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REPRESENTATIONS OF FINITE RINGS

ROBERT S. WILSON

In this paper we extend the concept of the Szele repre-
sentation of finite rings from the case where the coefficient
ring is a cyclic ring* to the case where it is a Galois ring.
We then characterize completely primary and nilpotent finite
rings as those rings whose Szele representations satisfy
certain conditions.

1* Preliminaries* We first note that any finite ring is a direct
sum of rings of prime power order. This follows from noticing that
when one decomposes the additive group of a finite ring into its
pime power components, the component subgroups are, in fact, ideals.
So without loss of generality, up to direct sum formation, one needs
only to consider rings of prime power order. For the remainder of this
paper p will denote an arbitrary, fixed prime and all rings will be
of order pn for some positive integer n. Of the two classes of rings
that will be studied in this paper, completely primary finite rings are
always of prime power order, so for the completely primary case, there
is no loss of generality at all. However, nilpotent finite rings do not
need to have prime power order, but we need only classify finite
nilpotent rings of prime power order, the general case following
from direct sum formation.

If B is finite ring (of order pn) then the characteristic of B will
be pk for some positive integer k. If x e B then we define the order
of x to be the smallest positive integer e such that pex — 0. Thus
0 < e ^ k.

We now define a very important class of finite rings.

DEFINITION 1.1. Let f(x)eZ[x], when Z denotes the rational in-
tegers, be monic of degree r and irreducible modulo p. Then the
ring Z[x]/(pk, f(x)) is called the Galois ring of order pkr and charac-
teristic pk, and will be denoted by Gk,r. Basically, then, a Galois
ring is an irreducible algebraic extension of degree r of the cyclic
ring Z/(pk)f and any two irreducible algebraic extensions of Z/(pk) of
degree r are isomorphic [2, § 3]. Note that Gur = GF(pr) and Gktί =
Z/(pk). This class of rings was introduced independently by
Raghavendran [2] and Janusz [1] both of whom called them Galois
rings. The importance of Galois rings, at least in our case, is that
if B is a completely primary finite ring of characteristic pk with
Jacobson radical J such that B/J = GF(pr) then B contains a unique
(up to inner isomorphism) copy of Gk,r ([2, Th. 8]). Thus the com-
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pletely primary finite ring R is a G^,r-bimodule. The author has
developed a structure theory for finite G/c,r-bimoduίes and facts that
we will need are listed below.

PROPOSITION 1.2. Let M be a finite Gk,r-bimodule. Then there
exist elements mlf , mne M such that

( i ) M=ΣU@Gk,rmί

(ii) Gkjr m€ = mfi^r ί = 1, , n.
Moreover, if M = Σ?=i Θ &k,r m] is another such decomposition of M
then q = n and the orders of the m) are {after possible reindexing)
the orders of the mt.

This is essentially Theorem 2.1 of [5].

2* The Szele representation• The representations we are in-
terested in will be right regular representations with Galois rings as
coefficient rings. Thus we adopt the convention of writing maps on
the right and scalars on the left. We next introduce the following
class of rings. Let k = h ^ k2 ̂ > kn > 0 be a nonincreasing se-
quence of positive integers. Let φό: Gk>r —> Gk r be the map induced by
the cannonical homomorphism Gktr —> Gk,r/pkoGk>r followed by the iso-
morphism Gk,r/pkΐGk,r ~ Gkjtr. Let R denote the set of all rectangular
arrays [aiά] where aideGk r(ίf j = 1, •••, n) where for entries below
the main diagonal we have aτj is a multiple of pkΐ~ki in G fc j.r. Let
S = {[&„•] e Mn(Gk,r) I btj e p"s-k*Gk,r if i > j}. Define a map Φ:S->R
by Φ: [&<,-]—> [(bzj)φj]. Clearly Φ is onto. We define addition and
multiplication in R by stipulating that Φ preserves addition and
multiplication. R is then a ring. The only thing which is not
immediate is that multiplication is well-defined. But that follows
from our condition that aiS is a multiple of pkj~ki whenever i > j . This
construction is due to Szele [3] who did it for cyclic rings, however,
as we shall see there is no reason why we cannot do it over more
general rings. We shall call such a ring and subrings thereof rings
of Szele matrices. The class of rings are of interest when studying
finite rings because of the following result.

LEMMA 2.1. Let R be a finite ring of characteristic pk which
contains a copy of Gk>r. Then the right regular representation of
R over Gk>r can be realized as a ring of Szele matrices.

Thus we have immediately

COROLLARY 2.2. Any finite ring with unit (of prime power of
order) is a subring of a ring of Szele matrices over a Galois ring.
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These results were proved by Szele in case the coefficient Galois
ring is taken to be a cyclic ring. Any finite ring will of course
contain a cyclic ring and it is quite possible that the cyclic subring
will be the largest Galois subring so, in a sense, our result does not
represent much of a step forward in the study of general finite rings.
However, in the study of completely primary finite rings, one can
obtain a tractable, complete characterization if one studies the Szele
representation over the largest Galois subring.

Proof of Lemma 2.1. Proposition 1.2 supplies all of the necessary
tools to follows Szele's original proof except that, in general, Galois
subrings do not need to be contained in the center. However, we
circumvent that difficulty be writing maps on the right and scalars
on the left. Gk>rdR so R is a Gfcr-bimodule. Let bu •••,&« be a
basis of R over Gh>r satisfying the conditions of Proposition 1.2. Let
ki be the order of bt and suppose that the bt are arranged such that
k = &i ̂  fc2 ̂  ^ kn > 0. Let ae R, bta e R i = 1, , n so we may
write

n

M Σ b Gi 1 n .

Note that

0

δ«α-

= pk%a ••= ±p*

&/ « ϋ e

for

i =

all

1,

i

* * * 9

, n .

Since the δ/s are independent over GktT we conclude that pkicctίbj = 0
for all i, j = 1, , n. Thus pkiatj is a multiple of pkκ So if i > j
we have that aiβ is a multiple of pkΐ~ki for all a e R. So the map ψ
given by ψ\ a —> [(a:^)^] is a map from R into a ring of Szele matrices.
It is straightforward to check that f is a ring homomorphism and
since ko is the order of 6* it follows that ψ is one to one, and the
lemma is proved.

3* Completely primary and nilpotent finite rings* In [5], the
author proves that a completely primary (resp. nilpotent) finite ring
is isomorphic to a subring of a homomorphic image of a ring of
matrices which are upper triangular (resp. strictly upper triangular)
modulo p. We now characterize this homomorphic image by means
of the Szele representation over Galois rings.

THEOREM 3.1. Let R be a completely primary finite ring of
characteristic pk with radical J such that R/J ~ GF(pr). Then R is
isomorphic to a ring of Szele matrices over Gk,r in which every
matrix is upper triangular modulo p, and if the matrix [(<
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(αί3 e Gfc)r) is in this ring then there are automorphisms σ2y *' ,σn

of GF(pr) such that (ajj)φ1 — ( (απ)^)^ (i.e., the main diagonal entries
of the matrices are all related by automorphisms modulo p).

The converse is also true. Any such ring is completely primary,
so this result characterizes completely primary finite rings.

Proof. We first note that if a completely primary ring has an
representation as a ring of Szele matrices which is upper triangular
modulo p then the main diagonal entries must be related by auto-
morphisms modulo p. For then the radical of the ring is the set of
all matrices in the ring which are strictly upper triangular modulo
p so the map R —> R/J ~ GF(pr) can be realized by the map

{{an)9u ••-, (a,n)φ0 e GF{pr) 0 0 GF(pr) .

However, the image of this map is a one dimensional algebra over
GF(pr) so the entry {ajj)φι is uniquely determined by the value of
(an)^i; i.e., (ajj)φ1 is a function of (an)φ1 say (a^)^i = ((a>u)Φi)(?j for
some function σd j = 2, , n. The σd are seen to be homomorphisms
from GF(pr) to GF(pr) and that part of the result follows. For the
rest of the result, the particular matrix representation we choose
depends upon the choice of independent generating set we make for
R over Gk,r. For R completely primary as in the hypothesis of the
theorem, the author showed [5, Prop. 2.2] that in addition to con-
ditions (i) and (ii) of Proposition 1.2 we can also assume (iii) hλ ~ 1,
and 62, , bn e J .

We now obtain the correct independent generating set of R over
Gk>r. Let e be the smallest positive integer such that Je = (0). Let
us consider the set of independent generating sets of R which satisfy
the conditions (i), (ii), and (iii). Suppose that q1 is the maximum
number of elements of any of these generating sets which are in
Je~\ Say {1, 62, , bQl+u cgχ+2, , cn} is such a generating set with
δ2, •• ,6 ? 1 + 1 eJ β ~ 1 . Suppose q2 is the maximum number of elements
in Je~2 included in any set of the form {1, 62, , δ?1+1, cq^2, *' ,cn}
which satisfies the conditions (i), (ii), and (iii). Choose a generating
set {1, 62, , bqi+1, bQl+2, , 6ffι+ff2+1, , dn] with 6?1+1, , bqι+q2+1e Je~\
We continue choosing elements of our generating set in this way: At
the ith step we have already chosen 1, 62, , bq._ι+...+qi+1 and we
suppose that the maximum number of elements in Je~i in any generat-
ing set satisfying (i), (ii), and (iii) which includes all of the above
e l e m e n t s i s qt. W e c h o o s e bqi_1+...+qi+2, •••, bq.+ ...+qi+1eJβ~i w h i c h a r e
elements of some generating set satisfying the conditions of (i), (ii),
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and (iii) which also contain the elements we have chosen in the
previous steps. After e — 1 steps we have that p, δ2, , bqe_l+...+Ql+1

generate all of J and hence 1, δ2, , bn is a generating set satisfying
the conditions (i), (ii), and (iii). Also, this matrix representation
depends on the order in which we index the δΐβ We take bγ = 1. We
then assume that if kt is the order of δ* that k — k^ k2^ ^ kn.
Next let ft be the largest positive integer such that δέ e Jfi. We call
ft the radical index of bt. We shall further assume that if kt = kj
with i ^ j then /« ̂  /,-. We prove that the Szele representation of
R with respect to this ordering of the basis blf , bn of R is of the
desired type.

Again let a e R and write bta = Σ?=i ^ A Since we have that
k = k^ k2^ ^kn we already know that if i > j with &, < kά

then α^ is a multiple of p*i""*\ So we need only restrict our atten-
tion to those i, j such that i > j but kt — k3 . Let us express
α = Σ?=i0A(0 f f

 6 f̂c.rί? = 1, , ̂ ) . Then 6,α = ΣJ = 1 6^,6, . But by (ii),
6iG*.r = G*.Λ(i = 1, , w) so 6<flrff e G&,A. Let 6<flrff = flr^δ,. Then
M = ΣJ=i fl^^δΛ Next let

δiδff = Σ vίfbj 7ίf e Gk>τ i, j, q = 1, , n

then

From this we conclude (a^φj, the ΐ, i t h entry of the Szele represen-
tation of a is (Σg=i Θ^Ύij^Φj. Thus if we seek to show that for an
arbitrary {βij)φj is a multiple of p for some i, j it suffices to show
that 7if is a multiple of q for each g = 1, •••,%.

We have thus reduced the problem to showing that if i > j with
&< = fcj then 7 f is a multiple of p for each g = 1, , n. If q = 1
then 6 ^ = δί and so 7$ = δ^ and thus 7$ is a multiple of p for all
i > j . So the proof of the theorem will be complete if we can show
that for all q = 2, , n 7<f is a multiple of p for all i ^ i such
that et = e,-.

We shall assume that there is a g ^ 2 for which there exists an
i ^ j such that et = e, but 7̂ f is not a multiple of p, and we seek
a contradiction. Since q ̂  2,bqeJ so the radical index of bfig is
strictly greater than ft which is the radical index of δ, which is, by
hypothesis, greater than or equal to the radical index of 7y. So from
the construction of the generating set 1, δ2, , bm of R over Gk>r we
will have our contradiction if we can show that 1, δ2, , bj__ltbi bq, , δm

is a generating set of R over Gk>r satisfying the conditions (i), (ii),
and (iii).
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bj>t = Σ Ύίί'δ,
ί = l

and j? does not divide 7lf so it follows t h a t 1, 62, , &i_iA bq, hj+1, •••,&„
is a generat ing set of i? over Gk>r. To show independence, we first
note t h a t pkj(bibg) = pki{Jbibq) = 0 so t h a t order of btbq is less t h a n or
equal to kd. However, 7lf is not a multiple of p and so we conclude
t h a t p%bg = Xf=i r£]Psbt Φ 0 if s < &y and t h u s the order of 6,6? is
the order of bό. Now since 1, b2, , δ ^ , δ ^ , δ i + 1 , •••,&» is a gen-
erat ing set the map from the external direct sum

Σ
t=j+l

to 12 given by

, g^Jjj-

Σ> Σ #A + Λ δi6ff

is onto. But as the order of bfiq is /̂  we conclude that

©G*.r6* θ Gfc.rδΛ θ Σ

which is equivalent to saying that 1, δ2, , bj_l9 btbq, δ i + 1, , δm are
independent. Moreover, if geGk,r, then since Gfc,rδ? is a (Gk r, GkyV)-
submodule, there exists & g' e Gk r such that bqg = gfbq. Similarly,
given gr there exists a g" e Gk,r such that btg

f = g'%. Hence, (bιbg)g =
g^ibfiq) and we conclude that Gk<rbtbq is a (Gktr, GΛ>r)-submodule of R
and, therefore, 1, δ2, , &j_1? δ,&9, δ J + 1, , bm satisfies the conditions of
(i), (ii), and (iii) and the proof is complete.

As a result we obtain the following classification of finite nilpotent
rings (of prime power order).

THEOREM 3.2. Let R be a finite nilpotent ring of characteristic
pk. Then R is isomorphic to a ring of Szele matrices (over Z/(p)k

which are all strictly upper triangular modulo p.

Proof, We embed R into the radical of a completely primary finite
ring as follows. Let R = Zj{pk) + R be the usual embedding of R
into a ring with 1 over Z/(pk). R is completely primary because the
nonunits of R are the elements of pZ/(pk) + R and hence form and
ideal J with RczJ. R J. R/J~Z(pk). We apply Theorem 3.1 to
obtain Szele representation of R which is upper triangular modulo p.
The radical of R will be contained in the set of Szele matrices which
are strictly upper traiangular modulo p and the result follows.
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REMARK 3.3. In [4] Szele reduced the problem of classifying
nilpotent Artinian rings to the problem of classifying finite nilpotent
rings of prime power order by showing that any nilpotent Artinian
ring is a direct sum or a particular type of extension of a finite
nilpotent ring of prime power order by a direct sum of null rings
over quasi-cycle groups. Thus Theorem 3.2 yields a classification of
nilpotent Artinian rings which can by easily recovered by anyone
with a knowledge of the results in [4].

REMARK 3.4. The question can be asked as to whether the
author's previous representations [5] of completely primary and nil-
potent finite rings are in fact the preimages under the map Φ defined
in § 2 of the Szele representation. The answer is no. Although the
same generating sets were used in both representations (although they
were ordered slightly differently) the author's previous representation
is essentially the homological dual of the preimage of the Szele
representation.

NOTE. The author would like to acknowledge a helpful remark
by Professor K. R. McLean concerning Remark 3.3.
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