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CERTAIN REPRESENTATIONS OF INFINITE
GROUP ALGEBRAS

I. SlNHA

For any group G, let p be an irreducible representation
of the group algebra §G over a field g. Then by Schur's
lemma, the center Δ of its commuting ring, is a field con-
taining §. If p is finite-dimensional over J, then it is
called finite and if it is finite-dimensional over § itself,
then it is called strongly finite. In this paper, certain con-
ditions are given for finiteness of p. Also it is shown that
for some types of groups, finiteness of p is related to the
existence of abelian subgroups of finite index in certain
quotient of the group. Conditions under which finiteness
and strongly finiteness are equivalent, are given« Finally,
consequences of p being faithful on G, or being faithful on $(?,
are studied.

Study of finiteness of irreducible representations was initiated
by Kaplansky in [3], and later carried to a great extent by Passman,
Issacs, and others: {see [5] and relevent references therein}. Finite-
ness and strong finiteness were studied in [6], Using a slight
modification of the technique of [4] to suit our nonsemisimple case,
we get Theorem 1 which includes the results of [4] and gives us
Theorem 2 whose corollaries contains the result of [3].

We further recall the well-known result that for a finite group
G, if the kernel of an irreducible representation p contains the com-
mutator subgroup Gr, then the representation is 1-dimensional over
A. As corollary to our Theorem 3, we prove that in general, if G'
is contained in the kernel of p, then p is finite whether G is finite
or not.

2* Finiteness of representation* In this section we study con-
ditions under which a given irreducible representation is finite, and
also the conditions under which all irreducible representations are
finite. We need the following:

DEFINITIONS. 1. Let p be a representation of %G. Then Gp =
{g e G I p(g) — 1}, and Kern p = kernel p = {x e %G | p(x) = 0}.

Thus p is G-f aithf ul if GP = 1, while p is %G-ΐaithf ul if Kern p = 0.

2. Let 33 g Aut G. For S £ G, we shall write 2ta(S) for the
left-ideal {Σ xt(Sΐβi - 1) I xt e %G, Sζ e S, βt e 33}. {For a general study
of such ideals we may refer to [6] and [8].} We write SC(S), if
S3 = {identity}.
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262 I. SINHA

3. We also define the 23-kernel of p in H ̂  G to be

{heH\p(hO = 1, V#e33},

and set K*{H) = f) {23-kernels of p in H}, where the intersection runs
through all irreducible representations p of G for which ά\mάp>n2,
where Δ is the center of the commuting ring of p. If no such p
exists, then we put K*{H) = G.

4. Let S2n be the symmetric group of degree 2n. Then for an
algebra A, the sums

= Σ
σeS2n

Σ (sgn σ)xσω xσ{2) xσ{2n), xpeA,
S

are called the Standard Monomial Sums (of parity n).

5. Define Σ ίG) to be the g-space spanned by all the σn in
%G. {We shall frequently write Σ» wherever the group in question
is clear from context.}

This Σ w plays a significant role in determining the degrees of
irreducible representations.

Specifically we have:

PROPOSITION 1. Let p be an irreducible representation of %G.
Then dim,, p ^ n2 if and only if Σn S Kern p.

Proof. If dim,, p ^ n2 then gG/Kern p is a primitive algebra of
matrices of άimn over Δ. By Theorem 1 of [1], for any σne%G,
P(&n) = ®> whence σn e Kern p so that Σ^ S Kern p.

Conversely, suppose Σn S Kern p. Then gG/Kern /o is a primi-
tive algebra satisfying σn = 0 for every σn in gG/Kern |0. Then by
Theorem 1 of [2], p. 226, g^/Kern |O is a central simple algebra of
dim ^ w2. Hence dim^ p ^ ^2.

Using this result we obtain:

THEOREM 1. Let S ^HS G. Then S g K*(H) if and only if

Proof. We observe that Stβ(S) = {Σ^(βf'-l) I »«e %G, s, e S, /S, e S3}.
Thus, to show that SIsίSO ΣU S RadgG, it suffices to show that
(sβ - 1) Σ S Rad gG, for V/S e 35, Vs e S. Now let h e K*(H) and
p be an irreducible representation of G. If dim^ /0 > n2, then
p(fc/i) = 1 or p(W - 1) = 0, V/3 e S3, by the very definition of Kl{H).
On the other hand, if dim^ p ^ n2, then by Proposition 1, /0(Σn) = 0
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Thus, in both cases, p[(hβ — 1) Σ»] = 0 Since p is arbitrary,
so (A'- l) Σn SRadgG. Hence S ^ K*(H) implies SWSJ Σ S
RadgG.

Conversely, suppose 2ts(S) Σ« S RadgG. Then, in particular,

(sβ ~ 1) Σ» S Rad gG, V/9 e S3, s e S .

We define the left-idealisor [7], of Σ * i n t o RadgG, by LBaci(Σ»)δβ =
a Σ» £ Rad gG}. This is clearly a left-ideal. Also

Rad gG, for V# 6 G. Hence L(Σ») is a two-sided ideal of gG.
Now let <o be an irreducible representation of G, afforded by the

gG-module 2ft. Since L(Σn) is a two-sided ideal, so Ann L(Σ*) =
{m e SW I L(Σ«)w = 0} is an gG-submodule of 2ft. Thus either
Ann L(Σft) = 0 or 2ft. Now assume that dim^ p > n2. Again, by
Proposition 1, /θ(Σ») ^ 0 so that Σ^ ^ ^ O , whence Σ ^
But L(Σn) [Σn 2ft] - [L(Σn) Σ J 2K = 0, since L ( Σ J Σ . S
Thus Ann L(Σ«) = 3ft. Then, as by hypothesis ^ - 16 L(Σ»)> so
(ŝ  — 1)-^ = 0; or ^(s^ — 1) = 0. As p was arbitrary with dinij p >
^2; so seK*(H).

Letting g = complex-field, we have Rad gG = 0. Taking S3 = {1}
in this case, we obtain the result of Passman [4]:

COROLLARY. geKn(G) if and only if (0 — 1) Σ * = °
We also deduce:

THEOREM 2. Let S ^ G and 58 ^ Aug G ŝ cfe ίfeαέ Sΰ = G.
SXS(S) Σ ^ = RadgG i/ and only if άιmΔ p^n2 for every irreducible
representation p of G. {Of course, Δ depends on p.}

Proof. By Theorem 1, a^SJ-Σ* £ RadgG i f a n d only if S S
JΓί(G): {G - H).

The latter condition is equivalent to the statement that for every
irreducible representation p with dim^ p > n2, we have p(sβ) — 1,
Vβeϊδ, seS. Since S33 = G, so we deduce that p = 1.

COROLLARY 1. /f Σ^ S Rad gG for some n, then every irreducible
representation of gG is finite.

COROLLARY 2. [3]. If in gG, ΣΛ — 0 /or some %, ίAβ^ ever?/
irreducible representation of G is finite.

Next recall that if | G | < co then G' £ Ĝ> for any irreducible
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representation p, if and only if p is of dim. 1. A generalization of
sort, is obtained in the corollary to:

THEOREM 3. Let p be an irreducible representation of
( a ) If either (i) Σ*n(G/Gp) = 0 for some n, or (ii) 3A ^ G 3 .

Gp ^ Aj \G: A\ < oo and A/Gp is abelian, then p is finite.
( b ) (Conversely) // p is finite and %G satisfies either of the

following conditions:

( i ) G/Gp is periodic and %(G/GP) is nonmodular;
(ii) G/Gp is periodic with a finite p-Sylow subgroup for

Char. % = p Φ 0;

(iii) G/Gp satisfies minimum-condition on subgroups; then
3A ^ Gs -Gp ^ Ay I G: A I < oo and A/Gp is abelian.

Proof, ( a ) Suppose (i) holds. In the notation of [6], Gp =
%~ι (Kern p) where for any ideal I of %G9 S t ^ I ) = {geG\g - le I},
and hence %{GP) is a sub-ideal in Kern p. Since %{GP) is the kernel
of the linear extension of the cannonical map G —> G/GPf so %G/%(GP) ~
%(G/Gp). Therefore, Σn (G/Gp) = 0 implies that the standard mono-
mialsum, in %G/$L(GP), all vanish. Now gG/Kern p ~ %G/%(GP)/
Kern pl%{Gp)\ therefore, the same holds for gG/Kern (O. In particular,
Σ^(G) g Kern ^. Then, by Proposition 1, p is finite. Next let (ii)
hold. Then \G/GP:A/GP\ = n< oo, and A/G, is abelian. Therefore,
by the result of Kaplansky mentioned before, or by Theorems. 5.1,
8.1 of [5], all the irreducible representations of G/Gp are finite.

Now if p is afforded by the g^" m odule 2JZ, then putting p(g) m =
p(g) m, for </e G/G^and observing that Gp = {g e G \ p(g) = 1}, we get
a representation p of G/GPf such that p is irreducible and the com-
muting ring of p in Hon^ (2H, SK), is the same as that of p.

Thus the finiteness of /?-implies the finiteness of p.

( b ) G/Gp = S ^ GL(n, A) and any such £ satisfying either of
the conditions (i), (ii) or (iii), is abelian by finite: {see [9], Corollaries
9.4, 9.7, 9.8, and 9.23}. We then get our A, by taking the complete
inverse-image of the abelian part of G/Gp.

Since the group-algebra of an abelian group always satisfies
Σ % = 0, so we obtain:

COROLLARY. If G' £ GP9 then p is finite.

3. Strong finiteness of representations• In this section we
give a result which shows the equivalence of finiteness and strong-
finiteness in certain conditions.
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THEOREM 4. Under either of the following conditions, an irre-
ducible representation p of G is finite if and only if it is strongly
finite:

( i ) G is finitely generated;
(ii) p is absolutely irreducible;
(iii) 3H<ΪGB \G:H\ < ô and pH has a strongly finite con-

stituent.

Proof. ( i ) This is the content of Lemma 7 of [6].
(ii) Let the absolutely irreducible finite representation p, be

afforded by the gG-module 3ft. Since Δ £ Homδ (9ft, 3ft), g g j , so
we can make J ® δ 2ft into a z/G-module by letting g-(d®m) =
d (x) ρ(g)m.

Define ψ: Δ ® s 3K —* 2K by ψ(d (x) m) = dm. Since p and d com-

mute, so

ψ(g (d (x) m)) = ^ ( d (x) /θ(0r)m) = d(p(g)m) = ρ(g)(dm) .

Thus f is a JG-homomorphism. Since 2ft is absolutely irreducible,
so zί ®s 3ft is irreducible. So ψ is an isomorphism. Then dim,, (Δ ® 5 3ft) =
dim^ 2ft < co. Thus p is also finite-dimensional over g

(iii) By Clifford's theorem, pH = φ Σ5 Si7/] Pt> where pt are all
conjugate irreducible-representations of H. Hence, if one of them is
finite-dimensional over %, then so are all; and hence p.

4* Faithful representation• Finally, let p be a representation
(not necessarily irreducible) of the group algebra %G. For any left-
ideal / we shall write p1 for the representation afforded by the
module I-SK, where p is afforded by 3K. We shall let 2t = SI(G)
denote the augmentation-ideal of %G and J = [%G, %G\. Let
Char g = p ^ 0 .

We then investigate the consequences of p being faithful as a
representation of G and as a representation of %G respectively.
Recalling that if H ̂  G, then St(H) is the left-ideal in §G generated
by {h — 11 h e H}: [6], we have the following:

THEOREM 5. ( a ) If p is faithful on G, then A = ϊt"1 (Kern ρ%)
is an elementary abelian normal p-subgroup which is central if
SI S Kern ρ%.

( b ) If p is faithful on gG, then

( i ) A = 1 unless \G\ — 2, p = 2in which case A = G;

(ii) I? = SI"1 (Kern pJ) = 1 unless p = 2 α^d B ~ G is abelian,
or p = 2, G is nonabelian and B is central.

Proof. ( a) Since Kern p* < gG so A < G.
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Let 2ft afford p so t h a t %-Wl affords p*. Hence geA if and

only if (g — l ) Σse<? λ«(& — l ) m = 0 for each meSK. Since p Φ 0,

so ( ^ - l )m = for - β \ym = for - ΐ)[(g - I)2*"1™] = 0 as (g - l)*-ιme

2X-SDZ. Thus gpm = m and faithfulness implies t h a t gp = 1. F u r t h e r ,

if he A then (A, - ΐ)m and for - l ) m are both in St SB. Then,

for - l)(λ - l ) m = 0 = (& - l)for - l ) m

or

g~ιh~λgh m — m .

Again faithfulness gives t h a t #& = A#; i.e., A is abelian.

If 2C g Kern jO91, then # e G, έ e i implies

(gh - l )m - [(flr - l)(λ - 1) + (g - 1) + (λ - l)]m

— (^ — l )m + (h — l ) m = (/̂ ^ — ΐ)m .

Thus gh m = hg m and faithfulness gives that A £ Z(G).
( b ) ( i ) Now let p be gG-faithf ul. Then the Kern ρ% =

Ann 2t in gG. It is well-known that this annihilator is 0 unless
| G | < c o and Ann% = %-(^geGg). Now if ^ e i , then & — 1 =
a e Kern ρ% so that ^ — 1 = k X g, k e %. Linear independence of
the group elements, gives us that gt — 1, and k = 0, or | G | = 2,
g1 — 1, ΐ = 2, & = 1, and + 1 = —1 in fj.

( i i) Again by faithfulness Kern ρJ = Ann J . So g e S implies
that (g - ΐ)(hk - M) = 0, Vh,ke G, i.e., gM - #M - hk + kh = 0.
If Char, g ^ 2, then we must either have ghk — βr^ in which case
hk = kh, or ghk = hk in which case g = 1.

In case Char g = 2 and # is noncentral then choose k e G such
that gk Φ kg. Put h = βΓ1. Then the above identity gives,

k - gkg'1 - arιfc + kg-1 = 0 .

Since 0&0"1 ^ fc, so either k = g'^k or k — kg~ι, both leading to
g = 1, a contradiction. Thus in this case g e Z(G).
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