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CERTAIN REPRESENTATIONS OF INFINITE
GROUP ALGEBRAS

I. SIiNHA

For any group G, let p be an irreducible representation
of the group algebra FG over a field F. Then by Schur’s
lemma, the center 4 of its commuting ring, is a field con-
taining §. If p is finite-dimensional over 4, them it is
called finite and if it is finite-dimensional over { itself,
then it is called strongly finite. In this paper, certain con-
ditions are given for finiteness of p. Also it is shown that
for some types of groups, finiteness of p is related to the
existence of abelian subgroups of finite index in certain
quotient of the group. Conditions under which finiteness
and strongly finiteness are equivalent, are given. Finally,
consequences of o being faithful on G, or being faithful on §G,
are studied.

Study of finiteness of irreducible representations was initiated
by Kaplansky in [3], and later carried to a great extent by Passman,
Issacs, and others: {see [5] and relevent references therein}. Finite-
ness and strong finiteness were studied in [6]. TUsing a clight
modification of the technique of [4] to suit our nonsemisimple case,
we get Theorem 1 which includes the results of [4] and gives us
Theorem 2 whose corollaries contains the result of [3].

We further recall the well-known result that for a finite group
G, if the kernel of an irreducible representation p contains the com-
mutator subgroup G’, then the representation is 1-dimensional over
4. As corollary to our Theorem 3, we prove that in general, if G’
is contained in the kernel of p, then o is finite whether G is finite
or not.

2. Finiteness of representation. In this section we study con-
ditions under which a given irreducible representation is finite, and
also the conditions under which all irreducible representations are
finite. We need the following:

DerFINITIONS. 1. Let p be a representation of $G. Then G, =
{9e G |p(g) = 1}, and Kern p = kernel p = {x € FG | p{z) = 0}.
Thus p is G-faithful if G, =1, while p is FG-faithful if Kern o= 0.

2. Let B < AutG. For S =G, we shall write ¥ (S) for the
left-ideal {3 z,(5% — 1) | ®, € G, &7 € S, B, € B}. {For a general study
of such ideals we may refer to [6] and [8].] We write 2A(S), if
B = {identity}.
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3. We also define the B-kernel of p in H=< G to be
{(he H| p(k?) = 1, VBe B},

and set K7 (H) = ) {B-kernels of p in H}, where the intersection runs
through all irreducible representations o of G for which dim, 0 > n?,
where 4 is the center of the commuting ring of p. If no such p
exists, then we put K2(H) = G.

4. Let S,, be the symmetric group of degree 2n. Then for an
algebra A, the sums

O, = >, (58N 0)To)* Tyz) *** Lognry Lo €A,

age Sy

are called the Standard Monomial Sums (of parity u).

5. Define >, (G) to be the F-space spanned by all the o, in
BG. {We shall frequently write 3, wherever the group in question
is clear from context.}

This 3, plays a significant role in determining the degrees of
irreducible representations.

Specifically we have:

PROPOSITION 1. Let p be an irreducible representation of FG.
Then dim, p < »* if and only if >, < Kern p.

Proof. If dim,p < n® then FG/Kern p is a primitive algebra of
matrices of dimn over 4. By Theorem 1 of [1], for any o,<c G,
0(c,) = 0, whence o,c Kern o so that 3}, & Kern p.

Conversely, suppose >,, < Kern p. Then §G/Kern ¢ is a primi-
tive algebra satisfying o, = 0 for every o, in FG/Kern po. Then by
Theorem 1 of [2], p. 226, FG/Kern p is a central simple algebra of
dim < »’. Hence dim, p < »’.

Using this result we obtain:

THEOREM 1. Let S HZG. Then S& K2(H) iof and only if
As(S)- >, & Rad FG.

Proof. Weobserve that Wy(S)={>w:(sfi—1) |z, € FG,s. €8S, B; € B}.
Thus, to show that €4(S)->., & Rad G, it suffices to show that
(s —1)-3., = Rad FG, for vBe®B, VseS. Now let he K}(H) and
o be an irreducible representation of G. If dim,0 >’ then
o(h?) =1 or p(h? — 1) =0, VRe B, by the very difinition of K7(H).
On the other hand, if dim, 0 < n? then by Proposition 1, o(3,) = 0.
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Thus, in both cases, o[(h* — 1)-3.,] = 0. Since p is arbitrary,
so (F—1)-S, S RadRG. Hence S < K*(H) implies %y(S)-3. S
Rad §G.

Conversely, suppose y(S)->,, & Rad §G. Then, in particular,

(s — 1)-3, S Rad FG, voe P, s S.

We define the left-idealisor [7], of X, into Rad G, by Lg.a(Sin)se =
L) ={zeFG |23, = Rad §G}. This is clearly a left-ideal. Also
[LE) 9132 = (92979 = [L(,)-3.]-9 cRad FG-g =
Rad §G, for Vge G. Hence L(>.,) is a two-sided ideal of JG.

Now let o be an irreducible representation of G, afforded by the
FG-module M. Since L(3),) is a two-sided ideal, so Ann L(3>,) =
fmeM | LC,)m = 0} is an FG-submodule of M.  Thus either
Ann L(3,) =0 or M. Now assume that dim, o > n’. Again, by
Proposition 1, o(3),) = 0 so that 3,-M = 0, whence >, £ Rad FG.
But L(S,)-[Sa-M] = [L(S)- 3,]- T = 0, since L(3,)- 3., S Rad FG-
Thus Ann L(3,) = M. Then, as by hypothesis s* — 1e L(3.,), so
(s —1)-I =0; or p(s*» — 1) =0. As p was arbitrary with dim,p >
n* so s€ KN H).

Letting 3 = complex-field, we have Rad G = 0. Taking B = {1}
in this case, we obtain the result of Passman [4]:

COROLLARY. g€ K, (G) if and only if (9 —1)-3, = 0.
We also deduce:

THEOREM 2. Let S G and B < Aug G such that S® = G. Then
Us(S)-3, = Rad FG if and only if dim, o < n® for every irreducible
representation 0 of G. {Of course, 4 depends on p.}

Proof. By Theorem 1, %y(S)->, & RadFG if and only if S&
KXG): (G = H}.

The latter condition is equivalent to the statement that for every
irreducible representation © with dim, o > n? we have p(s%) =1,
vee®B, seS. Since S°® =G, so we deduce that o = 1.

CoroLLARY 1. If 3, < Rad FG for some n, then every irreducible
representation of FG s finite.

COROLLARY 2. [3]. If in $G, >.. =0 for some n, then every
irreducible representation of G is finite.

Next recall that if |G| < = then G' & G, for any irreducible
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representation o, if and only if o is of dim. 1. A generalization of
sort, is obtained in the corollary to:

THEOREM 3. Let o be an irreducible representation of FG.

(a) If either (i) 3..(G/G,) =0 for some n, or (i) I4A<G>-
G, = A, |G: A| < = and A/G, is abelian, then p is finite.

(b) (Conversely) If p is finite and FG satisfies either of the
Sollowing conditions:

(i) G/G, is periodic and F(G/G,) is nonmodular;

(ii) G/G, s periodic with a finite p-Sylow subgroup for
Char. § = p = 0;

(iil) G/G, satisfies minimum-condition on subgroups; then
IA<SG3-G, £ A4, |G:A| < = and A/G, is abelian.

Proof. (a) Suppose (i) holds. In the notation of [6], G, =
At (Kern p) where for any ideal I of G, A'(I) ={geG|g — 1el},
and hence %(G,) is a sub-ideal in Kern p. Since (G,) is the kernel
of the linear extension of the cannonical map G — G/G,, so FG/A(G,) =
B(G/G,). Therefore, >, (G/G,) = 0 implies that the standard mono-
mialsum, in FG/A(G,), all vanish. Now FGE/Kern p = FGAUG,)/
Kern p/A(G,); therefore, the same holds for FG/Kern p. In particular,
3.(G) < Kern p. Then, by Proposition 1, o is finite. Next let (ii)
hold. Then |G/G,: A/G,| = n < =, and A/G, is abelian. Therefore,
by the result of Kaplansky mentioned before, or by Theorems. 5.1,
8.1 of [5], all the irreducible representations of G/G, are finite.

Now if p is afforded by the FG-module I, then putting p(g).-m =
o(g)-m, for ge G/G,and observing that G, = {ge G| p(g) = 1}, we get
a representation o of G/G,, such that o is irreducible and the com-
muting ring of o in Hong (I, M), is the same as that of p.

Thus the finiteness of p-implies the finiteness of p.

(b) G/G, =S =GL(n, 4) and any such S satisfying either of
the conditions (i), (ii) or (iii), is abelian by finite: {see [9], Corollaries
9.4, 9.7, 9.8, and 9.23}. We then get our A4, by taking the complete
inverse-image of the abelian part of G/G,.

Since the group-algebra of an abelian group always satisfies
> =0, so we obtain:

COROLLARY. If G' & G,, then p is finite.
3. Strong finiteness of representations. In this section we

give a result which shows the equivalence of finiteness and strong-
finiteness in certain conditions.
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THEOREM 4. Under either of the following conditions, an irre-
ducible representation o of G 1is finite of and only if it is strongly
finite:

(i) G is finitely gemerated;

(ii) p s absolutely trreducible;

(ili)y 3IH<LG> |G: H| < = and py has a strongly finite con-
stituent.

Proof. (i) This is the content of Lemma 7 of [6].

(ii) Let the absolutely irreducible finite representation 0, be
afforded by the FG-module M. Since 4 & Homy (M, M), F S 4, so
we can make 4@, I intoc a 4G-module by letting g-(d ® m) =
d & plg)m.

Define v: 4 @4 I — M by v(d Q m) = dm. Since p and d com-
mute, so

¥(g-(d @ m)) = ¥(d ® p(g)m) = d(o(g)m) = p(g)(dm) .

Thus + is a 4G-homomorphism. Since IM is absolutely irreducible,
80 4@y M is irreducible. So 4 is an isomorphism. Then dim, (4@;M) =
dim, M < . Thus p is also finite-dimensional over $.

(iii) By Clifford’s theorem, p, = @ >.\% %' p,, where p, are all
conjugate irreducible-representations of H. Hence, if one of them is
finite-dimensional over &, then so are all; and hence p.

4, Faithful representation. Finally, let o be a representation
(not necessarily irreducible) of the group algebra FG. For any left-
ideal I we shall write o’ for the representation afforded by the
module I-9M, where p is afforded by M. We shall let % = A(G)
denote the augmentation-ideal of FG and J = [FG, FG]. Let
Char & = p == 0.

We then investigate the consequences of o being faithful as a
representation of G and as a representation of {FG respectively.
Recalling that if H < G, then (H) is the left-ideal in FG generated
by {h — 1|he H}: [6], we have the following:

THEOREM 5. (a) If o is faithful on G, then A = A~ (Kern o%)
is an elementary abeltan normal p-subgroup which is central if
A < Kern o,

(b) If o is faithful on BG, then

(i) A=1 unless |G| =2, p=2 in which case A = G,

(ii) B=U"Kernp’) =1 unless p =2 and B =G is abelian,
or p =2, G 1s nonabelian and B 1s central.

Proof. (a) Since Kern p* <IFG so A < G.
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Let M afford p so that .M affords p*. Hence ge 4 if and
only if (¢ — 1)-X,e6 Mol — )m = 0 for each me M. Since p +~ 0,
Az€®
so (- m=(9—1ym=(9—D(g—1y"'m] =0 as (g — 1) "'me
A-M. Thus g*m = m and faithfulness implies that ¢g* = 1. Further,
if he A then (b — 1)m and (g — 1)m are both in 2-M. Then,

@—Dr—-—1m=0=(h—1)g— Hm
or
g th7ighm = m .

Again faithfulness gives that gh = hg; i.e., 4 is abelian.
If % < Kern p% then ge G, he A implies

(gh—m=[¢—-D*r -1+ (@—-1+ (E—1m
=(@—1m+ (h—m = (hg — I)m .

Thus gh m = hg m and faithfulness gives that A = Z(G).

(b) (i) Now let p be FG-faithful. Then the Kern p* =
Ann U in FG. It is well-known that this annihilator is 0 unless
|G| < and Ann U =F-(,e09). Now if g,€ A, then g, — 1=
acKern p* so that g, — 1 =%k-3\¢g, k€F. Linear independence of
the group elements, gives us that ¢g,=1, and k=0, or |G| =2,
9.=1,1=2, k=1, and +1= —1 in .

(ii) Again by faithfulness Kern p” = AnnJ. So g€ B implies
that (¢ — )(hk — kh) =0, Vh, ke G, i.e., ghk — gkh — hk + kh = 0.
If Char, § = 2, then we must either have ghk = gkh in which case
hk = kh, or ghk = hk in which case g = 1.

In case Char® = 2. and ¢ is noncentral then choose ke G such
that gk = kg. Put h = ¢g7'. Then the above identity gives,

k—ogkg — gk + kg7t =0.

Since gkg™ = k, so either k= g7k or k= kg™, both leading to
g = 1, a contradiction. Thus in this case g€ Z(G).
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