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SYMMETRIC MAXIMAL IDEALS IN M(G)

SADAHIRO SAEKI

Let G be a nondiscrete locally compact abelian group, and
M(G) the convolution algebra of bounded regular measures
on G. In this paper, the following is proved: Let {1}, be
a countable subset of M/ (G), 0+~ 1,€ M(G), and {C,lz, a
countable family of o-compact subsets of G such that
Aae+C)=0 forallzeGandallk=0,1,2,---. Then there
exists a nonzero measure ¢ € M; (supp 4,) with compact support
such that 2,Jz + C, + G, (suppo)] =0 for allzcGand all k =
0,1,2,---. A consequence of this result is the following:
Let Y be the closed ideal in M(G) which is generated by
U{L'(2):k=0,1,2,---} for some countable subset {1}, of
M. (G). Then there exist ‘““fairly many’’ symmetric maximal
ideals in M(G) which contain U {L*(p): p€ Y} UM,(G) but not
My(G). Here L'(y) denotes the set of the measures in M(G)
which are absolutely continucus with respect to | z|.

Throughout the paper, let G be a nondiscrete locally compact
abelian group, G its dual, and M(G) the convelution algebra of bounded
regular measures on G. We use the following customary notations:

L) = MG) C My(G) = MAG) = M(G) .

Here M,(G) denotes the closed ideal of those measures in M(G) whose
Fourier transforms wvanish at infinity. For the definitions of M (G)
and M.(G), see [3:(19.13)]; for the second inclusion, see [8:5.6.9] or
[4]. Given a measure ¢t e M(G), we denote by L'(f) the set of those
measures in M(G) which are absolutely continuous with respect to | z¢].
For a set K in G, define

(K),=KU(—-K) and (K),=(K)eu + (K): (=23 ).

Thus, the union of all (K),, denoted by G,(K), is the subgroup of G
generated by K.
Our main resuits are the following.

THEOREM 1. Let {\}is, be o countable subset of M;(G), 0 = N\, €
M|(G), and {C}i, o countable family of nonempty o-compact subsets
of G such that

(a) (@ + C) =0 (weG k=012 ---).

Then there exists a monzero measure 7€ M, (supp\,) with compact
support such that
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(b) N[ + €, + Go(suppo)] =0 xeG; k=012 ---).

If, in addition, G is metrizable, such a measure o can be taken so
that (supp o) — x, is independent for some x,¢€ G.

COROLLARY. Let {\}i, be a countable subset of M. (G), 0 == N\, €
M(G), and Y the closed ideal in M(G) which is generated by
U{L'():k=0,1,2 ---}. Then there exists a mnonzero measure
o € M (supp \,) with compact support such that

|| [x + Gy(supp0)] =0  (xeG;preY).

If, in addition, G ts metrizable, such o measure o can be taken so
that (supp 0) — x, is independent for some x,€ G.

THEOREM 2. Let {\Ji, and Y be as in the Corollary. Then
there exists a symmetric maximal ideal O in M(G) such that

UL'(): e YIUM(G) <@  but M(G)ZO .

Furthermore, the set of all ©’s with these properties has cardinal
number larger than or equal to max {2¢, Card G}. Here @ denotes the
smallest uncountable cardinal.

Theorem 1 improves the main result in [6] and its Corollary
generalizes a theorem of Rudin [7] (see N. Th. Varopoulos [9] in this
connection). The idea of our proof is due to T.W. Korner [5: Ch.
XIII]. Although the arguments needed are similar to those in [6],
we give a detailed proof of Theorem 1.

We need some lemmas.

LEMMA 1. Let N be a measure in M;(G), and D a compact
subset of G such that Mz + D) =0 for all xeG. Then, for each
finite set F' in G, ne N (the natural numbers) and ¢ > 0, there exists
a neighborhood V of 0 G such that

Me+D+ (F+V)]l<e (xeq).

Proof. Let F,n, and ¢ be as above. Take a compact set Kin G
so that M(G\K) < ¢, and fix any neighborhood V, of 0 with compact
closure. Since F is finite, Mz + D+ (F),] =0 for all xeG by
hypothesis. Thus, for each x € G, we can find a neighborhood W, of
0 so that

>"[x + D+ (F)n + (Wm)Zn] < €.
(Note that D + (F'), is compact.) It follows from compactness of the
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set K — [D + (F), + (V,),] that there exist finitely many points a,,
Xy +++, L, € G such that

K—[D+E.+VolcU @+ W.).

Put V=W, NV, If e K~ [D+ (F), + (Vi)], then zea; +
W.,, for some j = j(x), and so

Ma + D+ (F+ V)] S Ma; + W, + D+ (F), + (V)]
SMa;+ DA+ (F)o + (W)l <e.

If x¢ K — [D+ (F), + (Vy).l, then
[t+D+F+V)INKC[z+D+ (F), + (V) INK=@,
and so Mz + D+ (F + V)] £ MG\K) < e. This completes the proof.

LEMMA 2. Suppose that G is metrizable and N, a nonzero measure
in Mi(G). Then there exists a point x,€ G and a nonempty, totally
disconnected, compact, perfect subset K, of supp N, with the following
three properties.

(a) Ewvery nonempty (relatively) open subset of K, has positive
Ag-measure.

(b) The elements of K, — x, have the same order, say q,.

(¢ If V,V, ---,V,. are m disjoint, nonempty, open subsets of
K,, there exist m points x;€ V; such that x, — %o, Ty — gy *++, Ty — X
are independent.

Proof. Since G is metrizable and )\, is continuous, we may assume
that ), is carried by a totally disconnected compact set.

Suppose first that there exist a natural number ¢ and an element
y € G such that

E(q, y) = {x € supp \: qx = ¥}

has positive \,-measure. Let ¢, be the smallest natural number such
that M\ [E(q,, %,)] > 0 for some y,€G. Fix any element x,¢ E(q, ¥.).
Then N J[E(q, gx,)] =0 for all ¢ge N with 1 =< ¢ < ¢q,, so that there
exists a compact subset K, of E(q, y)\{U!2" E(q, qx,)} with \(K,) > 0.
Replacing K, by the support of X\,| K,, we may assume that K, is
perfect and satisfies (a). Evidently (b) holds. Suppose now that (c)
holds for some m € N (note that (c) is trivial for m = 1). Let V, ---,
Vi, Vimsr be m + 1 disjoint, nonempty, open subsets of K,. There are
m points x, eV, ---, x,€ V,, such that , — %, ---, ©, — x, are inde-
pendent. Let H be the subgroup of G which is generated by =, .,

-+, ,. By minimality of ¢,, we have N[E(q, ¥)] =0 for all ge N
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with 1 < ¢ < g, and all ye H. Since N(V,.,) > 0 by (a) and His at
most countable, we can find an element z,,.,€ V,,,, so that

Tne € E(g, ) e@=12 +--,¢—LycH).

It is now easy to prove that the elements x, — %, + -+, Tp — Lo, Tpmiy — Lo
are independent. By induction on m, we obtain (c).

Suppose next that \[E(q, )] = 0 for all ge Nand all y€ G. Then
F = {x e supp \: ord z < oo} has )\,-measure zero, so that there exists
a nonempty compact, perfect subset K, of (supp \)\F which satisfies
(a). It is now easy to prove that (b) and (c) hold for xz, = 0.

LEMMA 3. Let K be a totally disconnected, compact subset of G,
and o a nonzero measure in M;(G) with suppo = K. Then, for
each compact subset F of G and & > 0, there exists a finite partition
{Kj}i-, of K into disjoint clopen subsets such that:

(i) 0< oK) <se 7=12 .-, n);

(ii) ;’: a(K)Pi(0) —6(n)| < (1eF)
whenever v;e M (K;) and |[|v;lly =1 for all 7=1,2, ---, n.
Proof. Since F' is compact while K is totally disconnected and

compact, there is a finite partition {K;};-, of K into disjoint clopen
subsets which satisfies (i) and

sup {{ z(x) — (W) sz, ye K,} < (8 olly)e

for all yeF and all j =1,2 ---,n. If v,e M*(K,) and ||v; [y =1
for j=1,2, ---, n, then we have

A /\ ) ! A
lo(K)v;(0) — o | Ki(O | < llolli'o(K)e  (rekF).
To see this, take any ;e K;. Then y e F implies
‘ R s
Lo(KDvi(x) — o | Ki(0) |
o(K,-)g 7dv; — | 7d0|
Ej K,

<ok | 17— 7@ dv; +| 17— 3w do

= 20(K)@B o lly)7e < llol[y' o(Kye .

Adding these inequalities for all j’s, we obtain (ii).

To prove the following lemma, we need a definition. Let K be
a subset of G whose elements have the same order ¢,(2 < ¢, < o).
Let also L, L, ---, L, be finitely many subsets of K, and M any
natural number. We say that L, L, ---, L, are M-independent if
and only if 3., m;x; # 0 whenever m; € Z (the integers), |m;| < q,,
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2;eL; (1 =1,2 +--,m) and 0% >F, |m;| < M.

LEMMA 4. Suppose that G is metrizable, and that {\}o, ond
{Clrey are as in Theorem 1. Let also x,€ G and K, Csupp ), be as
in Lemma 2. Then there exists a nonzero measure o € M;(K,) such
that (supp ¢) — x, is wndependent and

®) Nelw + C, + (suppo)] =0  (reGk=0,1,2 ---).

Proof. Write

G=UE, and G=UC. (=012,
where the E, are compact subsets of G while the C,, are compact
subsets of G such that C,, < C,,,,, for all £ and n. (It is well-known
that G is metrizable if and only if G is o-compact. See, for example,
[4].) Let A be the measure in M(G) defined by ME) = N[(E + 2,) N K]
for all Borel subsets F of G. Then, 0 % \ e M;(G) and the elements
in supp N = K, — %, have the same order q,.

We shall now construct a sequence (n,);-, of natural numbers, a
sequence (%)=, of finite collections of disjoint clopen subsets of
K, — xz,, a sequence (0,);~, of probability measures in L'(\), and a
sequence (F',)7, of compact subsets of G. They will satisfy the follow-
ing three conditions. Every o, has the form

(1) g, = ZCLIXI

]eJn

where each a; is a positive real number, N; = \ | I the restriction of
» to I, and

HO-'nHM = IeZJ a,N(I) =1.

.. PR PPN
(ii) sup {0, | I(0) |: x € G\F,} < 27"0,(I) vie 7.
(iii) E,cF,.

For » =1, such .7, g,, and F, may be quite arbitrary. We set
n, =1, and suppose that n,, %, 0., and F, have been constructed
for some pe N. Let l, = Card s, and write
f = {Il}fi.g_i = {Iﬁﬁ}iﬂzl .

"p

Let M, be the largest natural number such that
(1) max {o, (I): Ie 7} < M;*,

and set
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(2) T,={Ac71=Card A = M,} = {A,}}%, .
We may assume
(3) A, =1L}y =1{7 (=142 -10).

We shall inductively construct the .7, ¢,, and F, for all n e N with
Ny, <M =n, + s, as follows. Suppose that .7, o, and F, have been
constructed for some v =%, +r—1(»r =12 ..., s,), and put

(4) 57, = {Ie #: I J for some Je A} .

We can find (finite) collections {b*}; of real numbers and collections
{LF}; of disjoint clopen subsets of K¢ 2%, which satisfy the following
six conditions:

(5) 0 < bfo(LE) <20 (K) VKe.o and V;;
(6) > bfo, (L) = 0,(K) vKe. 9%, ;

(7) ‘Z b}"%/l\LJK(X) — Ujl\K(x)J <20 (K) VKe %, and VyeF,;

(8) S dia (L) < n™t VKe 2, ;
(92) The sets {Lf}x ; are M,-independent ;

sup kk[x + C,, + <U Lf)] <(nl,)™
(10) zeG 7 1
VKe o, and VE=0,1, ---, n

The above conditions are met as follows: For each K<€ .27, apply
Lemma 3 to 0 =0, K, ¢ =2",(K) and F =F,. Let {K;}, be a
finite partition of K as in Lemma 3. Using property (c) in Lemma 2,
we can find xX e K; so that U {{F},: Ke 2} is independent. If we
choose LX¥C K; so that zFe L’ and the diameter of each Lf is
“sufficiently small”, then (8) and (9) hold and so does (10) by Lemma
1. Finally, it suffices to set b = 0,(K;)/0.(Lf).

We now define

() AN S = 70 (U {LA}A)'
(12) b= 3 apg+ 3, N0, | LE

and take a compact subset F%+l of G, with F,.,DE,., U F,, so that
(ii) holds with n replaced by n + 1.

We repeat the above process with n, replaced by n,,, = %, + s,
which completes our induction. Let 0. be a weak-* cluster point of
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(0,)7, in M(G), and o the measure in M(G) defined by o(E&) =
o.(E — x,) for all Borel sets F in G. We claim that ¢ has the required
properties.

First note that

U Ic U I=suppo,CK,—x,
Y

I€ Syt €S n

and so we have

(13) 0,=20, 0.(G)=1 and suppawcﬁ<u I).

n=1 \Ie 7,

Let pe N be given. It is easily seen from (3), (4), and (11) that
g, = LY UL U - UL, where I =1, .
This, combined with (10) and (13), shows
Milz + G, + (supp 0..).]
< Sufe+ G+ (ULE) [ S0y =07
for all zeG and all £ =0,1, ---, n,. (Note that C,, < C,., for all

k and n.) Thus, fixing € G and k€ {0, 1, 2, ---}, and letting p — <o,
we have

Ml + C, + (supp o)) =0 (xeG; k=012 --+).

But evidently supp ¢ = (supp 0..) + x,, and so (P,) holds.
It remains to show that ¢ vanishes at infinity and that (supp o) — =z,
is independent. Although these are proved in [5: Ch. XIII, 151-153
and 155-156], we give their proofs to make the paper self-contained.
Suppose 1, =% < Npyy (P, nEN), and writen =n, +r —1(r =
1,2 ---,8,). Then we have

14) . >, 0.(K) = 2 0,(]) = (Card A,)-max 0,,(J) = M;".
K€y Jed, JeAd,

Here the equality follows from (4), (6) and (12) while the last inequality
follows from (1) and (2). If yeF,, then

o~ o !
= > ([2bjo, [ LE() — 0. K(7) |

Kezy, 7

< % 2o (K) =2

Keoiy,

by (i), (12) and (7). It follows that

’&w(X) - &nJ—I(X)¥ < 2™ VX € ﬁn+1 ’

since F,C F,,,C --- by construction. For XeG\F‘M we have
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G = 3 lef0)| + 3 S L)
n o~ [
= 2 oI+ > oK)

Iery,

2 3 o (D) + Myt =27 + My

187,

AN

by (12), (i), (6), (i) and (14). Hence
|60 <2+ 2"+ M;*  VvyeF,\F,.

But G = U, F, by (iii) and lim, M, = < by construction. Thus tbe
above inequality shows that ., € C(G), or equivalently, that &€ Cy(G).
Finally we prove that (supp o) — x, = supp o, is independent.

Let z,, x,, ---, 2, be distinct elements of suppo.. It is easy to see
that

maxdia (/) — 0 as n—> oo,

Ies,
Therefore, there is an n,€ N such that «,, x,, ---, x, belong to distinct
sets in _%, whenever n > n,. Take any pe N so that n, = n, and
M, > t, and let

A=1{Ie S, I contains some .} .

Then 1 <Card A =t < M,; hence A = A, for some r=1,2, .-, s,.
Thus x,, x,, - -, x, belong to distinet sets in U {{L¥};: K€ >7,}, where
n =mn, +r — 1. It follows from (9) that =z, x, ---, 2, are M,-inde-
pendent. Since p can be taken as large as one pleases, we conclude
that z,, «,, ---, 2, are independent.

This establishes Lemma 4.

LEMMA 5. Let G, {\i}ieo and {C.}i-, be as in Lemma 4. Let
also {K;}7, be finitely many, disjoint, compact subsets of G such that
M(K;) = 0 forall j =1,2, ---, m. Then, for each n€ N, there exist
m nonzero measures U; € M{(K;) such that

®.) x,,|:x + C, + <JL=mJ1 supp pj>n] =0 (xeG k=012 ---).

Proof. For each j=1,2, .-, m, choose and fix a measure 7, €
M;(K;) with ||7;||y = m™ whose support is totally disconnected. In
the proof of Lemma 4, replace » and K, — z, by M = >, 7; and
U7, supp 7;, respectively; take off condition (9); and let o, be any
measure constructed as there with ¢, = A\ and 4 = {supp 7;}7~,- Then

Oiﬂj=0‘lej‘eM3_(Ki) (j;_zlyzy""m)’

and {¢;}~, satisfy (P). We repeat the same argument replacing
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{CiJi-o and (K}, by {Ci + (U7 supp #,).}7= and {supp /t;}-,, respec-
tively; and continue this process. At the nth step, we will obtain m
nonzero measures satisfying the required condition. This completes
the proof.

Proof of Theorem 1 for metrizable groups. Sﬁppose that G is
a given metrizable group. Let {\,}i,, {Ci}izey %, and K, be as in
Lemma 4. Let also G = U ]_77” be as in the proof of Lemma 4. We
construct a sequence (.7%,)r-, of finite collections of disjoint compact
subsets of K,, a sequence (0,):=, of probability measures in M(K,),
and a consequence (F,)7, of compact subsets of G. They satisfy the
following four conditions. Every ¢, has the form
(1) 0”:1§ atty ,

where each «; is a real positive number, /¢, a probability measure in
M(I) with supp ¢; = I, and

HO'nHM:IEZJ ar=1.

(i) sup {| () [ x e G\F,) < 27"a, Ve 7.
(iii) BEcCPh. .
(iv) N[+ Cp + (K, + (B + +++ 4+ (K),] =0

(xeGik =012 ),

where K,=J {[: [e_A} and K,=J{Ie 7:1¢  7_} for n=23, ---.
For » =1, we apply Lemma 4 to obtain a probability measure
0, € My(K,) such that (suppo,) — #, is independent and

N[z + C, + (suppo)] =0 (xeG k=012 ---).

Set . = {I =suppay}, U =0, a; =1, and take any compact subset
F, of G satisfying (ii) and (iii) for » = 1.

Suppose that (7 )i, (0,)i-, and (F,):_, have been constructed for
some n € N. Choose and fix any I, . 7, with

(1) a; =supfa;le A} .

Applying Lemmas 3 and 5, we can find a (finite) collection {b,;}; of
real numbers, a collection {L,;}; of disjoint compact subsets of I,, and
a collection {x,,;}; of probability measures in M,(I,) with supp t,; =
L,; which satisfy the following four conditions.

(2) 0<b,; <n'-mina; vVij.

Ie sy,
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( 3 ) Z bni = a’I,,,,
(4) | buslas) — @ ()| <27 Vel

(5) ot Gt (Kt o+ K)u+ (ULu) |=0  vaeg

for all k=0, 1, 2, . Put %, = (ALY U {L,;};, and a; = b,;,
Ly = p,; for I = LM Vj Define 0,,; by the right-hand side of (i)
W1th n replaced by » + 1. Fmally, we take any compact subset FA’,,“
‘of G, with FnHDEnﬂ UF,, so that (ii) holds with » replaced by
n 4+ 1.

This completes the induction. Let o be a weak-* cluster point of
(0,)7-; in M(G). Then it is easy to prove that ¢ has all the required
properties (see [5: Ch. XIII, 151-153]). This establishes Theorem 1
for metrizable groups.

To prove the general case, we need one more lemma.

LEMMA 6. Let {\}i, and {C} v, be as in Theorem 1. Then,
given a g-compact subset F of G we can find a g-compact, noncom-
pact, open subgroup I' of G so that FcI' and

(i) Mz + C,+ H] =0 xeGkE=0,1,2 --),
where Hp denotes the annihilator of I'.
Proof. Let C,, be as in the proof of Lemma 4, and let & be

the family of all o-compact, noncompact, open subgroups of G which
contain F'. Since every C,, is compact, we have

(1) C.=N{Cy. + H:I'e 7} k=012 --3n=12 --:).
Applying Lemma 1, we can find neighborhoods V,, of 0 so that
(2) Mz +C + V0] <0t k=012 --;n=12 ---:2eG).
By (1), there exist subgroups /", in .&# such that

(3) C,.+ H,cC, +V, k=012 ;=12 --+),

where H,, is the annihilator of I",,. Let I” be any subgroup in .&#
which contains all I",,. Then, it follows from (2) and (3) that (i)
holds. This completes the proof.

Proof of Theorem 1 for gemeral groups. Let G be an arbitrary
nondisAcrete LCiAx group, and let {\;}i=, and {C.}i=, be as in Theorem 1.
For F'= {yeG:N\,(x) + 0}, take a I"C G as in Lemma 6. Setting
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H = H;, we denote by = and m, the natural mapping of G onto
G, = G/H and the Haar measure of H with m,(H) = 1, respectively.
For each pre M(G), define a measure ' € M(G,) by setting

(1) Saofd;z’ - SGforcd;z v fe C(Gy) .

Identifying 7" with G, in the usual way, we see /= p| I for all
re M(G), so that 0 == \j€ M,(G,). On the other hand, we have

(2) M+ Cl =0 (@eGik=012 ---)

by (i) in Lemma 6 and (1), where C} = n(C,). Therefore {\}}i=,C M, (G),
and we can apply our result for metrizable groups to find a nonzero
measure ¢’ € My(supp \;) With compact support such that

(3) ne" + C. + Gu(suppo’)] =0 (eGuk=012 ).

Now define a measure ¢ € M(G) by setting

(4) SG fdo = SGO {SH fe + t)dm,,,(t)}do'(m') v fe CG) .

As is easily seen, we then have
(5) supp o = w'[supp o’] and suppr, = 7T supp M)

(note that o+m, = g and Nxmy; = \,). It is also easy to check that
0 # e M;(G), that supp o is a compact subset of supp ), and that

Nle + €, 4+ Gy(supp 0)] = Ma' + CL + Gu(suppo’)] =0

for all zeG and all k=10,1,2, ---.
This establishes Theorem 1.

Proof of Corollary. Let Y be as in the present Corollary. Set-
ting C, = {0} for all £ and applying Theorem 1 to {|\, |}, We obtain
a nonzero measure o€ M;(supp \,) with compact support such that

(1) [tlle + Gy(suppo)] =0 (2€G)
holds for all ze Ui, L'(\,). But then we have
Wt | e + Go(supp 0)] = (|¥|+[7 )z + Gy(supp 0)]
= SGITI [ — v + Gy(supp 0)]d [v|(y) = 0

for all x € G whenever ve M(G) and 7e U, L'(\;). Since the ideal
Y is generated by Ui, L'(\;), this implies that (1) holds for allze Y.

The last statement in the Corollary is now trivial and the proof
is complete.
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To prove Theorem 2, we need some notation. Let . be a non-
empty family of (locally) Borel measurable subgroups of G such that
for any countable subfamily .7, of .7~ there exists a subgroup He 7~
which contains all L e 7,. Define

I(7)={teMG):|pl(x+ H)=0VeeG and YHe 7}

and

(T ) = {ve M(G): |v]| (G\(D + H)) = 0 for some countable
Dc G and some He 9} .

Then it is easy to prove the following (cf. [1]):
(a) I(.77) is a closed ideal in M(G) such that I(9)* = I(.9).
(b) #(77) is a closed subalgebra of M(G) such that Z(7)* =
F(T).
() MG)=I(7)+ #(7 ) and [(9)N.2(T) = {0}
We denote by @ .- the projection of M(G) onto .<#(. 7" ) which is induced
by the direct sum decomposition M(G) = I(.F") + (7 ). Note that
@ is a *-homomorphism of M(G) onto Z(7).

Proof of Theorem 2. Let {\;}i=, and Y be as in Corollary; without
loss of generality, we may assume that A, = 0 for all k. By Lemma

6, there is a g-compact, noncompact, open subgroup /” of G such that
(1) Mz + H)=0 (xeG k=012 --+),

where H is the annihilator of 7. Let G, = G/H, and let p— ¢ be
the mapping of M(G) onto M(G,) defined in the proof of Theorem 1
for general groups. Note that g — £’ is a *-homomorphism. Since
(1) implies n,e M. (G) for all k, Theorem 1 assures that there exists
a nonzero measure ¢’ € M;(G,) with compact support such that K’ =
supp ¢’ is independent and

(2) Mla” + G(KN] =0 (@'eGik=0,1,2 ).

Let w, be the first countable ordinal and let W= (1,2, ---} be
the well-ordered set consisting of all ordinals smaller than ®,. We
now construct a family {L.: @« €¢ W} of disjoint compact subsets of K’
such that

(3) ML) = {0} and o'(Li) =0

for all we W. First, by Theorem 1, there exists a compact subset
L of K’ having property (3). Let ge W, 8 = 2, and suppose that
L: has been constructed for all ae W with a« < 8. Then E; =
U {L.: a < B} is g-compact, and by (3), has o’-measure zero. There-
fore, there exists a compact subset F} of K’\F; having positive o’-
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measure. Applying Theorem 1 again, we can find a compact subset
L; of F; so that (3) holds for &« = 8. By transfinite induction, we
obtain a family {L,: @ ¢ W} of disjoint compact subsets of K’ satisfy-
ing (3).

Let (W) be the family of all nonempty subsets of W; hence
Card &(W) = 2¢, where w denotes the smallest uncountable cardinal.
For each Ae . &?(W) and y € I', we construct a complex homomorphism
U, of M(G) as follows. Let .7~ = .7, be the family of subgroups
of G each of which is generated by | {L.: « € B} for some countable
subset B of A. We define ¥',, by setting

(4) Vo) = D)D) (e MG) .

It is easy to see that ¥,, is a symmetric complex homomorphism of
M(G). Also ¥,, = 0 because

(5) _ Ti0) =x@) =0 (weG),

where 0, denotes the unit mass at z.
Fixing an Ae & (W) and yel', we now prove

(6) U{LNw: e YIUM(G) cKer¥,, but M(G)z Ker¥,, .
First note that ve M*(G) and pe L'(v) imply ¢ € L'(Y'). In fact, if
w is a bounded Borel function on G, we have
], faeoy| = || (rempmav| < (71om) 0] av
<lwll | (71omay = 1w ]le-l] Fllos

for all fe Cy(G,), so that (wy) e L(v'). Since the mapping 7— 7’ is
norm-decreasing, we see

inf{[| ¢ — [l e LW S ([ — (o)l = {128 — wvly .

Since w was arbitrary and pge L'(v), this implies ¢’ € L'(v"). Suppose
now that ve M(G) and » € L'(\,) for some k. Then, the above observa-
tion and (2) show
(@)@ +T) = [VN[@ +T) = (V][ NV)E"+T)
= (VI[N Dl + Go(K)] =0

for all 2'e@G, and all T'e 9 = .7,. Since the linear span of the
sets M(G)*L'(\.), k=0,1,2, ---, is dense in Y, it follows that

[77|(@ +T)=0 ('eG;T'e o)

holds for all 7€ Y, and so for all e J {L'(¢): #€ Y}. Therefore we
have
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U {L(w): peY}cKer ¥, .

Note now that A] % 0, and so G,(supp ¢’) has no interior point by (2);
hence the Haar measure of G,(supp ¢’) is zero. Since M, (G) = M(G,),
it follows that M, (G)c Ker ¥ ,,. To prove that M,(G) & Ker ¥ ,,, take
any «e A. Then L,cCG,(L)e. 7, and so @ -[M,(L.)] = M{L.) = {0}.
This establishes (6) because M(G) = M/(G,).

Finally, take any A, Be.<?(W) and any y, ve/lI. If 3y =7, (5)
implies that ¥, = ¥,,. If A= B (say A 2 B), take any g8 e B\4; we
claim

(7) ML) cKer @ - where 9 = 7, .

In fact, let 7" be an arbitrary subgroup in .7 ; there exists a countable
subset A4, of A such that 7’ = G,(U {L.: @< A}). Since K’ is inde-
pendent and since L) and | {L,:«ac A} are disjoint subsets of K’,
it follows that L) N (x’ + 7’) contains at most one point for each
@’ e G, In particular, if e M, (L}), then || (2’ + T") =0 for all
'€ G, Since T'e 7 was arbitrary, we see that (7) holds. On the
other hand, we have @ (M(L})) = M(L;) for 22 = 5. Thus ¥,, =+
U, as is easily seen. This clearly establishes Theorem 2.

REmMARKS. (1) If G is a metrizable I-group, then the element
x, in Theorem 1 (and Corollary) can be chosen z, = 0. In fact, take
any nonzero \,€ M,(G), and assume that F,, = {reG:iqr = y} has
positive N,measure for some ¢e N and some yeG. Let p be the
restriction of X\, to E,,, so that 0 == ¢, = M;(G). It is trivial that
F,, is a coset of some closed subgroup H of G which is of bounded
order. If I is the annihilator of H, we see |/, | = const = 0 on 7.
Since #, vanishes at infinity, it follows that I' is compact, or, equiv-
alently, that H is an open subgroup of G. This is a contradiction
because G is an I-group while H is of bounded order. Thus, our
assertion follows from the last paragraph of the proof of Lemma 2
and the proof of Theorem 1 for metrizable groups.

(ii) Let G~ denote the closure of G in the maximal ideal space
4; of M(G), and let Y be 2s in Theorem 2. Then, for some e M, (&),
the set F. of all symmetric & ¢ 4, such that

U L(w: e VU MG O and #6) =1

has cardinal number =2, where 7 denotes the Gelfand transform of
7. Note that E. is a closed subset of 4, disjoint from G-. To see
this, redefine .Z?(W) in the proof of Theorem 2 to be the family of
all subsets of W containing 1¢ W, and fix any probability measure
7€ M;(G) such that € M{L]). Then we have
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V@ =) =2) =1 (AeF(W)).

(iii) Let Y be as in Theorem 2. Then there exist a measure
7€ M;(G), a nondiscrete LCA group G,, and an independent compact
subset K’ thereof, with M,(K’) = {0}, having the following property:
the set of all asymmetric © ¢ 4, such that

UL reYUM(G) O and T(©@) =1

has cardinal number =Card M,(K')*, where M (K')* denotes the
conjugate space of M,(K'). This can be proved using the proof of
Theorem 2 and a theorem of Hewitt and Kakutani [2]. We omit the
details.

(iv) Some analogs to our results held for non-abelian groups.
For example, we have the following: Let G be a nondiscrete locally
compact group, {\}i,C MAG), N = 0, and let {C,}7., be a countable
family of o-compact subsets of G such that

'\'\’/:(xck) = 0 (x € G’ k = O’ 1’ 2; o .) *

Then there exists a nonzero measure o ¢ M, (supp)\,) with compact
support such that

N feGy(supp 0)C,] = 0 (xeG k=012 ---).
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