

S(g) TJPIR) ~ T^S/S) = Σ SU* .

Multiplication in the latter is defined by

and thus it is clearly isomorphic to S[Z] and to S[X, X" 1 ] . A similar
calculation shows S ® T'(P/R) ~ S[X].

PROPOSITION 2. Γ = T4P/R) splits P; in fact if we let θ: Γ ® P -> T
be the map induced by the maps

tnΛ: PnUn(&P > Pn+1 Un+1 ,

then θ is a T-isomorphism.

Proof. Clear.

In fact not only does T split P, but T is a "generic" splitting
algebra for P in the sense of the following theorem.

THEOREM 1. Let (P) be in Pic (R) and T = TJPJR). Then for
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any commutative R-algebra S, the following are equivalent:
( i ) S splits P,
(ii) S <g> T ^ S[Z] s S[X, X-1] as S-algebras,
(iii) there is an R-algebra homomorphism from T to S.

Proof (i) => (ii) by Proposition 1. If (ii) holds, then the com-
position T > S ® T ~ S[Z] > S is an iϋ-algebra map where the
last factor in the composition is induced by the group homomorphism
from Z to the one element group. Thus (ii) => (iii). If (iii) holds
we can view S a s a T-algebra. Then since by Proposition 2, T splits
P, we have

as S-moduJes. Hence (iii) =^ (Γ>.

Using the map Θ of Proposition 2 it is easy to see that P' =
ΣΓ.i P'U* is a T ideal isomorphic to T'(g)P. Thus T sυlits P if
and only if P ' is T'-free. The following theorem shows that T does
not split P (except when P is itself trivial) and that moreover the
"splitting" algebras for P, T and P' are the same.

THEOREM 2. For each commutative algebra S the following are
equivalent:

( i ) S splits P,
(ii) S<g> TΎP/tf) ^ SPΠ as S-algebras,
(iii> S (g) P ' is a /re^ S (g) TΊP/R) module.

Proof By the naturality of T' = T'(P/R) we can assume S =
iί. ίi)=>(ii): By Proposition 1. (ii) => (iii): Let φ:T->R be de-
fined by φ(yΣA

ai'Ui) = α0- Clearly <p is an j?-algebra map with kernel
P\ Suppose α: JB[X1 > Γ' is any ^-isomorphism. Then since the
kernel of φa is generated by y — X — φaX, it is easy to see
that P ' is generated by ay and thus is a free T" module, (iii) =>
(i): If inc: R > T is the inclusion map, then since ^inc is the
identity map of R, Pic (inc) is a split monomorphism. Since (Pf) is
Pic (inc) of (P), we see that P' is T'-free if and only if P is jR-free.

3* Finite splitting algebras. Throughout this section, P is a
rank one projective module.

DEFINITION. If /: Pn > R is an isomorphism, we let Tn(P/R, f)
be the i?-modu!e X S 1 0 P{u}. We define a multiplication on Tn(P/R, f)
by the formula:
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ab u}+j when i + j < n
(a u})(b ui) = ,

[fab u}+j~n when i + j ^ n

and the distributive law: (Σ* GM4)(Σ, bju}) = Σi,i(α<W/)(Mί) W e

will often write "TV' for "Tn(P/R,f)" and «V" for "w}".

Note that an isomorphism /: Pn >R is an element of Pn* —
P~\ Suppose f(w) = 1. If for each k ^ 0, we let ur* be the ele-
ment fk in p-%A:, then for each integer k, Pnk is the free ^-module
with generator wk. Thus each element Y of T = ToJJPjR) is uniquely
expressible as

<*) Y= Σ Σ aktjw
kUk%+i with α ^ e P ' ' .

0 A

PROPOSITION 3. Suppose f,w,T and Tn are as above. Then
there is an R-module map π: T > Tn such that

( i ) π is an R-module epimorphism
(ii) π is multiplicative
(iii) kernel π = T{wUn - 1) = T(fU~n - 1)
(iv) if π' is π restricted to T = T(P/R) then π' is an R-module

epimorphism with kernel T'(wUn — 1).
In particular if I = T(wUn - 1) and Γ - T'(wUn - 1), then Tn

is an R-algebra which is isomorphic to T/I and to T'/Γ.

Proof. If Y is a nonzero element of T of the form (*), we
define π(Y) = Σ;,fe%,î } From this definition it is clear that π is
a well defined .K-module epimorphism. The fact that when j + f ^
n then ak>5ak>>5, = f(aktjakft3'f)w, shows that π is multiplicative. Thus
conditions (i) and (ii) hold.

Now let 1= T(wUn - 1). Since -fU~n{wUn - 1) = fU~n - 1 and
(-wUn)(fU~n - 1) = wU% - 1, we see that 1= T(fU~n - 1) also.
Since π(wUn — 1) = 0, it is clear that I is contained in kernel π.
Now suppose Y is an element of form (*). Then it is easy to see
that π(Y) = 0 if and only if for each 0 ^ j < n, we have Σ& ak,3- = 0.
Thus if τr(Γ) = 0, then Γ = Σa.k(ikfjU

s(wkUnk - 1). However, if
fc>0, then (wUn)k-l = (wUn - 1) (1 + wUn + ••• + (wϊ/ )*-1) and
hence is in 7. A similar equation shows that if fc < 0, then

(wUn)k -1 = (fU-n)~k - 1

is also in /. Hence condition (iii) has been verified.
Clearly π' is an epimorphism with kernel I n T. To prove (iv)

we must show that If) T is contained in T'(wUn — 1). An element
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Y of in T is of the form Γ = Σ 2 a^U0 - wEf ) where M ^ iSΓ
and each ^ePK However, since aMUM is the homogeneous compon-
ent of Y of lowest degree and Y is in ϊ7', we see that ikf >̂ 0 and
hence Y is in T'(wU* - 1).

The last statement in the proposition is clear.

NOTATION. If M is any .β-module, let E°(M/R) = #, and if n > 0
let En(M/R) = M Λ Λ Λf (the w-th exterior product of If with
itself).

LEMMA 2. Suppose M is any R-module, (P) is in Pic (R) and
n > 0 is em integer. Then there is an R-module isomorphism

θ: Pn ® En(M/R) > En(P ® M/J?)

if aiβ P, Xi£ M for i ^ n,

Λ Λ a?»)) = ( α ^ x j Λ ••• Λ (αn ® ^ )

Proof Let Λf' = M x x M (cartesian product of M with
itself n times) and Pr = P x x P and define

θ: P' x ilf' > En(P®MlR)

by ί'(α, α;) = (a,(g) ^ ) Λ Λ (αn ® a?n) when α = (a19 -*-,an)eP' and
a = (χ19 . . . , a n ) e M'. Clearly θf is mult i l inear in t h e variables
a19 •••, a?Λ. For each maximal ideal m of i?, let / m be t h e map

E*(P ® Jlί/Λ) > i2m (8) En(P ® Jlf/Λ) > £7w(

induced by localization. It is easy to check that each fmθf is alternat-
ing in the x/s and thus θ' is alternating in those variables. Hence
there is a well defined homomorphism θ satisfying the given pro-
perty. Since each θm is an isomorphism, θ itself is an isomorphism.

THEOREM 3. Suppose (P) is in Pic (R) and n > 0. Then the
following are equivalent:

( i ) (JP) = l f

(ii) there is a commutative R-algebra T which is a rank n
projective R-module with T ® P = T as T-modules,

(iii) there is a rank n projective R-module M with ΛT® P = M.

Proof (A slightly weaker form of (i) <=> (iii) is shown by Bass [2].)
(i)=>(ii): By Propositions 2 and 3, we can take T= Tn(P/R,f)

where /: Pn > R is any isomorphism.
(ii)=>(iii): Let M= T and forget the T-structure.
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(iii) => (i): By [3, p. 142], En(M/R) = En(P®MIR) = N is a rank
one protective .β-module. However, by Lemma 2, Pn ® N = N.
Thus (P)n(N) = (N) in Pic (R) and since Pic (E) is a group, (P)n = 1.

PROPOSITION 4. Suppose (P) is in Pic (R). Then T'(P/R) and
T^PjR) are not separable R-algebras. If f: pn • R is an isomor-
phism, then Tn(P/R,f) is a separable R-algebra if and only if n is
a unit in R.

Proof. The first statement follows from Villameyer's Theorem
[7] which states that a separable, protective algebra is also finitely
generated as an .β-module and clearly T and TΌo are not finitely
generated. By Bass [2; pp. 94, 96] Tn = Tn(P/R,f) is separable if
and only if for all maximal ideals m of R, (Elm) ® Tn is a separable
iϋ/m-algebra. By the naturality of T^ and Proposition 3, it is clear
that if R = Rim, then R®Tn = JB[XJ/(1 - wXn) for some element
w in R. Thus R§§ Tn is separable if and only if Xn — w~~ι is a
separable polynomial in JB[X]; however this is true if and only if n
is a unit (i.e., nonzero) in R. But clearly n is nonzero in each R/m
if and only if n is not in any maximal ideal m; which is to say that
n is a unit in R.

We consider an isomorphism between two graded algebras A and
B to be graded (and write A = g B) if it preserves homogeneous
components. Noting that T^P/R), T'(P/R) and Tn(P/R,f) are graded
algebras with grading respectively Z, Z+ and Z/nZ, we can now
state:

PROPOSITION 5. Suppose (P) and (Q) are in Pic(iϋ).
( i ) T(QIR) ^g T(P/R) if and only if (Q) = (P).
(ii) The mapping xUm > xU~m defines a graded isomorphism

h: T»(P*/E) > T^P/R).
(iii) T^Q/R) =g T4P/R) if and only if (Q) = (P)e where e -

± 1 -
(iv) There is a graded isomorphism h: TM(Q/E, g) > Tn(P/R,f)

if and only if m = n and there are an integer k > 0 and an isomor-
phism h'\ Q > Pk with (k, m) — 1 and g = fkh'n.

Proof, (i), (ii) and (iii) are clear, so we only give the proof of
(iv).

(<==): The correspondence xUr >h'r(x)Ukr induces an algebra
map h": T'(Q/R) > T'(P/R). Since &"(1 - g~ιUn) = 1 - (f~ιUn)\ an
element of T'(P/R)(l - f-'U"), by Proposition 3 we see that h"
induces a graded algebra homomorphism h: Tn(Q/R, g) > Tn(P/E,f).
Since (k, n) = 1, h is onto and thus is an isomorphism since its domain
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and range are rank n projectives. Clearly h is graded.
(==>): Clearly m = n and since h is a graded isomorphism there

is an integer k and a map h'\ Q > Pk with h(xU) = h'(x)Uk. Thus
h((QU)τ) g (PUy where kr = r'(modn). Since h is onto, the equa-
tion kr = 1 is solvable and thus (fc, n) = 1. Also kr = k if and only
if r = 1 and so h(QU) = PkUk. Therefore h' is onto and hence is
an isomorphism.

4* Picard ideals* In this section we are interested in the case
where the rank one protective module is actually an ideal of iϋ-which
we call a Picard ideal. In many rings (e.g., domains and Noetherian
rings) this is always the case—i.e., Pic (R) = C(R)—the isomorphism
classes of Picard ideals. See [3] or [9]. However by an exercise
in Bourbaki [3, p. 179] it can be seen that C(R) is not functoral,
is not always a group and may be a proper subset of Pic (R). Since
C(R) is not well behaved, one often gets information about it by
studying the functor Pic (R).

We introduce the following special notation for this section: " I "
will always denote an ideal of R and "if" is always the total quoti-
ent ring of R. In is the ideal product of / with itself n times and
Γn) = 1 0 0 I. It is easy to see that if I is flat then In ^ Γn).
Finally we let J-1 = {x e K: xlQ R}.

LEMMA 3. I is a Picard ideal with finite order in Pic(iϋ) if
and only if some power of I is generated by a non zero divisor. If
either condition holds then the map θ: I~ι > 7* defined by θ(x)(a) =
xa is an isomorphism.

Proof. The necessity condition is clear. Now suppose In — Rw
where w is a non zero divisor. First note that φ: J* > I"1, defined
by φ(g) = g(w)ιv~\ is an inverse to θ; which is thus an isomorphism.
If w = Σ afii with a{e I and bt e In~\ it is easy to see that {ai9 θφi)}
is a finite projective basis for / in the sense of [4, p. 132] and thus
I is finitely generated and projective as a module. Hence 7* is flat
and so J 0 I* = /•/* = II"1. Since I-In-lw~l = R, we see that I /-1 =
R. Then we can conclude that / is rank one from the fact that
1 0 I* = R. Clearly (I)n = 1.

PROPOSITION 6. Let I be an ideal of R with In = Rw for some
non zero divisor w and let K be the total quotient ring of R.

( i ) I is a Picard ideal and if we identify w and w~ι with
multiplication by that element in K, then w~ι: In > R and w: I~n

> R are isomorphisms.
(ii) The inclusions R £ J-1 S K induce inclusion maps
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R[U]/(U* -w) > Γn(/-VΛ, w) > K[U]/(Un - w) .

(iii) If R is an integral domain, then Tn(I/R, w"1) is an in-
tegral domain if and only if Un — w is an irreducible polynomial
over K.

Proof. ( i ) Clear from Lemma 3.
(ii) Clearly the inclusions R £ I"1 £ K induce inclusions

T'(R/R) s T'{I-ιjR) S T'(K/K) .

Thus if we define

j 0 = τ\κικ)(w-γυn - i)
jx = τf{i-ιiR) n Jo

J2 = T(R/R) n Jo

then there is a sequence of inclusions:

R[uyj2—> r(i-VΛ)/Ji—>κ[U]/(un

Thus to prove (ii) we need only show that

Jt = J[ = T'il-'/RXw-'U" - 1)

and J2 = J2' = iZ[Z7](ί7w — w). Also it is clear that J/ £ Jx and since
Un — w = w(w~1Un — 1) G J2, J2' £ J2. Thus we need only show the
opposite inclusions.

Suppose y = ( Σ ^ ^ * ) ^ " " 1 ^ * - 1) = Σ ^ ^ i s i n Jo Note that
2/i = w(ai+n + 2/ί+n). Now assume 7/ is in J19 i.e., each aιel~\ If ̂ /
is not in J/, let N be the largest integer with yN not in Γ~N. Then
T/̂  = w(aN+n + 2/̂ +w) G ln.I~N-n = /-*, a contradiction. Thus Jx = J[.
Now assume 7/ is in J2. We claim that for each i, ^ is in Rw. If
not, letting N be a maximal counter-example, the above expression
for yN show it is in w(R + Rw) = Rw, a contradiction. Thus

V = w(Σ vj-1yiU
i)w-\Un - w)

is an element of J2 and so J2' = J2.
(iii) It is easy to see that K' = iΓ[C/]/(C7TO - w) is the total

quotient ring of R[U]/(Un — tί;) and thus Kf is also the total quotient
ring of T'n = TJJrx\R, w). By Proposition 5 we see that T'n is isomor-
phic to Tn = Tn(I/R, iv-1). Thus Tn is a domain if and only if Kf is
a field and it is well known that K' is a field if and only if Un — w
is irreducible.

LEMMA 4. Suppose nx and n2 are relatively prime positive in-
tegers and w is an element of the field K. Then Xn^n^ — w is
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irreducible if and only if both xni — w and xni — w are irreducible.

Proof. Let n = nγn2. Clearly if xn — w is irreducible so is each
xni — w. Now suppose each xni — w is irreducible. Thus for each
i, there is a field Li = K[Ui] where xni ~ w is the minimal polynomial
of ut. Since (nlf n2) = 1, it is easy to see that any field compositum
L = LtL2 is unique up to isomorphism and is of dimension n over
K. Suppose s1 and s2 are integers with nλs2 + n2sx = 1. Let v be
the element vfi vi* in L. A simple calculation then shows that
vni = u2 and v*2 = ut. Thus i; generates the field L of dimension n
and satisfies the polynomial vn — w. Hence xn — w is the minimal
polynomial of v and so is irreducible.

THEOREM 4. Suppose R is a Dedekind domain with quotient
field K and I is an ideal of R with In — RVJ, and n is the order
of (I) in Pic (R). Then T = TJIjR, w~ι) is a domain. If n is also a
unit of R, then T is a Dedekind domain and is isomorphic to the
integral closure of R in K[X]/(Xn — w).

Proof. We first prove the theorem in the case where n is non-
zero in R. By Proposition 6, we need to show f(X) = Xn — w is an
irreducible K polynomial. Let g(X) be any irreducible factor of f(X)
of degree say d. We must show d — n.

Let S be the integral closure of R in L = K[X]/(g(X)). Since
n is a unit of K, f(X) is a separable polynomial and hence so is g(X).
Since L is a separable extension of K, S is finitely generated as an
iί-module [6, p. 70]. Since S is torsion free, it is also a projective
R module. Since L is isomorphic to iΓ(g)S, the rank of S as a pro-
jective R module is d, the dimension of L. If we knew that S splits
/, then by Theorem 3 we would know (I)d = 1 in Pic (R) and thus
d ^ n, the order of (I). Hence we would have d = n, which is what
we wanted.

Since S is a projective i?-module, S ® / is S-isomorphic to J = SI.
Let v be any root of g(X) in L. Then Jn = Sw = (Sv)n and thus
since S is Dedekind [10, p. 281], J — Sv and so S splits I.

Now suppose n is a unit of R. By Propositions 6 and 4, we
know T is isomorphic to a separable jB-order T of L. Since T' is
separable, it is maximal, i.e., T — S9 the integral closure of R in
L and thus is Dedekind.

Now let us do the case in which n is the zero element of R.
All we have to show is that T is a domain since clearly n is not a
unit. By Proposition 6 we need to show that Xn — w is irreducible
over K. Suppose p is the characteristic of K and nγ = pe is the
highest power of p dividing n. Let n2 = n/nλ. By Lemma 4, we
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need to show that both Xn* — w and Xn2 — w are irreducible. Let
Γ = I*1. Then clearly Γn* = Rw, n2 is the order of (/') in Pic (R) and
n2 is nonzero in R. Hence by the proof of the theorem in the
special case, Xn* — w is irreducible. Now we note that w cannot
be a p-th power in K. Otherwise if w = vp for some v in K, and
if Ή/ — n/p, then I*/p — (Rv)p indicates I*' — Rv and so n would not
be the order of (I). Since w is not a p-th power, X — w is irreduci-
ble [10, p. 65].

Suppose I is a nonzero ideal of the Dedekind domain R with
In = Rw, and let T = Tn{I~ιIR, w) and let S be the integral closure
of R in L — K[X]/(Xn — w). Then Theorem 4 gives sufficient con-
ditions to ensure that T is a domain or is equal to S. We conclude
with two examples illustrating then if the hypotheses of Theorem 4
do not hold, the conclusion may or may not still hold.

EXAMPLE 1. n is neither a unit of R nor the order of /, but
T — S and is a Dedekind domain.

Proof. Let R = I = Z—the rational integers. Let n = 2 and
w = — 1. Clearly T — Z[i]—the Gaussian integers in L = Q[i].

EXAMPLE 2. w is the order of (I) in Pic (R), is a non zero divisor
but is not a unit of R and T Φ S.

Proof. Let p and q be distinct rational primes with p = q = 1
(mod 4). Let i? = Z[V — pq\ and I = i?p + RV — pq. One can check
that J? is the integral closure of Z in Q{V — pq) and is thus Dedekind
and that / is nonprincipal with Γ = Rp. Let w = 2 and let w =
± p . It is not too difficult to show that L is an unramified field
extension of K and thus T is a domain and S is separable [5, p. 21].
Since 2 is not a unit of R, by Proposition 4 we know that T is not
separable; hence T Φ S.
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