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A NOTE ON STARSHAPED SETS, (&)-EXTREME
POINTS AND THE HALF RAY PROPERTY

N. STAVRAKAS

Let S be a compact subset of Rd, d^2. S is said to have
the half-ray property if for each point x of the complement
of S there exists a half line with x as vertex having empty
intersection with S. It is proven that S is starshaped iff & has
the half-ray property and the intersection of the stars of
the (d — 2)-extreme points is not empty.

Let SczRd. We say xeS is a (k)-extreme point of S provided
for every k + 1 dimensional simplex DaS, x& relint D where relint
D denotes the interior of D relative to the k + 1 dimensional space
D generates. If y e S the symbol S(y) is defined as S(y) = {z \ z e S
and [yz] c S } , where [yz] denotes the closed line segment from y to
z. The symbol E(S) denotes the set of all (d — 2)-extreme points
of S. We say S is starshaped if Ker S Φ 0 , where Ker S = f]yes S(y).
In [1] the following is proved:

THEOREM 1. Let S c Rd, d ^ 2, δe compact and starshaped.
Then

Theorem 1 certainly yields information about the structure of a
starshaped set but at the same time raises several questions. First,
has Theorem 1 a converse? Specifically, given that ΓixeEw S(x) Φ 0 ,
under what hypothesis will S be starshaped? Secondly, can the
hypothesis of starshaped be replaced with a seemingly more general
hypothesis? We answer the latter question in Theorem 2.

DEFINITION 1. Let ScRd and let S~~ be the complement of S.
We say S has the half-ray property if and only if for every xeS^
there exists a half line I with x as vertex such that IΓΊ S = 0 .

THEOREM 2. Let S c Rd> d ^ 2, be compact and suppose
Γ\z&E(S) S(x) Φ 0 . Then the following are equivalent:

(1) S has the half-ray property.

(2) KerS = n..*«)S(!ί).
Since for any starshaped set S, S has the half-ray property

and Γ\XBE{S)S(X) Φ 0 , the implication (1) => (2) generalizes Theorem
1. Further, the implication (1) ==> (2) is a type of converse since
we assume ΓiχeE(s) S(x) = 0 and obtain as a conclusion, rather than
a hypothesis, that S is starshaped. As a corollary to Theorem 2,
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we obtain a new characterization for starshaped sets.

COROLLARY 1. Let SaRd, d^2, be compact. Then the follow-
ing are equivalent:

(1) S is starshaped.
(2) CixeEiS)S(x) Φ 0 and S has the half-ray property.

2 Proof of Theorem 2. In the proof the symbol || |j denotes
the Euclidean norm and the symbol [αδTO) denotes the half line
determined by the points a and b with a as vertex.

(2) =» (1). This follows immediately since any starshaped set has
the half-ray property.

(1)=>(2). Let y^ΓϊχeE{S)S(x) and we show yeKevS. Suppose
y $ Ker S. Then there exists zeS such that [yz] ζ£ S. Let a e [yz] ~ S.
Without loss of generality, suppose a is the origin, Ov. By hypothesis
there exists a half line I = [OvbJ with [O.&J n S = 0 . Let Q be the
two dimensional subspace spanned by y and 6. Now rotate I in Q
so that the angle between I and [O^) (which is already less than
7r) decreases. Cease the rotation when S is intersected and let the
rotated half line be £*. Note ϊ* Π S is compact and hence Θ =
sup {|| α? || | α e ί * Π S) exists. Let xel*nS be such that ||α?|| = 0.
We claim xeE(S). Suppose not. Then α erelint D where D is a
d — 1 dimensional simplex in S. Since xeDf)Q, dim (ΰ Π Q) έ 1.
For each zeD, z Φ x let [zxj) Γ) D be [zej and note x e (zez). Let
weD f)Q, w Φ x. Note [wβj c Q. Now, if [wej c i*, we con-
tradict the definition of x since xe(wew) and if [wew] ςt ϊ*, we
contradict the definition of Γ. Thus, xeE(S). Then [a^]cS and
this contradicts the definition of I*. Thus, yeKerS and we are
done.

In conclusion, we remark that a triangle in E2 is an example
of a nonstarshaped set for which Π^^ts) S(x) Φ 0 and which does
not have the half-ray property. The latter shows that in the
implication (1) => (2) of Theorem 2 the hypothesis of S having the
half-ray property cannot be deleted.

The author wishes to thank the referee for many helpful
suggestions.
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