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GELFAND AND WALLMAN-TYPE COMPACTIFICATIONS

CHARLES M. BILES

In this paper we compare the Gelfand and Wallman methods
of constructing a compactification for a Tychonoff space X from
a suitable ring of continuous real-valued functions on X, Every
Hausdorff compactification T of X is Gelfand constructable;
in particular, T is equivalent, as a compactification of X, to
the structure space of all maximal ideals of the ring of all
continuously extendable functicns from X to 7. However,
Wallman’s method applied to this ring may not yield 7. We
thus inquire into some relationships that exist between the
Wallman and Gelfand compactification of X constructed from
a suitable ring of functions on X,

0. Topological preliminaries. All topological spaces in this
paper are assumed to be completely regular and Hausdorff. We shall
be concerned with methods of constructing compactifications for such
spaces.

Let X be a topological space. The space T is an extension of
X means there exists a homeomorphism 2 from X into 7T such that
h[X]is dense in T. The function % is called an embedding. Ocecasion-
ally the necessary embedding maps will be explicitly mentioned, but
usually they will be tacitly assumed. In fact, when T is given as
an extension of X, we may take X as a subspace of T. The space
T is a compactification of X (denoted 7T cc¢X) means that 7T is a
compact extension of X. The compactifications 7 and K of a space
X are equivalent as compactifications of X (denoted 7' = K) means
there exists a homeomorphism between 7 and K such that i(x) =z
for each ze X.

We shall use the standard notations [4] regarding C(X), the ring
of continuocus real-valued functions. For any fe C{X),

Z(f) = {we X|flw) = 0}

is called the zero-set of f. If .o~ is a subring of C(X), we define
Z[.o7 = {Z(f)| f e &); however, Z[C(X)] is customarily denoted by
Z(X). We shall only refer to subrings of C(X) with unity.

Let &7 be a subring of C(X). We shall denote the space of
maximal ideals of .o~ with the Stone topology [4, TM], also called
the structure space of .o, by H[.®7]. The space of ultrafilters of
Z[.o7] is denoted by wZ[.o~]. This space of ultrafilters is constructed
by Wallman’s method [1] [2]. We shall be primarily concerned with
those subrings & of C(X) for which wZ[.o7]ec¢X and how these
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subrings relate to a certain type of “structure space” for .o/

Let &2 be a collection of subsets of X. Then & is a lattice on X
means

(1) ©,Xez;

(2) if A,Be &, then AN Be ¥ and AU Be &~
A set in &# is referred to as an & -set.

The lattice &~ on X is a Wallman base on X means

(1) &~ is a base for the closed subsets of X;

(2) ¥ is a disjunctive lattice on X (i.e., if Ae & and z¢
X — A, then there exists Be & such that xe B and AN B= Q);

(3) &~ is a normal lattice on X (i.e., for each A, Be &7, if A
and B are disjoint, then there exists C, De & such that X— AcCC,
X —BcDand CUD = X).

For any lattice &© on X, an &~-filter is a nonvoid subset .& of
< such that

(1) ve7;

(2) if A, Be &, then AN Be & ;

(38) if Ae &#, Be ¥ and AC B, then Be #.
An -ultrafilter is a maximal (with respect to inclusion) ~-filter.
The set of all <~-ultrafilters is denoted by w.<~

Let & be a lattice on X. In order to topologize w.<”, define
A* ={Z ewF |Aec 7} for each Ac &~ Then {A*|Aec &} is a base
for the closed sets of some (necessarily unique) topology for w2
We shall only consider w.<# with this topology. Now w.ecX if
and only if & is a Wallman base on X (with respect to the embedd-
ing map@: X — w.e defined by o) = {Aec F|xec A}). If TecX,
then 7T is a Wallman-type compactification of X means there exists
a Wallman base & on X such that T = w<. It is unknown wheth-
er or not every compactification is Wallman-type. If Tecc¢X, then
T is a z-compactification of X means there exists a Wallman base
¥ c Z{X) such that T = w.~

1. Filter ideals. Let X be a topological space and .& a sub-
ring of C(X).

DEeFINITION 1.1. The ideal I of .o is a filter ideal of .7 means
Z[I]is a Z[.o7]-filter. The set of all maximal filter ideals is denoted
by F[.27].

DEFINITION 1.2. .7 is a wallman subring of C(X) means that
Z|.s7] is a Wallman base on X.

We first give some elementary facts about filter ideals, the
proofs of which are straight forward.
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PRrOPOSITION 1.8. The ideal I is a filter ideal of &7 if and only
“of Z(f) #= @ for each fel.

Thus an ideal of .97 need not be a filter ideal. Further, every
ideal of .o is a filter ideal if and only if .97 is inverse closed (if
fe and Z(f) = @, then 1/fe . ¥).

PropPOSITION 1.4. If F is a Z[.S7)-filter, then
ZFl={fe 7 |Z(f)e F}
is a filter ideal of .o

A filter ideal I of &7 is a z-filter ideal means if fe . and
Z(f)e Z[I], then feI. Then there is a one-to-one correspondence
between the Z[.o7]-filters and the z-filter ideals of .o The next
two propositions show that there is also a one-to-one correspondence
between Z[.o7]-ultrafilters and maximal filter ideals.

ProrosiTION 1.5. If I is a maximal filter ideal in &7, then
ZIl e wZ[.&7].

Proof. Now Z[I] is a Z[.o7]-filter. Suppose F is a Z[.&]-
filter such that Z[I|c F. Then Z7[F] is a filter ideal of .o and
Ic Z7[Z[Il]c Z7[F']. Since Iis a maximal filter ideal, then I=Z"[F'].
Thus Z[I] = F; hence, Z[I]e wZ[.57].

ProOPOSITION 1.6. If Z e wZ[.57], then Z[Z/] is o mazximal
filter ideal.

Proof. Since Z e wZ[.o7], then Z7[Z/] is a filter ideal by 1.4.
Suppose I is an ideal of .o such that Z[Z]|cI. Then % c Z|I]
where Z[I] is a Z[.o7]-filter by 1.3. Since % is maximal, then
7 = Z|[I]. So Ic Z[Z|I|]| = Z-|Z]; thus I = Z-|Z/]. Hence, Z[Z]
is a maximal filter ideal.

ProPOSITION 1.7. Ewery maximal filter ideal of &7 is a prime
ideal of .o7.

Proof. Let I be a maximal filter ideal of .o~ and suppose I is
not prime. We select f, ge € .9 such that fge I, but f¢Iandgel.
So I is properly contained in the ideals I, = I + .7 fand I, = I + .o7g.
Since I,, I, are not filter ideals, by 1.1 we select h,, h,e I and k,, k. €
&7 such that Z(h, — k.f) = @ and Z(h, — k,9) = @. Clearly h, —
k.fel and h, — k,ge I,. Since (Z(h) N Z(k)) U (Z(h,) N Z(f)) = @ and
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(Z(hy) N Z(k2)) U (Z(hs) N Z(9)) = @, then Z(h,) N Z(h,) N Z(f9) = @ so,
Z(h:+ hi + (f9)Y) = @. But r!+ hi+ (fg)*el, contradicting I is a
filter ideal by 1.1. Hence, I must be a prime ideal of .o

The following easily proved characterization of maximal filter
ideals we state without proof:

ProprOSITION 1.8. Let M be a filter ideal of &7 Then Me F[.57]
if and only if for every fe . — M there exists ge M such that
Z(f)NZg) = @.

2. Maximal filter ideal spaces. Let X be a topological space.
Let .7 be a subring of C(X) (we shall only refer to subrings of
&7 with unity). We denote the structure space of .o~ by H[.o7]
(see [4, TM]) and the set of maximal filter ideals of .o by F[.o7].
We seek to define a “structure space” topology for F[.o7] and to
examine the relationships between the spaces F[.o7| and wZ[.o7].
In particular, we show F[.&] = wZ[.27] equivalent as compactifica-
tions of X) if and only if Z[.97] is a Wallman base on X. Further-
more, F[.o7] is a compactification of X if and only if Z[.o] is a
Wallman base on X. Accordingly, we shall refer to .97 as a Wallman
ring on X if Z[.%7] is a Wallman base on X.

THEOREM 2.1. Let X be a topological space and .7 a subring
of C(X). For each ze X define M, = {fe .| flx) = @}. Then

(@) M,e F|.&7] for each xe X if and only if Z[.o7] is a dis-
Junctive lattice on X;

(by If Z[.7] 1is a disjunctive lattice on X, then the mapping
x— M, is one-to-one if and only if &7 strongly separates points in
X (te, if v, ye X, v == vy, then there exists fe & such that f(zx) = 0
and fly) # 0).

Proof. (a) Suppose M,c F[.o7] for each v X. Let Ac Z[.o7]
and v e X — A. Select fe .o such that A = Z(f). Since fe .o — M,
then by 1.8 we may choose ge M, such that Z(f) N Z(g) = @. Then
Zg)e Z].7 |, xc Z(g) and Z(g)N A = . Hence, Z[.o7] is a disjunc-
tive lattice on X. Conversely, suppose Z{.%7) is disjunctive. By 1.3,
M, is a filter ideal of .o~ for each e X. Suppose ze X. Let I be
a filter ideal of &~ properly containing M, and select fc I — M,.
Since Z[.%7] is disjunctive, select Z(g) € Z[.27] such that xe Z{g) and
ZNZ(f)= @. Then ge M, so gel, and thus f*+ g*cl, con-
tradicting 1.3. Hence, M,c F[.%7].

(b) Since Z[.&7] is a disjunctive lattice on X, then M, e F[.o7]
for each ze X. Suppose the mapping x— M, is one-to-one. Let



GELFAND AND WALLMAN-TYPE COMPACTIFICATIONS 271

xz,yc X such that x # y. Then M, =+ M,. So there exists fe .~
such that f(z) = 0 and f(y) = 0. So .o strongly separates points in
X. The converse is obvious. This completes the proof.

We now put a structure space topology on F'[.97]. For each
fe v, define f*={Ic F[.7]|felI}. Easily 0* = F[.o7] and f* =
@ whenever Z(f) = @. Since every maximal filter ideal is prime, then
(fo)* = f* U g*. Hence, {f*|fec .o} defines a base for some topology
(necessarily unique) on F[.&7]. We shall only consider this topology
on F[]. BEasily {I} = n{f*|fel} for each Ie F[.%7]; hence,
F[.57] is a T,-space.

THEOREM 2.2. F[.57] is compact.

Proof. Let 2 be a nonvoid collection of nonvoid basic closed
subsets of F'[.97] with the finite intersection property. Let .o~ =
Z(H)|fens, f*e 22}, Then 2 is a nonempty collection of zero
sets of .o with the finite intersection property. So we may select
Z e wZ[.7] such that 27 c %Z. For each fe . where f*e .9
we have Z(f)e "' Cc = fe Z-[z' | e F[7] (by 1.6) —Z[Z]e f*;
thus, Z-[{Z']e N .22 Hence, F[.7] is compact.

We now seek conditions under which F[.&] is a compactification
of X with respect to the mapping « — M, (={fe &7 |f(x) = 0})). By
2.1, we must have a subring . of C(X) such that .9 strongly
separates points of X and Z[.%7] is a disjunctive lattice on X.

THEOREM 2.3. F'[.%7] is Hausdorff if and only if F,, F,e F[.&7],
I, = Fy— there exists f, ge & such that (f9)* = F[.o7], f¢ F, and
g¢F..

Proof. Suppose F[.o7] is Hausdorff. Let F, F,e F[.&7], F, +
F,. Select f,ge .7 such that F,e F[.7] — f*, F,e F[.%7] — ¢* and
F[] - HNEF[] —9*) = @. Then f¢F,g¢F,and f*Ug* =
(f9)* = F[.27]. Suppose the converse hypothesis holds. Let F,, F,e
Fl.&7], F, + F,. Select f,ge . such that f¢ F,g¢ F, and (fg)* =
F[e7]. Then Fi.e F[.] — f*, F,e F[.>7] — g* and (F[.%7] — f*) N
(F[~7]1 — 9*) = @. This completes the proof.

COROLLARY 2.4. Suppose Z[.o7] is a base for the closed subsets
of X. Then F[.57] is Hausdorff if and only if F,, F,e F[.o7], F, +
F,— there exists f, ge .o such that f¢F,,g¢F, and fg = 0.

THEOREM 2.5. Let &7 be a subring of C(X) such that Z[.57] is
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a disjunctive lattice on X. Let @ denote the mapping x — M, from
X into F[.7]. Then

(a) ¢: X— F[.57] is continuous,

(b) @[X] is dense in F[.o7], and

() @ is a homeomorphism between X and @[X] if and only if
& strongly separates points from the closed sets in X (i.e., if F 1is
a closed subset of X and xe X — F, then there exists fe . such
that FF < Z(f) and f(x) # 0).

Proof. By 2.1 (a), M,e F[.o7] for every xz¢ X.

(a) Since @ [f*] = Z(f) for each fe.w, it becomes straight-
forward to show @: X — F'[.97] is continuous.

(b) Let fe.oz Then F[.o7] — f* is a basic open set in F[.o7].
Suppose (F[7] — ) Ne[X] = @. Let xe X. Then @x) = M, ¢
Fl7] — f* so M,ef*. Thus fe M, for every xz¢ X; i.e., f=0.
So f* = F'[.&~]. Hence, every nonvoid basic open set of F[.57] in-
tersects @[ X]; i.e., @[X] is dense in F[.o7].

(c) First, suppose .7 strongly separates points and closed sets
in X. Then Z[.27] is a base for the closed sets in X. Since

P NPl X1l = Z()

for each fe.o»”, then @ and o~ are continuous. By 2.1 (b), @ is
one-to-one. Hence, @ is a homeomorphism between X and @[X].
Let F be a closed subset of X. Then @[F] is a closed subset of
o[X]. So we may select 2" . such that

PIF] = N{f* nelX]lfe 77} .

Thus F' = n{e [f* NnelX]lIfe Z} = N{Z(f)|fe %} so Z[.7] is a
base for the closed subsets of X. Hence, .~ strongly separates
points from closed sets in X.

Let .o be a subring of C(X) which strongly separates points
from closed sets in X and for which Z[.o] is disjunctive. Then the
mapping @: X — F[.%7] defined by o(x) = M, embeds X into the
compact T,-space F[.o7]. Define h: X — wZ[.7] by hiz) = %, (=
{Ae Z[&7]|xe A}). By [2, Th. 2.7], h embeds X into the compact
T.-space wZ[.&7]. Define H: wZ[.7|— F[.&7] by H(%) = Z[#%]
for each Z e wZ[.27].

THEOREM 2.6. The mapping H 1is a homeomorphism between
wZ[ 7] and F[.7].

Proof. By 1.5 and 1.6, H is a Dbijection. Now {Z(f)*|fe .o},
where Z(f)* = {% e wZ[.7| Z(f) e %}, is a base for the closed sets
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of wZ[.&7] (see [1] or [2]). Since H[Z(f)*] = f* for each fe .o,
then both H and H*- are continuous. Hence, H is a homeomorphism.

THEOREM 2.7. F[.o&7|ecX if and only iof & is a Wallman
ring.

Proof. By 2.6, H defines a homeomorphism between F[.o7] and
wZ[.7]. But wZ[.o7]ecX if and only if Z[.o7] is a Wallman base
on X. Hence, F[%]ecX if and only if .9 is a Wallman ring.

Hence, the structure space F[.7] of the maximal filter ideals
of a subring .o of C(X) is a (Hausdorff) compactification if and only
if &7 is a Wallman ring. Moreover, F[.%7] is a Wallman-type com-
pactification of X.

3. Maximal ideal spaces and maximal filter ideal spaces. In
this section .o is a subring of C(X) containing <#, the constant
real-valued functions on X. For ve X, define M, = {fe .| f(x) = 0}.
The mapping f+ M,— f(x) is a ring isomorphism between .o /M,
and .ZZ; so, M,e H[.o7] for each xe X. Similarly, M,ec F[.o7] for
each ze X (1.3). We topologize H[.o] by taking the set of all

*={Mec H|.o7]|fe M}, fe.o, as a base for the closed sets; i.e.,
H[.57] is the structure space of .o |4, TM]. Similarly we topologize
F|[.57], where a basic closed set is denoted f* = {Fe F[.%7]]| fe F'},
fe .7 Define the mapping ¢: X — F[.&7] by @(x) = M, and v: X —
H[.o7] by V¥(x) = M,. We obtain 9[Z(f)] = f* N ¢[X] and ¥[Z(f)] =
f*N+|X]. Hence, H[.%7] is an extension of X (via v), F[.o7] is
an extension of X (via @) if and only if Z[.&7] is a base for the
closed sets in X. Now F[.o| and H[.o7] are both compact 7T'-spaces
[see 2.2 and 4, TM]. From §2, F|.]cc¢X if and only if .o~ is a
Wallman ring on X. From [4, TM], H[.%7]| e ¢X if and only if Z[.o7]
is a base for the closed subsets of X and H[.o] is Hausdorff.

We remark that even if both H[.97] and F[.97]|€ ¢X, they need
not yield equivalent compactifications of X. For example, let X = <&
(reals with the usual topology) and <#* be the one-point compacti-
fication of <#. Let .9 be the ring of all functions in C{.<2) having
continuous extensions to #*. Then . is a Wallman ring and
Flr| = wZ[ ] = p#, but H[.&7] = #*. This situation gener-
alizes to arbitrary locally compact Lindelof spaces [1] [5]. However,
F[C*(X)] = wZ(X) = X = H[C*(X)]. Thus, we inquire into possi-
ble relationships between F[.7] and H[.27].

We first present the following analogue of the Gelfand-Komolgoroff
Theorem [4, 7.3] which yields a representation theorem for the
maximal filter ideals of .~ when wZ[.%7] e cX.
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THEOREM 3.1. Let .7 be a Wallman ring on the space X and
T=wZ[.>7]. The maximal filter ideals in . are then given by
F' = {fe o7 |tecl, Z(f)} (teT).

Proof. Let teT. Easily F*t is an ideal. From 1.3, F® is a
filter ideal. We now show F'e F[.%7]. Suppose Fe¢ F[.&7] such that
F‘CcF and F'*+ F. Select fe F such that t¢cl,Z(f). Since T =
wZ[.7], select ge 7 such that tecl,Z(9) and Z(f) N Z(9) = @.
But then f,ge F and Z(f) N Z(9) = &, contradicting Fe F[.o]. So
F* is maximal. It remains to show that if Fe F[.97], then F = F'*

for some te T. Let Fe F[.87]. Then Z[FlewZ[.27], so

N{el Z(f) | fe F} = {¢}
for some te T [1], [6]. Hence, F' = F*. This completes the proof.

The above theorem also yields an explicit one-to-one correspond-
ence between the points of T and the maximal filter ideals in .o
Since C(X) is inverse closed and wZ(X) = pX, we have the

COROLLARY 3.2. (Gelfand-Komolgoroff theorem). For any space
X, HIC(X)] = FIC(X)] = wZ(X) = BX and the mazximal ideals of
C(X) are given by M' = {fe C(X)|t e cl;xZ(f)}.

Now, since Z(X) = Z[C*(X)], then C*(X) is also a Wallman ring
on X and F[C*(X)] = wZ(X) = pX. Since H[C(X)] = H[C*X)] [4,
7.11], then H[C*(X)] = F[C*(X)] (i.e., equivalent as compactifications
of X).

We now inquire into relationships between maximal ideals and
maximal filter ideals.

THEOREM 3.3. Suppose H[.97|ecX. Then every maximal filter
ideal is contained in a unique maximal ideal.

Proof. Let Fe F[.&7]. Suppose M, Ne H[.27| where FFc M, N
and M == N. Select f,ge .o such that fg =0, f¢ M and g¢ N [4,
7M]. But then fg=0eF so feF or geF (L.7); hence, fe M or
ge N. From this contradiction, we conclude M = N.

COROLLARY 3.4. Suppose H[.7]|e€cX. If each maximal ideal,
which contains a maximal filter ideal, contains a unique maximal

filter ideal, then F[.7]€ cX.
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Proof. Since H[.]ecX, then Z[.27] is a base for the closed
subsets of X. It then suffices to show that F[.%7] is Hausdorff.
Let F,Ge F[.&7], F #+ G. There exist unique M, Ne H[.%7] such
that Fc M,Gc N (3.8). Since M = N by hypothesis, we select
fr9e .57 such that fg =0, f¢ Mandge N. So f,9e .7, fg=0,f¢F
and g¢G. By 2.4, F[.27] is Hausdorft.

Suppose now that TecX and . is a subring of E(X, T) (the
ring of all functions on X continuously extendable to T') such that
& contains <2 (the constant real-valued functions on X) and Z[.%]
is a base for the closed subsets of X. Then v:X— H[.%7] and
@: X — F[.o7] embed X as a dense subspace of the compact T'-spaces
H[.&7] and F[.27], respectively.

For fe E(X, T), denote the continuous extension by f”. For
te T, define M!= {fe & |f*(t) =0}. Then M'e H[.%7] for each
te T since the mapping f+ M*®— f7(t) is a ring isomorphism between
7 /M* and 2. Thus the mapping V: X — H[.7] defined by ¥ (x) =
M, is extendable from X to T by +(t) = M?. Note that M* = M,
for each ze X.

Lemma 3.5. ¥ [ff] = Z(f7).

Proof. te Z(f?) if and only if f7(t) = 0 if and only if fe M* if
and only if Mte f* if and only if ¥(¢) € f* if and only if te v [f].

Hence, v: T'— H[.%7] is continuous. So ¥[7T] is a compact sub-
space of H[.27]. We then obtain the

THEOREM 3.6. If H[.%7] is Hausdorf, then

(1) Hl[¥]ecX (wia ¥v: T— H[));

(2) H[7]=vI[T]={M'te T}

(3) H[X]|ZT; and

(4) H[Z]1 =T if and only if v 1is injective if and only if
{f7| fe &7} separates points in T if and only iof {Z(f")|fe X} is a
base for the closed subsets of T.

Proof. (1) and (2). Now ¥[T] = cly..¥[T] since a compact
subspace of a Hausdorfl space is closed. Also, ¢l [T] = H[.%]
since ¥[X] is dense in H[.&7].

(3). Obvious.

(4). A continuous bijection from a compact space to a Hausdorff
space is a homeomorphism.

THEOREM 3.7. Suppose T = F[.o7]. Then T = H[.%7] if and
only +f each maximal ideal contains a wnique maximal filter ideal
and H[.57] is Hausdorff.
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Proof. Suppose H[.7] = T. Let M'e H[.%”]. Then F'c M?,
so every maximal ideal contains a maximal filter ideal (3.6 (2)). Since
T = H[.&7], then +:T— H[.o7] is injective (3.6 (4)). Hence, if
F*, F*c M* where t,s,pe T (3.1), then t = s = p. So each maximal
ideal contains a unique maximal filter ideal. The Hausdorff condition
is obvious.

Now assume the converse hypothesis and suppose H{.&] < T
(3.6 (3)). Then ¥ is not injective (3.6 (4)). Select ¢, se T such that
t+s, but M* = M°. Since T = wZ[A] = F[A], then F*® =+ F* (3.1).
Clearly Ftc M* and F*c M*. So F!, F*c M! and F'! % F*, contra-
dicting our assumption that each maximal ideal contains a unique
maximal filter ideal. This completes the proof.

THEOREM 3.8. Suppose T = H[.7]. Then T = F[.o7] if and
only if el Z(f) N el Z(g9) = @ whenever Z(f) N Z(9) = @ and f, g€

Proof. Since {f7|fe .&”} is a base for the closed subsets of T
(3.6 (4)), then so is {cl;Z(f)|fe &}. By [1, 8.3], T = wZ[.27] if and
only if cl,Z(f) Nnel,Z(g) = @ whenever Z(f) N Z(9) = @ and f, g€
This completes the proof since F[.&7] = wZ[.o7] (2.6).

Hence, if TecX is “constructable” as a maximal ideal space of
7, where % is a subring of E(X, T') containing .2, then T is also
constructable as the ultrafilter space from the zero-sets of . if and
only if disjoint zero-sets of .& have disjoint closures in 7. Con-
versely, if T is “constructable” as the ultrafilter space from the
zero-sets of .7, then T is constructable as the maximal ideal space
of .7 if and only if each maximal ideal contains a unique maximal
filter ideal and the maximal ideal space is Hausdorft.

THEOREM 3.9. Suppose H[.&7| = T and F[.&]ecX. Then T <
Fls7].

Proof. Let Fe F|[.%7]. Since T is compact and
F = {clZ(f)| fe F}

is a nonvoid set of nonvoid closed subsets of T with the fip, then
N # @. Since {cl;.Z(f)|fe .57} is a base for the closed subsets
of T, then N is a singleton (denote F'—t). Thus, for each Fe
F[.57] there exists a unique ¢ € T such that F'— ¢. Define h: F[.%7] —
T by h(F) =t where FF—¢. Then h is a surjection and i(F,) =«
for each xze X. Since A [cl,Z(f)] = N{g*|cl,Z(f) Cint,Z(9"), g€ 7}
for each fe .97, then % is continuous. Hence, T < F[.%7] (via h).

COROLLARY 38.10. Suppose H[.&7] = T. Then T = F[.7] +f and
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only if each maximal ideal contains a unique maximal filter ideal.

Proof. Suppose each maximal filter ideal contains a unique
maximal filter ideal. Then F'[.&7] € ¢X by 3.4. The mapping i: F[.&7]—
T defined in the proof of 3.9 is then injective. Hence, T = F[.%7].
The converse follows from 3.7. This completes the proof.

4. An application to E(X, T'). Let TecX. Easily Z[E(X, T)]
is a base for the closed subsets of X. In 1964 Frink [3] mentioned
that Z[E(X, T)] was a Wallman base on X. However, Brooks, in a
paper published in 1967 [2], mentioned he could not prove this. Sub-
sequently Hager, in a 1969 paper. provided a “constructive” proof.
We offer here a proof that Z[E(X, T)] is a Wallman base on X based
on 2.4 and 2.7. We first observe

LEMMA 4.1. Suppose &7 is a subring of C(X) such that if fe
&7, then |f|e o/ Let I be a z-filter ideal of 7. Then the follow-
ing are equivalent:

(1) I is a prime ideal of 7

(2) I contains a prime ideal of &7

(3) if f,9e . and fg =0, then fel or gel; and

(4) for each fe 7 there exists g € I such that f does not change
sign on Z(g).

Proof. The techniques of [4, 2.9] apply verbatim.

THEOREM 4.2. Let &7 be subring of C(X) such that Z[.57] is a
base for the closed subsets of X and if fe .o, then |fle /% Then
&7 is a Wallman ring on X.

Proof. It suffices to show that F[.o7] is Hausdorff (2.7). To
show this we apply 2.4. Let F,Ge F[.%7], F+ G. Then F NG is
a z-filter ideal of .% which is not prime. Using 4.1(3), we select
fr9€ . such that fg =0, but f¢ FNG and g2 FNG. But F and
G are prime ideals of .& (1.7); hence, either fe F or ge F. Suppose
feF. Then g¢ F and f¢G. Also, if ge F, then f¢ F and g¢G@G.
By 2.4, then, F[.57] is Hausdorff. Hence, & is a Wallman ring
on X.

COROLLARY 4.3. Let TecX. Then Z|E(X, T)] is a Wallman
base for X.



278 CHARLES M. BILES

REFERENCES

1. C. M. Biles, Wallman-type compactifications, Ph. D. thesis, University of New
Hampshire, November, 1968.

2. R. M. Brooks, On Wallman compactifications, Fund. Math. 40 (1967), 157-63.

3. 0. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964),
602-607.

4. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
5. A. Hager, On inverse-closed subalgebras of C(X), Proc. London Math. Soc. (3) 19
(1969), 233-57.

6. E. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1968), 295-304.
7. E. Steiner and A. Steiner, Wallman and Z-compactifications, Duke Math. J. 35
(1968), 269-76.

Received September 11, 1969.

HuMBOLDT STATE COLLEGE





