SIMILARITIES INVOLVING NORMAL OPERATORS ON HILBERT SPACE

MARY R. EMBRY

The primary purpose of this note is to exhibit a proof and several corollaries of the following theorem concerning continuous linear operators on a complex Hilbert space X.

THEOREM 1. If H and K are commuting normal operators and AH=KA, where 0 is not in the numerical range of A, then H=K.

In the entire paper A, E, H and K represent continuous linear operators on X, A^* is the adjoint of A, W(A) is the numerical range of A and $\sigma(A)$ is the spectrum of A. The terms self-adjoint, normal and unitary are used in the standard fashion. A is quasinormal if and only if A commutes with A^*A . A unitary operator is called cramped if and only if its spectrum is contained in an arc of the unit circle with central angle less than π .

In § 1 a proof of Theorem 1 will be given, as well as several corollaries. In § 2 corollaries of Theorem 1, which are valid if either $0 \notin W(A)$ or $\sigma(A) \cap \sigma(-A) = \emptyset$, are presented.

- 1. A proof of Theorem 1. Let h and k be the spectral resolutions of H and K respectively. Since AH = KA, $Ah(\alpha) = k(\alpha)A$ for each complex Borel set α by [10]. This last equation together with the fact that $h(\alpha)$ and $k(\alpha)$ are commuting projections implies that
 - (1) $p(\alpha)^*Ap(\alpha)=q(\alpha)^*Aq(\alpha)=0$ for each Borel set α , where

(2)
$$p(\alpha) Ap(\alpha) = q(\alpha) Aq(\alpha)$$
$$p(\alpha) = (I - h(\alpha))Ah(\alpha)$$
$$q(\alpha) = h(\alpha)A(I - h(\alpha)).$$

(*I* denotes the identity operator on *X*.) Since $0 \notin W(A)$, equation (1) implies that $p(\alpha) = q(\alpha) = 0$. Thus by (2) $Ah(\alpha) = h(\alpha)A$ for each Borel set α and consequently, AH = HA. Finally, HA = KA and since $0 \notin W(A)$, H = K.

The following two examples show that if H and K are normal and AH = KA, then H and K may differ if $0 \in W(A)$ or if H and K do not commute, even if A is unitary.

EXAMPLE 1. If

$$K=egin{pmatrix} 1&0\0&2 \end{pmatrix}\!,\; A=egin{pmatrix} 0&1\1&0 \end{pmatrix}\!,\; ext{and}\;\; H=egin{pmatrix} 2&0\0&1 \end{pmatrix}$$
 ,

then H and K are normal, commute and AH = KA, but $H \neq K$.

EXAMPLE 2. If

$$K=egin{pmatrix} 1 & 1 \ 1 & 2 \end{pmatrix}$$
, $A=egin{pmatrix} 1 & 0 \ 0 & i \end{pmatrix}$, and $H=egin{pmatrix} 1 & i \ -i & 2 \end{pmatrix}$,

then H and K are normal, AH = KA and $0 \notin W(A)$, but $H \neq K$.

COROLLARY 1. [5]. If AA^* and A^*A commute and $0 \notin W(A)$, then A is normal.

Proof. Let H = A*A, K = AA* and note that AH = KA, so that Theorem 1 is applicable.

The technique used in the proof of Theorem 1 is essentially the same as that used in [5] to prove a slightly stronger version of Corollary 1.

COROLLARY 2. If $0 \notin W(A)$ and there exist real numbers r and s such that $r^2 + s^2 \neq 0$ and A commutes with $rAA^* + sA^*A$, then A is normal.

Proof. In this case AA^* commutes with A^*A and Corollary 1 may be applied.

Several special cases of Corollary 2 are known. If A is quasi-normal and $0 \notin W(A)$, then A is normal [4]. If A commutes with $AA^* - A^*A$, then A is normal [11]. This last follows from Corollary 2 by applying the corollary to A - zI (which commutes with

$$(A - zI)(A - zI)^* - (A - zI)^*(A - zI)$$

for $z \notin W(A)$.

In [12] C. R. Putnam proved a stronger version of the next corollary.

COROLLARY 3. [12]. If A^2 is normal and $0 \notin W(A)$, then A is normal.

Proof. By [7], [8], or [10] $A^*A^2 = A^2A^*$ if A^2 is normal. Thus AA^* and A^*A must commute and Corollary 1 is applicable.

We note that the condition $0 \notin \sigma(A)$ is not sufficiently strong to guarantee that A is normal when A^2 is normal. (For example take any nonnormal square root of the identity operator I.) However, we recall that if A^2 is normal and $\sigma(A) \cap \sigma(-A) = \emptyset$, then A is

333

normal [6]. This suggests that perhaps Theorem 1 and Corollary 1 remain valid if the hypothesis $\sigma(A) \cap \sigma(-A) = \emptyset$ is substituted for the hypothesis $0 \notin W(A)$. Example 3 provides a counterexample to this proposition.

EXAMPLE 3. Let $A=\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 0 \end{pmatrix}$. Direct computation shows that AA^* and A^*A commute and differ from one another. Moreover, $\sigma(A)\cap\sigma(-A)=\varnothing$ since $z\in\sigma(A)$ if and only if $z^3=6$. If we take $H=A^*A$ and $K=AA^*$, then AH=KA, H and K are normal and commute, but $H\neq K$.

2. The condition $0 \notin W(A)$ or $\sigma(A) \cap \sigma(-A) = \emptyset$. Although the two conditions $0 \notin W(A)$ and $\sigma(A) \cap \sigma(-A) = \emptyset$ do not yield the same results, as seen by Example 3, several corollaries of Theorem 1 remain valid if the hypothesis $0 \notin W(A)$ is replaced by

$$\sigma(A) \cap \sigma(-A) = \emptyset$$
.

In the remainder of the paper we let D be the set of all operators A for which either $0 \notin W(A)$ or $\sigma(A) \cap \sigma(-A) = \emptyset$.

Because of the importance of Theorem 2 in the following corollaries, we restate it here.

THEOREM 2. [6]. If $\sigma(A) \cap \sigma(-A) = \emptyset$, then A and A² commute with exactly the same operators.

COROLLARY 4. If $A \in D$ and AE = -EA, where either A or E is normal, then E = 0.

Proof. If $\sigma(A) \cap \sigma(-A) = \emptyset$, then by Theorem 2 AE = EA since $A^2E = EA^2$. Therefore E = 0. Assume now that $0 \notin W(A)$. If E is normal, we apply Theorem 1 and have E = -E or E = 0. If A is normal, then $A^*E = -EA^*$ by [10] and thus $A(E - E^*) = -(E - E^*)A$. Since $E - E^*$ is normal, $E = E^*$ by Theorem 1. Consequently, E is normal and a second application of Theorem 1 yields E = -E = 0.

COROLLARY 5. If A is a normal element of D, then A and A^2 commute with exactly the same operators.

Proof. Assume that $A^2E=EA^2$ and let H=AE-EA. Then AH=-HA and by Corollary 4, H=0.

COROLLARY 6. If $AE = E^*A$ and $AE^* = EA$, where $A \in D$, then

E is self-adjoint.

Proof. Under these hypotheses $A(E-E^*)=-(E-E^*)A$ and Corollary 4 can be applied to the normal operator $E-E^*$, resulting in $E=E^*$.

COROLLARY 7. If AE = E*A, where $A \in D$ and either A is unitary or E is normal, then E is self-adjoint.

Proof. If E is normal, then $AE^* = EA$ by [10]; if A is unitary, then $EA^* = A^*E^*$ and consequently, $AE^* = EA$. Thus in either case Corollary 6 may be applied.

Corollary 7 includes a slight improvement of a result of J. P. Williams. In [13] Williams proved that $\sigma(E)$ is real if $AE = E^*A$, where 0 is not in the closure of W(A). Thus if E is normal, E is self-adjoint. In particular, Williams noted that if E is normal and $AE = E^*A$, where E is a cramped unitary operator, then E is self-adjoint. More generally, in [1] W. A. Beck and C. R. Putnam and in [2] S. K. Berberian proved this same result without the hypothesis that E is normal. Finally, in [9] C. A. McCarthy obtained a generalization from which it follows that if E is E and E is results are included in Corollary 7.

For completeness we include the following special case of Theorem 1.

COROLLARY 8. If H and K are commuting normal operators and $H=A^*KA$, where A is a cramped unitary operator, then H=K.

Proof. AH = KA since A is unitary and $0 \notin W(A)$ since A is cramped [3]. Thus Theorem 1 is applicable.

In Corollary 9, we have a result similar to that of Theorem 1. The hypothesis that H and K commute is replaced by $A^*H = KA^*$.

COROLLARY 9. Let AH = KA and $A^*H = KA^*$, where $A \in D$. If A is unitary or H and K are normal, then H = K.

Proof. If H and K are normal, we also have $AH^* = K^*A$ and $A^*H^* = K^*A^*$ by [10]; if A is unitary, these equations also hold since $HA^* = A^*K$ and HA = AK. If we now define

$$\mathscr{A}=egin{pmatrix}A&0\cr 0&A\end{pmatrix}$$
 and $\mathscr{C}=egin{pmatrix}0&H\cr K^*&0\end{pmatrix}$,

direct computation shows that $\mathscr{AE} = \mathscr{E}^*\mathscr{A}$ and $\mathscr{AE}^* = \mathscr{E}\mathscr{A}$. Since $W(\mathcal{A}) = W(A)$ and $\sigma(\mathcal{A}) = \sigma(A)$, Corollary 6 may be applied to show $\mathscr{C} = \mathscr{C}^*$. Thus H = K.

A rather curious result can be obtained by using the technique of proof in Corollary 9. Note that \mathscr{E} (as defined in the proof of Corollary 9) is normal if and only if $HH^* = KK^*$ and $H^*H = K^*K$. But by Corollary 7 if $\mathscr E$ is normal, $\mathscr M\in D$ and $\mathscr M\mathscr E=\mathscr E^*\mathscr M$, then \mathscr{E} is self-adjoint and H=K. Thus we have:

Corollary 10. Let H and K be operators such that $HH^* = KK^*$ and $H^*H = K^*K$. If there exists an element A of D such that AH = KA and A*H = KA*, then H = K.

To Professor S. K. Berberian, I express my sincere gratitude for suggesting Corollaries 9 and 10, the method of proof used in these corollaries, and the reference to C. A. McCarthy's paper. I also wish to thank Professor P. R. Halmos for his helpful comments on this paper.

REFERENCES

- 1. W. A. Beck and C. R. Putnam, A note on normal operators and their adjoints, J. London Math. Soc. 31 (1956), 213-216.
- 2. S. K. Berberian, A note on operators unitarily equivalent to their adjoints, J. London Math. Soc. 37 (1962), 403-404.
- 3. ——, The numerical range of a normal operator, Duke Math. J. 31 (1964), 479-483.
- 4. A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728.
- 5. M. R. Embry, Conditions implying normality in Hilbert space, Pacific. J. Math. **18** (1966), 457–460.
- 6. ——, nth roots of operators, Proc. Amer. Math. Soc. 19 (1968), 63-68.
- 7. B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. **36** (1950), 35-40.
- 8. P. R. Halmos, Commutativity and spectral properties of normal operators, Acta Szeged **12** (1950), 153–156.
- 9. C. A. McCarthy, On a theorem of Beck and Putnam, J. London Math. Soc. 39 (1964), 288–290.
- 10. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951),
- 11. ——, On the spectra of commutators, Proc. Amer. Math. Soc. 5 (1954), 929-
- 12. ——, On square roots of normal operators, Proc. Amer. Math. Soc. 8 (1957) 768-769.

13. J. P. Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20. (1969), 121-123.

Received January 20, 1970.

THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE