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EXISTENCE, UNIQUENESS AND LIMITING BEHAVIOR
OF SOLUTIONS OF A CLASS OF DIFFERENTIAL
EQUATIONS IN BANACH SPACE

JOHN LAGNESE

Let X be a Banach space (real or complex) and 4, and B
be linear operators in X with D(B) S D(4,), n=1,2, ---.
The following note is concerned with existence and unique-
ness of solutions of the problem

1.1 dit (I — Adu®)] — Bu(t) =0, (¢>0), u(0)=1u,

and the limiting behavior of these solutions as the operators
A, tend to zero in a sense to be specified. We will show
that for a large class of operators the problem (1.1) is well
posed and that its solutions tend to the solution of the problem
du(t)

(1.2) 7

— Bu(®) =0, (¢>0), u0)=u,.

In particular, we obtain an extension to Banach spaces of a
result of R. E. Showalter [5] to the effect that (1.1) is well posed
when X is a Hilbert space and A, and B are maximal dissipative
operators in X which satisfy the algebraic condition

(1.3) Re((I — A.)z, Bx) <0, acD(B)< D(4,).

In the next section we give sufficient conditions for (1.1) to be
well posed. We note that these conditions do mot guarantee that
(1.2) is well posed. In §3 we show that if, in addition, {4,} tends
to zero in a certain sense, then (1.2) is well posed and the solutions
u, of (1.1) tend to the solution of (1.2). In particular, it will follow
that if A and B are densely defined maximal dissipative operators
in a Hilbert space and if (1.3) is satisfied with 4, = n*A4, then

%[(I — 0 AYun(t)] — Bun(t) =0, (¢>0), u,0)=u,eDB),

is well posed and as »— <, u, converges strongly to the unique
solution of (1.2). Two examples are discussed in §4.

We emphasize that throughout this paper it is assumed that
D(B) € D(A,). The question of limiting behavior of solutions of (1.1)
when X is a Hilbert space, A, = n'A and D(A4) S D(B) has been
considered previously [2], and it is interesting to compare the results
of [2] with those of the present note in the case D(4) = D(B). In
[2] it was assumed that A and B were maximal dissipative operators
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arising from certain densely defined, strongly coercive sesequilinear
forms and that A was self-adjoint. On the other hand the algebraic
condition (1.3) which is the most restrictive assumption of the present
note, was not assumed in [2] and the convergence results are some-
what stronger than those obtained here. Thus while the results of
[2] do not apply to perturbations of hyperbolic problems, they are
in some respects more satisfactory as far as perturbations of para-
bolic problems are concerned when D(A) = D(B). We note that the
methods used here are completely different from those of [2].

2. Existence and uniqueness of solutions. A solution of the
problem (1.1) is a function w: [0, co) — D(B) such that (I — A,)ue
C([0, =); X) N C'((0, ), X) and (1.1) is satisfied. The initial condition
in (1.1) is supposed to hold in the sense that (I — A, )u(t) — (I — A,)u,
strongly in X as t—0,. While we will always assume that I — 4,
in invertible, the inverse need not be bounded and so we do not
know in general that w(t) — u, strongly in X.

THEOREM 2.1. Let X be a Banach space and A, and B linear
operators in X which satisfy the following

2.1) I— A, is one-to-one .

(2.2) D(B) & D(4.) .

2.3) |lv — A4 —(Bx||=||le — Ax| for all xe D(B) and £ > 0.
2.9) For some {,>0,Rg(I— A,—(,B)=X.

Then for any u,€ D(B) the problem (1.1) has a wunique solution u(t)
and

(2.5) = A)u@) |l = I — AJull, t = 0.

Proof. Set A, = A,ps and B,= B(I — A4,)"* with D(B,) =
Rg(I — A,). A function w is a solution of (1.1) if and only if
(- A)u =ve ([0, «); X) N C'((0, «); X) and

(2.6) d_gg_tl — Bu(t) = 0, (¢ > 0), 2(0) = v,

where v, = (I — 4,)u,€ D(B,). From (2.3) we obtain
lly — Byl zllyll, ye D(B,), >0,

which means that B, is a dissipative operator in X, and from (2.4)
we have Rg(I — (B,) = X from some (> 0 (hence for all > 0).
From these facts it follows that D(B,) is dense in X (Goldstein [1];
c.f. [4]). We may now apply the Lumer-Phillips theorem [3] to the
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effect that B, is the infinitesimal generator of a (C,)-semigroup
{e®»: t = 0} of contractions on X. Thus for any v,€ D(B,), (2.6) has
a unique solution given by w(t) = e¢!®»v, and |v({)| < |v,|. The con-
clusions of the theorem now follow by setting

(2.7 u(t) = (I — A,) ‘eI — A)u, .

COROLLARY 2.1. Let X be a Hilbert space and A, and B be
densely defined, maximal dissipative linear operators in X such
that D(B) & D(A,) and which satisfy (1.3). Then the conclusions of
Theorem 2.1 hold. Moreover, Be C([0, ), X) N C'((0, «); X) and
u(t) — u, strongly in X as t—0,.

Proof. Since A, is densely defined and maximal dissipative,
(I — A,)is a bijection of D(4,) onto X and ||(I — 4,)']| = 1. Also,
R. E. Showalter proved [5] that under the stated hypotheses, 4, + B
is a densely defined, maximal dissipative operator in X. From this
fact follows that Rg (I — A, — B) = X. For a Hilbert space, condi-

tions (1.3) and (2.3) are equivalent. The conclusions of the corollary
now follow from (2.7) and Theorem 2.1.

REMARK. Suppose (2.1)-(2.4) hold and that in addition there is
a constant C > 0 such that

(2.8) le — Ax — (Bz || = Cllz — A2

for each x€ D(B) and all { with Re({) > 0. Then the semigroup
{e®»:t = 0} has a strong holomorphic extension into some sector
larg ¢| < a, and therefore (2.6) (respectively, (1.1)) is uniquely solvable
for any v,€ X (respectively, u,e D(A,)). In fact, since B, generates
a (C,)-semigroup of contractions, the open right half-plane lies in the
resolvent set of B, and from (2.8) we obtain ||(A — B,)'|| = (C|\])7?

whenever Re )\ > 0, which implies the desired conclusion. When X
is a Hilbert space, a sufficient condition for (2.8) is that all of the
values of z = (x — A,x, Bx) lie in some fixed sector

largz—n'lg-;l—e, e>0.

To prove this, write z = [z |¢? and { = |{|e*. (2.8) is equivalent to
1—-0C)w— Az} —2[C[[z]cos (s — 0) + [CF||Bx|f=0.

If |0 —n|=m/2—¢, there is a 6 > 0 such that cos(p — ) <1—0
for all g€ (—nx/2, 7/2) and therefore
(1 —oylle — Ax| — 2[L]|z]cos (¢ — 6) + [ Ll Bz ]
=z (@ —-oyfle— Al — 2/C|Q — )l — Az ||| Bx|l
+ [P Bz | = [1 — o)l|lw — Az |l — ||| B[P = 0.
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Thus (2.8) holds with C? = 26 — 4%

3. Limiting behavior of solutions. We first prove that if B
is closed and A, tends to zero in a certain way then (1.2) is well
posed.

THEOREM 3.1. Let X be a Banach space and A, and B be linear
operators in X which satisfy (2.1)-(2.4). Suppose in addition

3.1) B is closed .
(3.2) lim sup || A, /(| Bl + [|@]) = 0.

Then B is the infinitestmal generator of a (C,)-semigroup of con-
tractions on X.

Proof. We have to show that B is a dissipative operator such
that Rg(I — B) = X. From (2.3) and (3.2) we obtain, upon letting

n— oo,
3.3) lle — CBz|| = ||z, e D(B), L > 0,

and so B is dissipative. For each » and { >0, B, is dissipative
and Rg (I — {B,) = X. Let ye X and z,€ D(B) such that

xz,— Ax,— Bx, =y, n=12 ..
By (2.3), ||z, — A,2,]| < ||y || and therefore {Bz,} is bounded. Let
C. = sup [[Az||/(| Bzl + [[=]]) .

C,— 0 as n— = according to (3.2). From (3.3)
= llyll + Culll Bz, || + 2w )
so that
AL —-Chllz.ll =llyll + C,l| B, ]| .
Hence {z,} is also bounded. It follows from (3.2) that A4,x,—0
strongly in X as n— c. Therefore
”xn - x'm” é H(x'n - xm) - B(xn - xm)”
= |4z, — Auy || — 0
as n,m— . Let x =limz,. We have that z,— 2z, Bx,—2 — ¥.

Since B is closed, x € D(B) and « — Bx = y, that is, Rg(I — B) = X.
This fact, together with the dissipativity of B, implies D(B) is dense
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in X. The conclusion of the theorem now follows from the Lumer-
Phillips theorem.

THEOREM 3.2. Let X be a Banach space and A, and B be linear
operators in X which satisfy (2.1)-(2.4), (3.1) and (3.2). Then as
n — co, ¢'Pn— e'® strongly and uniformly on bounded subsets of [0, o).

Proof. We apply the Trotter convergence theorem [6]. To do
this we show that for each { > 0,

3.9) lim(I—-¢B,)*'=U—-{B)™

n—oo

in the uniform operator topology of <°(X) (= the linear space of
bounded linear operators on X).
We may write

(I-¢B)y'=(I—-C¢BUI—-A4)Y)™
=I—-A)I-¢B)"I—-AI-LB))".
For each 2 ¢ X,
14, = CB) x|l = C.(I| BU — (B) || + [|({ — {B) 'z ))

gc,,(1+-§—)nxn.

(3.5)

(3.6)

Thus for all sufficiently large n,

(I~ A~ By = 3 (4. — (B

and
o o 2 kE+1
10— A - By - I s 3001+ 2)
i=0 ¢
which tends to zero as # — oo. Therefore
(3.7 lim(I—-¢B)y*(I—- A,(I—-{B))*'=U—-{B)"

in the uniform operator topology of ~(X). From (3.6) we have
A — (B — AL — CB)) 7|
2 e

=C,l1+ Z)||—-AI—-CB™Y)™

9 <Cf1+ 2)I0~ AT~ B

k+1

& 2
E+1 “
=Yer (1 + c> —0
as n— . (3.4) now follows from (3.5), (3.7), and (3.8).

THEOREM 3.3. Let X be a Bahach space and A, and B be linear
operators in X which satisfy (2.1)-(2.4), (8.1) and (8.2). Suppose in
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addition that Rg (I — A)=X,n=1,2, ---, and sup, || (I — 4,)7'|| <
oo, Let u,€ D(B) and u,(t) be the unique solution of (1.1). Then
as n— oo, u, (t) — e'®u, strongly in X, uniformly on bounded subsets

of [0, ).
Proof. From (2.7) we obtain

Hua(t) — euoll = [[(T — An)7H (e — e Phus ||
+ 1T — A) T AePuo || + [[(1 — A,) e A ||
= (const.) [[| e uo — e"Puo || + Co(l| Buo|| + [0 [)]

and the right side tends to zero as n — co, uniformly on bounded
subsets of [0, ).

COROLLARY 3.1. Let X be a Hilbert space and A, and B be
densely defined, maximal dissipative operators in X such that D(B) &
D(A,) and which satisfy (1.3) and (38.2). Then for each u,<€ D(B)
the problem (1.1) has a unique solution w, and u,(t) — e'®u, as n —
oo, uniformly on bounded subsets of [0, o).

Proof. As noted in the proof of Corollary 2.1, 4, and B satisfy
(2.1)-(2.4) and moreover, Rg (I — 4,) = X with ||( — 4,)'||=<1. In
addition B, being a densely defined, maximal dissipative operator in a
Hilbert space, is closed. The corollary now follows from Theorem 3.3.

REMARK. When A, = nA, (38.2) is automatically satisfied pro-
vided A and B are closed operators with D(B) & D(A). Thus in this
case hypothesis (3.2) may be omitted in Corollary 3.1. In fact, as a
rather well-known consequence of the closed graph theorem we have

[|Az|| = C(l| Bz || + |l=l)), xeD(B)
where the constant C does not depend on x. Therefore

sup || A l/(1 Bl + [l2]) < Cn™.

u#

4. Examples. As a first example we consider the problem

(4.1) ;—t(% — an(@)u — an(x)g—:> - (b‘(x)u - b(@;—:) =0,

0<x<1, t>09
(4.2) w(x, 0) =ulx), 0<az<l; w0t =culd,t), t>0,

where ¢ is a complex constant satisfying certain conditions and the
coefficients in (4.1) are real-valued and of class C’([0, 1]). Let X be
the complex Hilbert space L.(0,1) and H;(0, 1) be the subclass of
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L0, 1) consisting of those functions whose first derivative in the
sense of distributions is again in L,(0, 1). The norms in X and in
H}(0, 1) will be denoted by ||- ||, and || - ||, respectively and the inner
product in X by (-, -); we have

lulh= (luli+ [24)", wemo,D.

Each function in H;(0, 1) is continuous, i.e., coincides with a func-
tion in C(J0, 1]) up to a set of Lebesgue measure zero, and the in-
jection of H;(0, 1) into C([0, 1]) is continuous.

We define operators A, and B in X as follows:

D(A,) = D(B) = {ue H;(0, 1): u(0) = cu(1)}

and for we D(4,) = D(B),

Au—au+a—‘i—u-, Bu bu+bdu

dx dx

From our preceding remarks it is easy to see that D(B) is a closed
subspace of H;(0,1) and D(B) is dense in L,(0, 1).

By a solution of (4.1), (4.2) we mean a solution of (1.1) in which
A, and B are the operators defined above. In order to apply the
theory developed in 8§82 and 3 to the problem (4.1) and (4.2) we shall
have to verify in particular condition (1.3). Concerning this we have

LEMMA 4.1. Suppose a,b = 0 and that

(4.3) b — 1"”’ 1b1+1d(abl+ab)<o
2 do 2

(4.4) a,l) — el a,(0) <0
where a, = b — a,b' — alb. Then (1.3) is satisfied.
Proof. For ue D(B) we have

2

Re (u — Au, Bu) = g‘(bl — @) u Pde — S .

+Reg(b—-ab—abl)‘d"'dx

The following identity is easily obtained by an integration by parts:
For w € D(B) and fe C'([0, 1]),

Re | f1 220 = L7 — 1@ w = 2 2L jupds

From this identity we obtain for w € D(B)
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p— 1 .12 2 ! du 2
Re (u — Ay, Bu) = = (@.(1) — |efan ) u(l) | ~ | a,b|-2-|"da
2 0 dx
Moo 1db o, 1.d N
+ So[b LDy + L L@+ a,,b)]m;dx:o.

REMARK. If {a,} and {a.} tend to zero in the topology of C’([0, 1])
and if for some ¢ > 0 we have

bl-—%%g —e, b)) — |eDO) = —¢,

then (4.3) and (4.4) are easily seen to be satisfied for all sufficiently
large n.

THEOREM 4.1. Assume (4.3) and (4.4), that a,b =0 and a® +
b* > 0. In addition suppose

(4'5) an(l) - IC lza’n(o) = 0 H

1 da
4.6 e =<1, =<1
(4.6) a 2 du < x

(4.7) There exists C, > 0 such that

L1 - al(®) — LB
cesp| |, RCES G

Then the hypotheses of Theorem 2.1 are satisfied.

Thus, in particular, for each wu,e D(B) the problem (4.1), (4.2)
has a unique solution.

THEOREM 4.2. Assume (4.3)-(4.5), that a,b =0 and b+ 0. In
addition suppose

(4.8) {a,} and {a.} tend to zero inm the topology of C'([0, 1]) as n— oco.

Then the hypotheses of Theorem 3.2 are satisfied for all suffi-
ciently large n.

THEOREM 4.3. Assume (4.3)-(4.5), (4.8) and that a,b > 0. Then
the hypotheses of Theorem 3.3 are satisfied for all sufficiently large n.

Thus if u, is the unique solution of (4.1), (4.2), as n— oo u,(t)
converges in L0, 1) to the unique solution of

P p@) % pu =0, O<wz<l, t>0,
ot ox
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(@, 0) = ulx), 0<z<1; w1t =cult), t>0,
uniformly on bounded subsets of [0, ).
Proof of Theorem 4.1. We have already verified (2.3). To check
(2.1) consider the equation
u— Au=rfeX.

Multiplying by # and integrating gives

51(1 — a)|udz — Re g‘am—dﬂ_dx — Re Slﬁf do

0 0 dx 0

and this may be written

! 1 da 1
1—a,+ === )ul = =(a.(1) — |cPa.(0) )
(4'9) So( 2 dx ) 2

+ Re S:ﬁfdx .

From (4.5), (4.6) and (4.9) follows that v =0 if f = 0.
We next verify (2.4). Let fe L,0,1). We have to solve

(410) w— Au = CBu=(1—at = Lo — (@, + LH)-2e = f

where £, > 0 is to be determined.
Since a,b =0 and a2 + b* > 0, we have a, + (b =+ 0 for every
{> 0 and therefore (4.10) is equivalent to
u@) = kexp | K + | Ko, 97)as
where
K.(8) = (1 — au(§) — Lb'(6))/(aa(8) + Lb(E)) ,
Ro(w, &) =~ exp | Kty ] /(@) + Lb@) -
The constant k, must be such that %(0) = cu(l). This condition leads
to
ko= hoexp | K5 + o Ri(t, 07 (0)as
and this equation is solvable for k, for arbitrary fe L,(0,1) if and
only if
cexp | K.t = 1.

This last condition is satisfied provided {, is chosen according to
condition (4.7). Thus (2.4) is satisfied.
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Proof of Theorem 4.2. We first note that (4.8) implies (4.6) for
all sufficiently large m. Moreover, (4.7) is also satisfied for all large
n if {{,} is any sequence of positive numbers which tends to zero.
Thus conditions (2.1)-(2.4) are satisfied. That (3.1) and (3.2) also
hold is a consequence of the inequality

(4.11) lull, < K(lBullo+ llull) ,  ueD(B)

where the constant K is independent of %. In fact, suppose (4.11)
holds and {u,}c D(B), u,— %, Bu,— v in L,0,1). By (4.11), {u,}
converges in H}(0, 1). Since D(B) is a closed subspace of H;(0, 1)
and || Bu, ||, < (const.) ||, ||, it follows that we D(B) and Bu = v,
i.e., B is closed. Moreover, we have

Al = sup (fa.@) |+ |an@) Dl vl

and therefore

sup [l A [0l Buly+ |u ) = K sup (a,0)] + | a@) )

uFE0

which tends to zero as m — . Thus (3.2) is satisfied.
It only remains to prove (4.11). We have

s Yy du ! du -
| Bu | = So(b_dx +bu)< A -I-bu)dx.
Using the inequality
2lyz| SolyP+lzk,  0>0

we obtain

T Kl

0

| Bullf =z inf [b(z) "

0=sz=1

-—e! du

du
dx dx |

0

Choosing ¢ = 1/2inf,.,, | b(x) |* leads to (4.11).

Proof of Theorem 4.3. We have only to verify that Rg(I — A4,) =
L,0,1), » = N, and

sup || (1 — A7 < oo

From (4.9) and the present hypotheses it follows that for all
sufficiently large =,

%nunzg lw— Awl, weD(A,).

Let fe Ly,0,1). Since a, = 0, the equation
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w— Au=(1— n)u—a,.ﬂ.:f
dx

is equivalent to

u(x) = k,exp S:L;ﬂ(S)dE + F,(x)
where F,(x) is a known function and the constant %, must be such
that %(0) = cu(l). This is possible for arbitrary fe L,(0,1) if and
only if
_ n(E)
cexp | ——%\&) ge o 1
o)t @)

and this last condition is obviously satisfied for all sufficiently large
n in view of (4.8). Thus Rg(I — 4,) = X, n = N, and the proof is
complete.

ExAMPLE 2. We consider, for n =1, 2, ---, the problem
0 1 ou ou\ _
@12) 2 (u- nax) (b(x)u+a2)—0, O<w<l, t>0,
(4.13) u(x, 0) = uy(2) , <<,

@14)  w®,¢) = eu(l, t), 220,80 =2%11¢), t>0.
ox ox

The function b is real-valued and of class C’([0, 1]) and ¢ is a complex
constant. Let X = L,0, 1), D(A,) be as in the first example and
A, =1/nd/dx. Let HXO0, 1) be the set of functions in L,(0, 1) whose
first and second distributional derivatives are in L,(0, 1) and set

D(B) = {u e HI0, 1): u(0) = cu(1), @ d’“ L0 = ——(1)}

Bu=bu+ 2% ueD®B).
da?
The norm in H3(0, 1) is denoted by || - ||, and defined by

ol = (i + |2

2 1/2

Y

0 0

Each function in HX0, 1) is of class C'([0, 1]) and the injection of

%0, 1) into C’[(0, 1)] is continuous. It follows that D(B) is a closed
subspace of H;(0, 1), is dense in L,(0, 1) and as in the first example
it is not difficult to verify that

(4.15) lwll. = K(|| Bullo + wll) , weD(B).
Let B* be the adjoint of B. As is well-known, D(B*)cC H;(0, 1)
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and, since b + d?/dx® is a formally self-adjoint differential operator,

Bw=1bv+ 22 yeD(BY).
dx?

We show that B* = B. If ve D(B*) then for all v D(B) we have

d*u
dax?

— u(1)(%7(1) — c%(())) + (u, B*v) .

(Bu, v) = ‘:(bu +

)vdx — Y 0)@w(1) — 5(0))
dr

Since the first two terms on the right must vanish for all u e D(B)
we ‘have v(0) = cv(1), ¢(dv/dx)(0) = (dv/dx)(1), that is, ve D(B). Thus
B* < B. On the other hand, (Bu, v) = (4, Bv) for all v and » in
D(B) so that B is symmetric. Hence B is self-adjoint.

THEOREM 4.4. Suppose b <0, db/dx < 0 and
b(1) — [¢[®6(0) = 0.
Then the hypotheses of Corollary 3.1 are satisfied.

Thus for each » and wu,€ D(B) the problem (4.12)-(4.14) has a
unique solution w, and, as % — <o, u,(f) converges in L,(0, 1) to the
solution of

on 0w
_ - — =0, 0 1, 0,
> 0 b(x)u <z < t>
w(x, 0) = uy(x) , 0I<ze<1,
_ _O0u ou
’M(O, t)—cu(l, t)’ C_(O, t) :_"(1; t)y t>0r
ox ox

uniformly on bounded subsets of [0, o).
Proof of Theorem 4.4. We have for u e D(B)

(Bu, u) = S:blu [*da — S:

dw |?
Pl < .
dxldx=0

B is therefore a self-adjoint, dissipative operator and, consequently,
maximal dissipative. We also have

n-Re (A, u) = -}3(1 —leBlu@)F, weDA,).

Since b < 0 and db/dx < 0 we have b(1) < b(0) < 0. Since also b(1) =
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| ¢|?b(0) it follows that [¢|* = 1. Thus A, is dissipative and one easily
proves as in the first example that Rg(/ — 4,) = X
Next we verify (1.3). We have for w e D(B)

_ tdu d*u
n-Re (4,4, Bu) = Re Soﬂ—@u 7 )dx

_ 1 _ 2 2___1_ l_dﬁ 2
—-—(b(l) [ [0(0))] w(1) | 2Sodwluldw

+ 2L ofter-nz

(1.3) follows from this inequality and the fact that B is dissipative.
Finally, (3.2) is an immediate consequence of (4.15).
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