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THE GROUP OF SELF-EQUIVALENCES OF
CERTAIN COMPLEXES

DAVID SMALLEN

Tlie group of self-equivalences (homotopy classes of base
point preserving homotopy equivalences) of a certain class
of finite CΊPF-complexes is studied. This class includes, in
particular, all closed, connected, ^-manifolds M with finite
fundamental group such that π^M) = 0, 1 < i < n. Such
complexes are easily seen to be the quotient space of a
fixed point free action of a finite group on a homotopy
^-sphere, and include the Klein-Clifford manifolds.

The main result characterises this group as a normal
subgroup of Aut (TΓ^X)), for X in the above mentioned class,
consisting of all 0 such that Θ induces either the identity
map or the inverse map on R^^iπ^X); Z) — Zk, k being the
order of π^X). This leads to a collection of general results
on the algebraic structure of the group of self-equivalences,
as well as several explicit calculations, including the recovery
of results due to Olum.

This group has been studied by various authors, e.g. Arkowitz-
Curjel [1], Olum [7], Rutter [8], and Shih [9]- In general this group
is non-abelian and quite often infinite.

Let Σn denote a finite ^-dimensional CW-complex of the homotopy
type of an ^-sphere. Let G be a finite group which acts without
fixed points on Σn and let X = Σn/G denote the quotient space of
Σn by the action of G. We study the group of self-equivalences
of X

Several comments are in order at this point. Firstly, if the
order of G is one or two the results are well known and although
our methods apply we omit discussion of these in order that our
results be more succintly stated. Secondly, if the order of G is
greater than two (the case we study) n must be odd. Finally, it
is easily shown, e.g. [1O]? that πλ(X) acts trivially on πd(X), j > l
We point out that G may often be non-abelian but G must be
periodic of period n + 1 (see [2], p. 260)β

We define the group of self-equivalences for completeness.
Let Y be a topoϊogical space with base point y e Y. Let Sίf{ Y)

denote the collection of all homotopy equivalences of Y preserving
base point. The equivalence relation — of base point preserving
homotopy divides β^(Y) into classes called self-equivalences of Y
and we have
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DEFINITION. Eq(Y) = £ίf(Y)\~. Eq(Y) is a group under the
operation induced by composition of mappings.

We note first that

LEMMA 1.1. Eq(X) is isomorphic to Eq(Xn+1) where Xn+ί is the
(n + l)st stage of the Postnikov system of X.

Proof. This follows from the fact that π^X) acts trivially on
τtά(X)f j > 1 and a simple obstruction theory argument as in [1]
where the result is stated in the simply connected case.

The Postnikov system for X begins as follows,

K(Z2i % + 2)

, n + 1)

FIGURE 1

As was pointed out above n must be odd so πn+1(X) ^ πn+1(Σn) =

We define ψG = {θ e [K(G, 1), K(G, 1)] | θ*(kn+1) = ±kn+1}. Then

LEMMA 1.2. Eq(Xn) ^ ψG.

Proof. By Shih [9] we have the exact sequence

1 > H%K(G, 1); Z) > Eq(Xn) > fG > 1 .

Now since G acts without fixed points on Σn and hence is
periodic, the odd dimensional cohomology of G vanishes, so the
result follows. Now we show that

LEMMA 1.3. Eq(Xn+1) & Eq(Xn).

Proof. By Kahn [3] we have homomorphism pn: Eq(Xn+1) —•
Eq(Xn). By a Serre spectral sequence argument one can easily
show that Hn+2(Xn: Z2) - Z2 and hence if fe Eq(Xn), /*: Hn+2(Xn, Z2)-+
Hn+2(Xn:Z2) is the identity map. This implies that pn is onto by
Lemma 2.1 of [3].

Now in the paper cited it is also shown that Ker pn is the
image of a subgroup of Hn+1(Xn+1; Z2). Again using a Serre spectral
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sequence argument one can show Hn+1(Xn+1; Z2) = 0. Hence the
result follows.

Collecting together the proceeding we have

THEOREM 1.4. If X is as described above then Eq(X) is
isomorphic to {θ e Aut (π^X)) \θ* is either the identity map on
lϊ*+1(;r1(-X'); Z) or the map which takes each element to its algebraic
inverse}. Here H*(7ϋ1(X); Z) denotes the group cohomology of 7CX{X)9

see [12].

Proof. We note firstly that by the periodicity of G we have
.ff*+1(7Γi(-X"); Z) psrf Zm where m is the order of G. Secondly kn+ι is
easily seen to be a generator of the group by a spectral sequence
argument. Finally it can be shown (see Maclane [4], p. 136) that
the cohomology of a K(G, 1) space is "naturally" isomorphic to the
"group cohomology" H*(G; Z). The naturality of this isomorphism
means in particular that if h is a map from K(G, 1) to itself
inducing θ on π^KiG, 1)) = G then the following diagram commutes
where Ψ is the natural isomorphism.

H*(K(G, 1); Z) ^—> H*(G; Z)

H*(K(G, 1); Z) Ψ—> H*(G; Z)

FIGURE 2

Hence the problem is reduced to a purely (cohomological) algebraic
criterion. We see in the remainder of this section and in § 2 that
this theorem quite often is a computational tool in determining
Eq(X).

First we note immediately that

COROLLARY 1.5. Eq(X) is a normal subgroup of Aut (πλ(X)).

Proof. Let v e Aut (π^X)). Then if θ e Eq(X) (here we identify
Eq{X) with the elements of the automorphism group), we show
v-θ-v-1 e Eq(X). Let k e Hn+1(G; Z). Then

[v θ-v-γk = v-^θ^k] = v-^(±Vk) = ±k .

COROLLARY 1.6. Eq(X) a &nnfa(X)), the group of inner auto-
morphisms of π^

Proof. All inner automorphisms have the property that they
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induce the identity map on cohomology ([4], p. 118).
This is particularly useful since a standard group theory fact is

that #nn(G) ^ G/Z(G), Z(G) the center of G.

COROLLARY 1.7. Eq{X) is solvable if and only if Aut (^(X)) is
solvable.

Proof. Since Eq(X) is normal in Aut (π^X)) the result will
follow if we can show Aut {π1(X))jEq{X) is solvable. Let

Ψ: Aut (πx{X)) > Aut (jffw+1(^(X); Z))

be the obvious map 0—>0*. Now since H^faiX);^) is cyclic
we have Aut (Hn+1fa(X); Z)) is abelian. Eq(X) 2 Ker Ψ so

Aut (π1(X))/Eq(X)

is abelian and hence solvable.
The homomorphism Ψ is a very useful one in the general pro-

blem of determining Eq(X). In fact Eq{X) = ψ-\K) where K is
the subgroup of Aut (Zm), m = order of πλ(X)9 consisting of the
identity map and the inverse automorphism (x—> —x).

We now consider what happens if G and H are finite groups of
orders at least 2 and G x H acts on Σn without fixed points. The
quotient space is a complex of the type considered in this paper.
We point out that if G x H acts on Σn without fixed points then
(i G I, I H\) = 1. This follows from the periodicity of G, H and G x H.
We have

THEOREM 1.8. If G x H acts on Σn without fixed points and
I G j >̂ 2, |ϋf| Ξ> 2, £&β% we have the following two cases:

X Eq(ΣΊH) \G\>2\H\>2

Proof. This follows by looking at the Kunneth theorem in
group cohomology and noting that since the orders of G and H are
relatively prime Aut (G x H) ̂  Aut (G) x Aut (H).

The situation of a product of two groups acting on Σn occurs
frequently (see Milnor [5]). In particular the theorem says that to
determine Eq(X) one should look at indecomposable groups.

2. Specific calculations o£ Eq(M). In this section we calculate
explicitly the group Eq(M) for certain manifolds M. In particular
we recovers results of Olum for generalized Lens spaces, and show
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Eq(X) Φ 0 for all X studied in this paper. The methods used in
the calculations vary, but fall generally in the domain of group
theory and cohomology of groups.

A general reference for this section is Weiss [12].

2A* Generalized lens spaces* We now recover results originally
due to Olum in [6] by calculating Eq(Σ2n+ί/Zm) n ^ 1 m > 2. We
point out that a fixed-point-free action of a cyclic group on an odd
dimensional sphere is always defined, namely to get the generalized
Lens spaces. However, our proof does not make use of any "parti-
cular" action of Zm on Σ2n+\ but in fact shows that Eq(Σ2n+1/Zm) is
not dependent on how Zm acts freely, only that it does act in some
fixed-point-free way.

We prove:

THEOREM 2A. 1. Let n ^ 1, m > 2. Then Eq(Σ2n+1/Zm) ^ <Zfm,
where ^/m is the subgroup of Aut (Zm) consisting of those integers
t, 1 ^ t < m such that tn+1 = ± 1 (mod m). Here we identify
Aut (Zm) with {x 11 ^ x < m, (x, m) — 1}.

Proof. In this proof we calculate directly the induced map on
cohomology of an automorphism θ: Zm~+ Zm by constructing a chain
map on a protective resolution of Z as a trivial Z(Zm)-module (see
Weiss [12]).

We take the particularly nice resolution of Z given by

0 < Z < Λa0 < Aaγ < Λa2 <

where A = Z(Zm), Zm generated by v, d0 is the augmentation and

d2k(a2k) - (v™-1 + + 1K/.-1

d2k+l(a2k+1) = (v — l)a2k

(see Cartan-Eilenberg [2], p. 251).
Let θk: Zm —> Zm be the automorphism given by θk(v) — vk,

(fc, m) = 1 l^k<m. We calculate the induced map on H*(Zm; Z) of
θk, by constructing a chain map Λ = (A1) i >̂ 0 corresponding to the
pair (0fc, lz) as described in Weiss [12].

By direct calculation we get the diagram

Λ Γ7 do . dγ d2

0 < Z < Aa0 < Aax < Aa2 <
z

do ^ ί" 1 ^
—̂ — Aa0 < Aaγ < Aa2 <

FIGURE 3
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where Λ2i(a2i) = [(J2)*]α2i i ^ 0

where

j _ (vk - 1) j _ {vmk - 1)
1 ( „ _ ! ) ' 2 ( y - 1 )

each considered as elements in Λ. It can be directly verified that
(Λ*) i^O, is a chain map (i.e., the above diagram commutes), where
we assume the upper resolution is a Λ-module via the map θk.

We now wish to determine what the induced map in cohomology
will be in dimension 2n + 2 (since Zm acts on a 2n + 1-sphere). It
is clear that since the coefficients Z in H*(Zm, Z) are to be regarded
as a trivial /ί-module, that the induced map on cohomology of θk is
gotten by multiplication by J2

n+ι(l), where this means evaluating the
element J2

n+1 e Λ by replacing v by 1, for example, if σ e H2n+2(Zm, Z)
then

[θΐσ] - σ(Λ2n+γ = σ(J2)
n+ί = [J2

n+1(l)]σ .

Performing this evaluation we see that:

J2

n+1(l) = kn+ί

so that θt: H2n+2(Zm; Z) is multiplication by [kn+1] where [kn+ί] denotes
the equivalence class of kn+ι mod m (since H2n+2(Zm; Z) ^ Zm). So
we have θke Eq(Σ2n+1/Zm) <-> kn+1 = ±1 (mod m) using Theorem 1.4.
This recovers the stated result of Olum.

2B* Eq(X) Φ 0. In studying the general problem of Eq(X),
where X is a topological space, it appears to be unknown exactly
when Eq(X) = 0 or in fact what this condition would imply about
the space X. It is known for example that if X is contractible or
X = K(Z2, n) then Eq{X) — 0. However, it appears that no other
general conditions are known. However, for the spaces in this paper
we have:

THEOREM 2B. 1. Eq(X) Φ 0 for all X satisfying the hypotheses
in § 1.

Proof. If πx(X) is non-abelian then since Eq(X) 3 ^Jπ^X)) by
Corollary 1.6 and ^JTC^X)) Φ 0 we get the desired result.

If πx{X) is abelian then π^X) is a direct sum of cyclic groups
of prime power order. Using Theorem 1.8 we can conclude that
Eq(X) is either the direct sum of the corresponding self-equivalence
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groups for the summands (as in Case 1 of Theorem 8) or the direct
sum of the self-equivalence groups corresponding to the summands
which are two-torsion free. So we must in fact show if we look at
any of these cyclic summands of π^X), the corresponding group of
self-equivalences is nonzero.

Let p be a prime dividing the order of TΓ^X) such that Zpί is
a direct summand of π^X) where either p is an odd prime or i > 2.
We can find such a summand since the order of TC^X) is greater
than two. Now by the results of Eq(Σ2k+ϊ/Zpi) in Theorem 2A. 1 we
know Eq(Σ2k+1/ZPi) is always nonzero since there are always at least
two distinct solutions to:

namely x = 1 and x = pi — 1. Hence Eq{X) must be nontrivial since
it is the direct sum of nontrivial abelian groups.

2C* The quaternionic group Q = {±1, ±i, ±j, ±k}+ Let Q
denote the eight element quaternionic group, Q acts on 5 3 without
fixed points as a subgroup of S3 considered as quaternions of unit
norm. We have,

THEOREM 2C. 1. Eq(Sz/Q) & S, the group of permutation of 4
symbols.

Proof. Firstly we note Aut (Q) & S4 (Zassenhaus [13]). In fact
in the cited reference for this fact, Aut (Q) can be represented as
a group of permutations of the cosets of a subgroup of order 6
contained in it. Using this representation and a projective resolution
(Cartan-Eilenberg [2], p. 25) we directly calculate the induced map
on cohomology of an automorphism. The calculation, which is
straight forward but tedious may be found in [10] There it is
shown that in fact each automorphism induces the identity map on
cohomology in the appropriate dimension, so Eq(S*/Q) & $4.

2D* The group Dn. Let Dl2 be the 12-element-group gen-
erated by elements x, y subject to the relations xz — y2 — (xyf and
xyx = y. D12 is a generalized quaternionic group and is seen to act
on S3 without fixed points (Milnor [4]). In a similar manner as in
2C (see [10]) one can show:

THEOREM 2D. 1. Eq(SzID12) & Z2 x S9.

2.Έ. The symmetric group S3. It is known, [5], that S3t the
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symmetric group on three symbols, cannot act on any ^-sphere
without fixed points. However, it can be shown that it can act on
a homotopy 3-sphere without fixed points [11J. We have,

THEOREM 2E. 1. Eq(Σ3/S3) **.SZ.

Proof. Since &nn(Ss) *>* Aut (S3) & S3 the result follows from
Corollary 1.6.

In fact any periodic group can act on some homotopy sphere
without fixed points [11], and so this furnishes a whole collection of
examples of the type of complexes considered in this paper, which
are not manifolds.
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