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SIMILARITIES INVOLVING NORMAL
OPERATORS ON HILBERT SPACE

MaARrY R. EMBRY

The primary purpose of this note is to exhibit a proof
and several corollaries of the following theorem concerning
continuous linear operators on a complex Hilbert space X,

THEOREM 1, If H and K are commuting normal operators
and AH = KA, where 0 is not in the numerical range of A,
then H = K,

In the entire paper A, £, H and K represent continuous
linear operators on X, A* is the adjoint of A, W(A) is the
numerical range of A and o(4) is the spectrum of A. The
terms self-adjoint, normal and unitary are used in the standard
fashion. A is quasinormal if and only if A commutes with
A*A, A unitary operator is called cramped if and only if its
spectrum is contained in an arc of the unit circle with central
angle less than =,

In §1 a proof of Theorem 1 will be given, as well as several
corollaries. In § 2 corollaries of Theorem 1, which are valid if either
0¢ W(A) or 0(A) No(—A) = @, are presented.

1. A proof of Theorem 1. Let & and k be the spectral resolu-
tions of H and K respectively. Since AH = KA, Ah(a) = k(a)A for
each complex Borel set a by [10]. This last equation together with
the fact that h(a) and k() are commuting projections implies that

(1) pl@)*Ap(a) = q(@)*Ag(a) = 0 for each Borel set a, where
(2) p(@) = (I — h(a))Ah(@)
9(@) = h(@AI — h(a)).
(I denotes the identity operator on X.) Since 0¢ W(A), equation (1)
implies that p(a) = q(@) = 0. Thus by (2) Ah(a) = h(a)A for each
Borel set &« and consequently, AH = HA. Finally, HA = KA and
since 0 ¢ W(A), H = K.

The following two examples show that if H and K are normal
and AH = KA, then H and K may differ if 0e W(4) or if H and
K do not commute, even if A4 is unitary.

ExampLE 1. If

10 0 1 2 0
K‘(o 2)"4_(1 0)’ andH:(o 1)’
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then H and K are normal, commute and AH = KA, but H # K.

ExampLE 2. If

11 1 0 1 ¢
K= ),A: ,,andH:( ) )
1 2 0 = -1 2
then H and K are normal, AH = KA and 0¢ W(A), but H = K.

COROLLARY 1. [5]. If AA* and A*A commute and 0¢ W(A),
then A is normal.

Proof. Let H= A*A, K= AA* and note that AH = KA, so
that Theorem 1 is applicable.

The technique used in the proof of Theorem 1 is essentially the
same as that used in [5] to prove a slightly stronger version of
Corollary 1.

COROLLARY 2. If 0¢ W(A) and there exist real numbers r and
s such that r* + s* #+ 0 and A commutes with rAA* + sA*A, then A
1s normal.

Proof. In this case AA* commutes with A*4 and Corollary 1
may be applied.

Several special cases of Corollary 2 are known. If A is quasi-
normal and 0¢ W(A), then A is normal [4]. If A commutes with
AA* — A*A, then A is normal [11]. This last follows from Corollary
2 by applying the corollary to A — zI (which commutes with

(A — 2I)(A — zD)* — (A — 2zD)*(A — 2I))

for z¢ W(A).
In [12] C. R. Putnam proved a stronger version of the next
corollary.

COROLLARY 3. [12]. If A* 4s normal and 0¢ W(A), then A is
normal.

Proof. By [7], [8], or [10] A*A* = A*A* if A’ is normal. Thus
AA* and A*A must commute and Corollary 1 is applicable.

We note that the condition 0 ¢ od(A) is not sufficiently strong to
guarantee that A is normal when A? is normal. (For example take
any nonnormal square root of the identity operator I.) However,
we recall that if A% is normal and ¢(4)No(—A) = @, then 4 is
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normal [6]. This suggests that perhaps Theorem 1 and Corollary 1
remain valid if the hypothesis d(4) N o(—A) = @ is substituted for
the hypothesis 0¢ W(A4). Example 3 provides a counterexample to
this proposition.

020

ExaMPLE 3. Let A = (O 0 1). Direct computation shows that
300

AA* and A*A commute and differ from one another. Moreover,
0(A) N o(—A) = @ since zeg(4) if and only if 2* =6. If we take
H = A*4 and K = AA*, then AH = KA, H and K are normal and
commute, but H = K.

2. The condition 0¢ W(A) or ¢(A) No(—A) = @. Although
the two conditions 0¢ W(A) and ¢(4) N o(—A) = @ do not yield the
same results, as seen by Example 3, several corollaries of Theorem
1 remain valid if the hypothesis 0 ¢ W(A4) is replaced by

c(A)Na(—A) = O .

In the remainder of the paper we let D be the set of all operators
A for which either 0¢ W(A) or ¢(4A) No(—A4) = @.

Because of the importance of Theorem 2 in the following corol-
laries, we restate it here.

THEOREM 2. [6]. If 0(4) No(—A) = O, then A and A* commute
with exactly the same operators.

COROLLARY 4. If Ae D and AE = —FEA, where either A or E
1s normal, then E = 0.

Proof. If o(A)No(—A) = @, then by Theorem 2 AE = EA
since A’E = EA*. Therefore E = 0. Assume now that 0¢ W(4). If
E is normal, we apply Theorem 1 and have £ = —FE or E=0. If
A is normal, then A*E = —FEA* by [10] and thus A(E — E*) =
—(E — E"A. Since EF — E* is normal, E = E* by Theorem 1.
Consequently, F is normal and a second application of Theorem 1
yields £ = —E = 0.

COROLLARY 5. If A is a mormal element of D, then A and A?
commute with exactly the same operators.

Proof. Assume that A’E = FA? and let H= AE — EA. Then
AH = — HA and by Corollary 4, H = 0.

COROLLARY 6. If AE = E*A and AE* = FEA, where Ac D, then



334 MARY R. EMBRY
E is self-adjoint.

Proof. Under these hypotheses A(EF — E*) = —(E — E*)A and
Corollary 4 can be applied to the normal operator E — E*, resulting
in E = E*.

COROLLARY 7. If AE = E*A, where Ac D and either A is uni-
tary or E is mormal, then E is self-adjoint.

Proof. 1If Fis normal, then AE* = EA by [10]; if A is unitary,
then EA* = A*E* and consequently, AE* = EA. Thus in either
case Corollary 6 may be applied.

Corollary 7 includes a slight improvement of a result of J. P.
Williams. In [13] Williams proved that o(E) is real if AE = E*A,
where 0 is not in the closure of W(4). Thus if E is normal, E is
self-adjoint. In particular, Williams noted that if E is normal and
AE = E*A, where A is a cramped unitary operator, then FE is self-
adjoint. More generally, in [1] W. A. Beck and C. R. Putnam and
in [2] S. K. Berberian proved this same result without the hypothe-
sis that A is normal. Finally, in [9] C. A. McCarthy obtained a
generalization from which it follows that if AE = E*A, A unitary
and o(4)No(—A) = @, then FE is self-adjoint. All of these results
are included in Corollary 7.

For completeness we include the following special case of
Theorem 1.

COROLLARY 8. If H and K are commuting normal operators
and H = A*KA, where A is a cramped unitary operator, then H =
K.

Proof. AH = KA since A is unitary and 0¢ W(A) since A4 is
cramped [3]. Thus Theorem 1 is applicable.

In Corollary 9, we have a result similar to that of Theorem 1.
The hypothesis that H and K commute is replaced by A*H = KA*.

COROLLARY 9. Let AH = KA and A*H = KA*, where Ac D.
If A is unitary or H and K are normal, then H = K.

Proof. If H and K are normal, we also have AH* = K*A and
A*H* = K*A* by [10]; if A is unitary, these equations also hold
since HA* = A*K and HA = AK. If we now define
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M—Aoadg—<0 H
“lo 4/ T g o)’

direct computation shows that W& = &* & and &* =& .V
Since W(.7) = W(A) and o(.7) = d(A), Corollary 6 may be applied
to show & = &*. Thus H = K.

A rather curious result can be obtained by using the technique
of proof in Corollary 9. Note that & (as defined in the proof of
Corollary 9) is normal if and only if HH* = KK* and H*H = K*K.
But by Corollary 7 if & is normal, % e D and & = & *.o7, then
& is self-adjoint and H = K. Thus we have:

COROLLARY 10. Let H and K be operators such that HH* = KK*
and H*H = K*K. If there ewists an element A of D such that
AH = KA and A*H = KA*, then H = K.

To Professor S. K. Berberian, I express my sincere gratitude
for suggesting Corollaries 9 and 10, the method of proof used in
these corollaries, and the reference to C. A. McCarthy’s paper. I
also wish to thank Professor P. R. Halmos for his helpful comments
on this paper.
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