SYMMETRIC MAXIMAL IDEALS IN M(G)

SADAHIRO SAEKI

Let G be a nondiscrete locally compact abelian group, and M(G) the convolution algebra of bounded regular measures on G. In this paper, the following is proved: Let $\{\lambda_k\}_{k=0}^{\infty}$ be a countable subset of $M_c^+(G)$, $0 \neq \lambda_0 \in M_0(G)$, and $\{C_k\}_{k=0}^{\infty}$ a countable family of σ -compact subsets of G such that $\lambda_k(x+C_k)=0$ for all $x\in G$ and all $k=0,1,2,\cdots$. Then there exists a nonzero measure $\sigma\in M_0^+(\operatorname{supp}\lambda_0)$ with compact support such that $\lambda_k[x+C_k+G_p(\operatorname{supp}\sigma)]=0$ for all $x\in G$ and all $k=0,1,2,\cdots$. A consequence of this result is the following: Let Y be the closed ideal in M(G) which is generated by U $\{L^1(\lambda_k): k=0,1,2,\cdots\}$ for some countable subset $\{\lambda_k\}_{\lambda=0}^{\infty}$ of $M_c(G)$. Then there exist "fairly many" symmetric maximal ideals in M(G) which contain U $\{L^1(\mu): \mu \in Y\} \cup M_a(G)$ but not $M_0(G)$. Here $L^1(\mu)$ denotes the set of the measures in M(G) which are absolutely continuous with respect to $|\mu|$.

Throughout the paper, let G be a nondiscrete locally compact abelian group, \hat{G} its dual, and M(G) the convolution algebra of bounded regular measures on G. We use the following customary notations:

$$L^1(G) = M_a(G) \subset M_0(G) \subset M_c(G) \subset M(G)$$
.

Here $M_o(G)$ denotes the closed ideal of those measures in M(G) whose Fourier transforms vanish at infinity. For the definitions of $M_o(G)$ and $M_o(G)$, see [3: (19.13)]; for the second inclusion, see [8: 5.6.9] or [4]. Given a measure $\mu \in M(G)$, we denote by $L^1(\mu)$ the set of those measures in M(G) which are absolutely continuous with respect to $|\mu|$. For a set K in G, define

$$(K)_1 = K \cup (-K)$$
 and $(K)_n = (K)_{n-1} + (K)_1$ $(n = 2, 3, \cdots)$.

Thus, the union of all $(K)_n$, denoted by $G_p(K)$, is the subgroup of G generated by K.

Our main results are the following.

THEOREM 1. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a countable subset of $M_c^+(G)$, $0 \neq \lambda_0 \in M_0(G)$, and $\{C_k\}_{k=0}^{\infty}$ a countable family of nonempty σ -compact subsets of G such that

(a)
$$\lambda_k(x + C_k) = 0$$
 $(x \in G; k = 0, 1, 2, \dots)$.

Then there exists a nonzero measure $\sigma \in M_0^+(\operatorname{supp} \lambda_0)$ with compact support such that

(b)
$$\lambda_k[x + C_k + G_p(\text{supp }\sigma)] = 0$$
 $(x \in G; k = 0, 1, 2, \cdots)$.

If, in addition, G is metrizable, such a measure σ can be taken so that $(\operatorname{supp} \sigma) - x_0$ is independent for some $x_0 \in G$.

COROLLARY. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a countable subset of $M_c(G)$, $0 \neq \lambda_0 \in M_0(G)$, and Y the closed ideal in M(G) which is generated by $\bigcup \{L^1(\lambda_k): k=0, 1, 2, \cdots\}$. Then there exists a nonzero measure $\sigma \in M_0^+(\operatorname{supp} \lambda_0)$ with compact support such that

$$|\mu|[x + G_p(\operatorname{supp} \sigma)] = 0 \quad (x \in G; \mu \in Y).$$

If, in addition, G is metrizable, such a measure σ can be taken so that $(\sup \sigma) - x_0$ is independent for some $x_0 \in G$.

THEOREM 2. Let $\{\lambda_k\}_{k=0}^{\infty}$ and Y be as in the Corollary. Then there exists a symmetric maximal ideal Θ in M(G) such that

$$\bigcup \{L^1(\mu) \colon \mu \in Y\} \cup M_a(G) \subset \Theta \qquad but \ M_0(G) \not\subset \Theta.$$

Furthermore, the set of all Θ 's with these properties has cardinal number larger than or equal to max $\{2^{\omega}, \operatorname{Card} \widehat{G}\}$. Here ω denotes the smallest uncountable cardinal.

Theorem 1 improves the main result in [6] and its Corollary generalizes a theorem of Rudin [7] (see N. Th. Varopoulos [9] in this connection). The idea of our proof is due to T. W. Körner [5: Ch. XIII]. Although the arguments needed are similar to those in [6], we give a detailed proof of Theorem 1.

We need some lemmas.

LEMMA 1. Let λ be a measure in $M_c^+(G)$, and D a compact subset of G such that $\lambda(x+D)=0$ for all $x\in G$. Then, for each finite set F in G, $n\in N$ (the natural numbers) and $\varepsilon>0$, there exists a neighborhood V of $0\in G$ such that

$$\lambda[x+D+(F+V)_n] $(x\in G)$.$$

Proof. Let F, n, and ε be as above. Take a compact set K in G so that $\lambda(G\backslash K)<\varepsilon$, and fix any neighborhood V_0 of 0 with compact closure. Since F is finite, $\lambda[x+D+(F)_n]=0$ for all $x\in G$ by hypothesis. Thus, for each $x\in G$, we can find a neighborhood W_x of 0 so that

$$\lambda[x+D+(F)_n+(W_x)_{2n}]<\varepsilon.$$

(Note that $D + (F)_n$ is compact.) It follows from compactness of the

set $K - [D + (F)_n + (\bar{V}_0)_n]$ that there exist finitely many points x_1 , $x_2, \dots, x_m \in G$ such that

$$K - [D + (F)_n + (V_0)_n] \subset \bigcup_{i=1}^m (x_i + W_{x_i})$$
.

Put $V = \bigcap_{j=1}^m W_{x_j} \cap V_0$. If $x \in K - [D + (F)_n + (V_0)_n]$, then $x \in x_j + W_{x_j}$ for some j = j(x), and so

$$\lambda[x + D + (F + V)_n] \leq \lambda[x_j + W_{x_j} + D + (F)_n + (V)_n]$$

$$\leq \lambda[x_j + D + (F)_n + (W_{x_j})_{2n}] < \varepsilon.$$

If $x \notin K - [D + (F)_n + (V_0)_n]$, then

$$[x+D+(F+V)_n]\cap K\subset [x+D+(F)_n+(V_0)_n]\cap K=\emptyset$$

and so $\lambda[x+D+(F+V)_n] \leq \lambda(G\backslash K) < \varepsilon$. This completes the proof.

LEMMA 2. Suppose that G is metrizable and λ_0 a nonzero measure in $M_c^+(G)$. Then there exists a point $x_0 \in G$ and a nonempty, totally disconnected, compact, perfect subset K_0 of supp λ_0 with the following three properties.

- (a) Every nonempty (relatively) open subset of K_0 has positive λ_0 -measure.
 - (b) The elements of $K_0 x_0$ have the same order, say q_0 .
- (c) If V_1, V_2, \dots, V_m are m disjoint, nonempty, open subsets of K_0 , there exist m points $x_j \in V_j$ such that $x_1 x_0, x_2 x_0, \dots, x_m x_0$ are independent.

Proof. Since G is metrizable and λ_0 is continuous, we may assume that λ_0 is carried by a totally disconnected compact set.

Suppose first that there exist a natural number q and an element $y \in G$ such that

$$E(q, y) = \{x \in \text{supp } \lambda_0 : qx = y\}$$

has positive λ_0 -measure. Let q_0 be the smallest natural number such that $\lambda_0[E(q_0,\,y_0)]>0$ for some $y_0\in G$. Fix any element $x_0\in E(q_0,\,y_0)$. Then $\lambda_0[E(q,\,qx_0)]=0$ for all $q\in N$ with $1\leq q< q_0$, so that there exists a compact subset K_0 of $E(q_0,\,y_0)\backslash\{\bigcup_{q=1}^{q_0-1}E(q,\,qx_0)\}$ with $\lambda_0(K_0)>0$. Replacing K_0 by the support of $\lambda_0\mid K_0$, we may assume that K_0 is perfect and satisfies (a). Evidently (b) holds. Suppose now that (c) holds for some $m\in N$ (note that (c) is trivial for m=1). Let $V_1,\,\cdots,\,V_m,\,V_{m+1}$ be m+1 disjoint, nonempty, open subsets of K_0 . There are m points $x_1\in V_1,\,\cdots,\,x_m\in V_m$ such that $x_1-x_0,\,\cdots,\,x_m-x_0$ are independent. Let H be the subgroup of G which is generated by $x_0,\,x_1,\,\cdots,\,x_m$. By minimality of q_0 , we have $\lambda_0[E(q,\,y)]=0$ for all $q\in N$

with $1 \leq q < q_0$ and all $y \in H$. Since $\lambda_0(V_{m+1}) > 0$ by (a) and H is at most countable, we can find an element $x_{m+1} \in V_{m+1}$ so that

$$x_{m+1} \notin E(q, y)$$
 $(q = 1, 2, \dots, q_0 - 1; y \in H)$.

It is now easy to prove that the elements $x_1 - x_0, \dots, x_m - x_0, x_{m+1} - x_0$ are independent. By induction on m, we obtain (c).

Suppose next that $\lambda_0[E(q, y)] = 0$ for all $q \in N$ and all $y \in G$. Then $F = \{x \in \text{supp } \lambda_0 : \text{ ord } x < \infty\}$ has λ_0 -measure zero, so that there exists a nonempty compact, perfect subset K_0 of $(\text{supp } \lambda_0) \setminus F$ which satisfies (a). It is now easy to prove that (b) and (c) hold for $x_0 = 0$.

LEMMA 3. Let K be a totally disconnected, compact subset of G, and σ a nonzero measure in $M_c^+(G)$ with supp $\sigma = K$. Then, for each compact subset \widehat{F} of \widehat{G} and $\varepsilon > 0$, there exists a finite partition $\{K_i\}_{i=1}^n$ of K into disjoint clopen subsets such that:

(i)
$$0 < \sigma(K_j) < \varepsilon$$
 $(j = 1, 2, \dots, n);$

$$\begin{array}{ll} \text{(ii)} & \left|\sum\limits_{j=1}^n \sigma(K_j)\widehat{\nu}_j(\chi) - \widehat{\sigma}(\chi)\right| < \varepsilon & (\chi \in \widehat{F}) \\ whenever & \nu_j \in M^+(K_j) \text{ and } ||\nu_j||_{_{M}} = 1 \text{ for all } j = 1, 2, \, \cdots, \, n. \end{array}$$

Proof. Since \hat{F} is compact while K is totally disconnected and compact, there is a finite partition $\{K_j\}_{j=1}^n$ of K into disjoint clopen subsets which satisfies (i) and

$$\sup \{|\chi(x)-\chi(y)|: x, y \in K_{\scriptscriptstyle J}\} < (3 \mid\mid \sigma\mid\mid_{\scriptscriptstyle M})^{-1}\varepsilon$$

for all $\chi \in \hat{F}$ and all $j=1,\,2,\,\cdots,\,n$. If $\nu_j \in M^+(K_j)$ and $||\nu_j||_M=1$ for $j=1,\,2,\,\cdots,\,n$, then we have

$$|\sigma(K_i)\widehat{\nu}_i(\chi) - \widehat{\sigma \mid K_i(\chi)}| < ||\sigma||_H^{-1}\sigma(K_i)\varepsilon \qquad (\chi \in \widehat{F}).$$

To see this, take any $x_j \in K_j$. Then $\chi \in \hat{F}$ implies

$$\begin{split} | \, \sigma(K_j) \widehat{\nu}_j(\chi) - \widehat{\sigma \mid K_j(\chi)} \, | \\ &= \left| \, \sigma(K_j) \int_{K_j} \overline{\chi} d\nu_j - \int_{K_j} \overline{\chi} d\sigma \right| \\ &\leq \sigma(K_j) \int_{K_j} | \, \overline{\chi} - \overline{\chi}(x_j) \, | \, d\nu_j + \int_{K_j} | \, \overline{\chi} - \overline{\chi}(x_j) \, | \, d\sigma \\ &\leq 2\sigma(K_i) (3 \, || \, \sigma \, ||_{\mathcal{Y}})^{-1} \varepsilon < || \, \sigma \, ||_{\mathcal{Y}}^{-1} \, \sigma(K_j) \varepsilon \; . \end{split}$$

Adding these inequalities for all j's, we obtain (ii).

To prove the following lemma, we need a definition. Let K be a subset of G whose elements have the same order $q_0(2 \le q_0 \le \infty)$. Let also L_1, L_2, \dots, L_n be finitely many subsets of K, and M any natural number. We say that L_1, L_2, \dots, L_n are M-independent if and only if $\sum_{j=1}^n m_j x_j \ne 0$ whenever $m_j \in Z$ (the integers), $|m_j| < q_0$,

$$x_{j} \in L_{j} \ (j = 1, 2, \dots, n) \ \text{and} \ 0 \neq \sum_{j=1}^{k} |m_{j}| < M.$$

LEMMA 4. Suppose that G is metrizable, and that $\{\lambda_k\}_{k=0}^{\infty}$ and $\{C_k\}_{k=0}^{\infty}$ are as in Theorem 1. Let also $x_0 \in G$ and $K_0 \subset \sup \lambda_0$ be as in Lemma 2. Then there exists a nonzero measure $\sigma \in M_0^+(K_0)$ such that $(\sup \sigma) - x_0$ is independent and

(P₁)
$$\lambda_k[x + C_k + (\text{supp } \sigma)_1] = 0$$
 $(x \in G; k = 0, 1, 2, \cdots)$.

Proof. Write

$$\hat{G}=igcup_{n=1}^{\infty}\hat{E}_n$$
 and $C_k=igcup_{n=1}^{\infty}C_{kn}$ $(k=0,\,1,\,2,\,\cdots)$,

where the \widehat{E}_n are compact subsets of \widehat{G} while the C_{kn} are compact subsets of G such that $C_{kn} \subset C_{k(n+1)}$ for all k and n. (It is well-known that G is metrizable if and only if \widehat{G} is σ -compact. See, for example, [4].) Let λ be the measure in M(G) defined by $\lambda(E) = \lambda_0[(E+x_0) \cap K_0]$ for all Borel subsets E of G. Then, $0 \neq \lambda \in M_0^+(G)$ and the elements in supp $\lambda = K_0 - x_0$ have the same order q_0 .

We shall now construct a sequence $(n_p)_{p=1}^{\infty}$ of natural numbers, a sequence $(\mathcal{I}_n)_{n=1}^{\infty}$ of finite collections of disjoint clopen subsets of $K_0 - x_0$, a sequence $(\sigma_n)_{n=1}^{\infty}$ of probability measures in $L^1(\lambda)$, and a sequence $(\hat{F}_n)_{n=1}^{\infty}$ of compact subsets of \hat{G} . They will satisfy the following three conditions. Every σ_n has the form

(i)
$$\sigma_n = \sum_{I = \mathcal{F}} a_I \lambda_I$$

where each a_I is a positive real number, $\lambda_I = \lambda \mid I$ the restriction of λ to I, and

$$||\sigma_n||_{\scriptscriptstyle M} = \sum\limits_{I \in \mathscr{I}_n} \alpha_I \lambda(I) = 1$$
 .

$$(\mathrm{ii}) \qquad \sup \{ |\widehat{\sigma_n} \mid I(\chi) | \colon \chi \in \widehat{G} \backslash \widehat{F}_n \} < 2^{-n} \sigma_n(I) \qquad \forall \ I \in \mathscr{I}_n \ .$$

(iii)
$$\hat{E}_{\it n} \subset \hat{F}_{\it n}$$
 .

For n=1, such \mathscr{I}_1 , σ_1 , and \hat{F}_1 may be quite arbitrary. We set $n_1=1$, and suppose that n_p , \mathscr{I}_{n_p} , σ_{n_p} , and \hat{F}_{n_p} have been constructed for some $p\in N$. Let $l_p=\operatorname{Card}\mathscr{I}_{n_p}$, and write

$$\mathscr{I}_{n_p} = \{I_i\}_{i=1}^{l_p} = \{I_i^p\}_{i=1}^{l_p} .$$

Let M_p be the largest natural number such that

$$\max \left\{ \sigma_{n_p}(I) \colon I \in \mathscr{I}_{n_p} \right\} \leq M_p^{-2} ,$$

and set

$$(2) T_p = \{A \subset \mathscr{I}_{n_p}: 1 \leq \operatorname{Card} A \leq M_p\} = \{A_r\}_{r=1}^{s_p}.$$

We may assume

(3)
$$A_r = \{I_r\} = \{I_r\} \qquad (r = 1, 2, \dots, l_p).$$

We shall inductively construct the \mathscr{I}_n , σ_n , and \hat{F}_n for all $n \in N$ with $n_p < n \leq n_p + s_p$ as follows. Suppose that \mathscr{I}_n , σ_n and \hat{F}_n have been constructed for some $n = n_p + r - 1$ $(r = 1, 2, \dots, s_p)$, and put

$$\mathcal{K}_n = \{ I \in \mathcal{J}_n : I \subset J \text{ for some } J \in A_r \}.$$

We can find (finite) collections $\{b_j^K\}_j$ of real numbers and collections $\{L_j^K\}_j$ of disjoint clopen subsets of $K \in \mathcal{K}_n$ which satisfy the following six conditions:

$$(5) 0 < b_i^K \sigma_n(L_i^K) < 2^{-1} \sigma_n(K) \forall K \in \mathcal{K}_n \text{ and } \forall_i;$$

(6)
$$\sum_{i} b_{j}^{K} \sigma_{n}(L_{j}^{K}) = \sigma_{n}(K)$$
 $\forall K \in \mathscr{K}_{n}$;

$$(7)$$
 $\left|\sum_{j}b_{j}^{K}\widehat{\sigma_{n}}\mid\widehat{L_{j}^{K}}(\chi)-\widehat{\sigma_{n}}\mid\widehat{K}(\chi)
ight|<2^{-n}\sigma_{n}(K)\quadorall\,K\in\mathscr{K}_{n}\, ext{ and }\,orall\,\chi\in\widehat{F}_{n}$;

(8)
$$\sum_{j} \operatorname{dia}\left(L_{j}^{K}
ight) < n^{-1}$$
 $orall K \in \mathscr{K}_{n}$;

(9) The sets
$$\{L_i^K\}_{K,j}$$
 are M_p -independent;

(10)
$$\sup_{x \in G} \lambda_k \left[x + C_{kn} + \left(\bigcup_{j} L_j^K \right)_1 \right] < (nl_p)^{-1}$$

$$\forall K \in \mathscr{K}_n \text{ and } \forall k = 0, 1, \dots, n.$$

The above conditions are met as follows: For each $K \in \mathcal{K}_n$, apply Lemma 3 to $\sigma = \sigma_n \mid K$, $\varepsilon = 2^{-n}\sigma_n(K)$ and $\hat{F} = \hat{F}_n$. Let $\{K_j\}_j$ be a finite partition of K as in Lemma 3. Using property (c) in Lemma 2, we can find $x_j^K \in K_j$ so that $\bigcup \{\{x_j^K\}_j: K \in \mathcal{K}_n\}$ is independent. If we choose $L_j^K \subset K_j$ so that $x_j^K \in L_j^K$ and the diameter of each L_j^K is "sufficiently small", then (8) and (9) hold and so does (10) by Lemma 1. Finally, it suffices to set $b_j^K = \sigma_n(K_j)/\sigma_n(L_j^K)$.

We now define

(11)
$$\mathscr{L}_n = \mathscr{I}_n \backslash \mathscr{K}_n, \, \mathscr{I}_{n+1} = \mathscr{L}_n \cup \left(\bigcup_{K \in \mathscr{K}_n} \{L_j^K\}_j\right);$$

(12)
$$\theta_{n+1} = \sum_{I \in \mathscr{L}_n} a_I \lambda_I + \sum_{K \in \mathscr{K}_n} \sum_j b_j^K \sigma_n \mid L_j^K,$$

and take a compact subset \hat{F}_{n+1} of \hat{G} , with $\hat{F}_{n+1} \supset \hat{E}_{n+1} \cup \hat{F}_n$, so that (ii) holds with n replaced by n+1.

We repeat the above process with n_p replaced by $n_{p+1} = n_p + s_p$, which completes our induction. Let σ_{∞} be a weak-* cluster point of

 $(\sigma_n)_{n=1}^{\infty}$ in M(G), and σ the measure in M(G) defined by $\sigma(E) = \sigma_{\infty}(E-x_0)$ for all Borel sets E in G. We claim that σ has the required properties.

First note that

$$igcup_{I\in\mathscr{S}_{n+1}}I\subsetigcup_{I\in\mathscr{S}_n}I=\operatorname{supp}\sigma_n\subset K_{\scriptscriptstyle 0}-x_{\scriptscriptstyle 0}$$
 ,

and so we have

$$(13) \hspace{1cm} \sigma_{\scriptscriptstyle{\infty}} \geqq 0 \,\, , \quad \sigma_{\scriptscriptstyle{\infty}}(G) = 1 \quad \text{and} \quad \operatorname{supp} \sigma_{\scriptscriptstyle{\infty}} \subset \bigcap_{n=1}^{\infty} \left(\bigcup_{I \,\in \, \mathscr{S}_n} I \right).$$

Let $p \in N$ be given. It is easily seen from (3), (4), and (11) that

$$\mathscr{I}_{n_n+l_n}=\{L_j^{I_1}\}_j\cup\{L_j^{I_2}\}_j\cup\,\cdots\,\cup\{L_j^{I_l}\}_j$$
 , where $l=l_p$.

This, combined with (10) and (13), shows

$$egin{aligned} \lambda_k [x + C_{kn_p} + (\operatorname{supp} \sigma_{\circ\circ})_{\scriptscriptstyle 1}] \ & \leq \sum_{i=1}^{l_p} \lambda_k igg[x + C_{kn_p} + \left(igcup_j L_j^{I_i}
ight)_{\scriptscriptstyle 1} igg] \leq l_p \cdot (n_p l_p)^{-1} = n_p^{-1} \end{aligned}$$

for all $x \in G$ and all $k = 0, 1, \dots, n_p$. (Note that $C_{kn} \subset C_{k(n+1)}$ for all k and n.) Thus, fixing $x \in G$ and $k \in \{0, 1, 2, \dots\}$, and letting $p \to \infty$, we have

$$\lambda_k[x + C_k + (\text{supp } \sigma_{\infty})_1] = 0$$
 $(x \in G; k = 0, 1, 2, \cdots)$.

But evidently supp $\sigma = (\text{supp } \sigma_{\infty}) + x_0$, and so (P_i) holds.

It remains to show that $\hat{\sigma}$ vanishes at infinity and that (supp σ) – x_0 is independent. Although these are proved in [5:Ch. XIII, 151-153 and 155-156], we give their proofs to make the paper self-contained.

Suppose $n_p \le n < n_{p+1}$ $(p, n \in N)$, and write $n = n_p + r - 1$ $(r = 1, 2, \dots, s_p)$. Then we have

$$(14) \qquad \sum_{K \in \mathscr{N}_n} \sigma_n(K) = \sum_{J \in A_r} \sigma_{n_p}(J) \leqq (\operatorname{Card} A_r) \cdot \max_{J \in A_r} \sigma_{n_p}(J) \leqq M_p^{-1}.$$

Here the equality follows from (4), (6) and (12) while the last inequality follows from (1) and (2). If $\chi \in \hat{F}_n$, then

$$egin{aligned} | \ \widehat{\sigma}_{n+1}(\chi) - \widehat{\sigma}_{n}(\chi) | & \leq \sum\limits_{K \in \mathscr{K}_{n}} \left| \sum\limits_{j} b_{j}^{K} \widehat{\sigma_{n}} \mid \widehat{L}_{j}^{K}(\chi) - \widehat{\sigma_{n}} \mid \widehat{K}(\chi)
ight| \ & < \sum\limits_{K \in \mathscr{K}_{n}} 2^{-n} \sigma_{n}(K) \leq 2^{-n} \end{aligned}$$

by (i), (12) and (7). It follows that

$$|\hat{\sigma}_{\infty}(\gamma) - \hat{\sigma}_{n+1}(\gamma)| < 2^{-n} \quad \forall \gamma \in \hat{F}_{n+1}$$

since $\hat{F}_n \subset \hat{F}_{n+1} \subset \cdots$ by construction. For $\chi \in \hat{G} \backslash \hat{F}_n$, we have

$$egin{aligned} |\widehat{\sigma}_{n+1}(\chi)| & \leq \sum\limits_{I \in \mathscr{S}_n} |a_I \widehat{\lambda}_I(\chi)| + \sum\limits_{K \in \mathscr{K}_n} \sum\limits_{j} b_j^K \sigma_n(L_j^K) \ & \leq \sum\limits_{I \in \mathscr{S}_n} |\widehat{\sigma_n}|\widehat{I}(\chi)| + \sum\limits_{K \in \mathscr{K}_n} \sigma_n(K) \ & \leq 2^{-n} \sum\limits_{I \in \mathscr{F}_n} \sigma_n(I) + M_p^{-1} = 2^{-n} + M_p^{-1} \end{aligned}$$

by (12), (i), (6), (ii) and (14). Hence

$$| \, \hat{\sigma}_{\scriptscriptstyle \infty}(\chi) \, | \leqq 2^{-n} \, + \, 2^{-n} \, + \, M_{\scriptscriptstyle p}^{\scriptscriptstyle -1} \qquad orall \, \chi \in \widehat{F}_{\scriptscriptstyle n+1} ackslash \widehat{F}_{\scriptscriptstyle n} \; .$$

But $\hat{G} = \bigcup_{n=1}^{\infty} \hat{F}_n$ by (iii) and $\lim_{p} M_p = \infty$ by construction. Thus the above inequality shows that $\hat{\sigma}_{\infty} \in C_0(\hat{G})$, or equivalently, that $\hat{\sigma} \in C_0(\hat{G})$.

Finally we prove that $(\operatorname{supp} \sigma) - x_0 = \operatorname{supp} \sigma_{\infty}$ is independent. Let x_1, x_2, \dots, x_t be distinct elements of $\operatorname{supp} \sigma_{\infty}$. It is easy to see that

$$\max_{I \in \mathscr{I}_n} \operatorname{dia}(I) \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty.$$

Therefore, there is an $n_0 \in \mathbb{N}$ such that x_1, x_2, \dots, x_t belong to distinct sets in \mathscr{S}_n whenever $n \geq n_0$. Take any $p \in \mathbb{N}$ so that $n_p \geq n_0$ and $M_p > t$, and let

$$A = \{I \in \mathcal{J}_{n_n} : I \text{ contains some } x_n\}$$
.

Then $1 \leq \operatorname{Card} A = t < M_p$; hence $A = A_r$ for some $r = 1, 2, \dots, s_p$. Thus x_1, x_2, \dots, x_t belong to distinct sets in $\bigcup \{\{L_j^K\}_j : K \in \mathcal{K}_n\}$, where $n = n_p + r - 1$. It follows from (9) that x_1, x_2, \dots, x_t are M_p -independent. Since p can be taken as large as one pleases, we conclude that x_1, x_2, \dots, x_t are independent.

This establishes Lemma 4.

LEMMA 5. Let G, $\{\lambda_k\}_{k=0}^{\infty}$ and $\{C_k\}_{k=0}^{\infty}$ be as in Lemma 4. Let also $\{K_j\}_{j=1}^{m}$ be finitely many, disjoint, compact subsets of G such that $M_0(K_j) \neq 0$ for all $j=1, 2, \cdots, m$. Then, for each $n \in \mathbb{N}$, there exist m nonzero measures $\mu_j \in M_0^+(K_j)$ such that

$$(\mathbf{P}_n)$$
 $\lambda_k \left[x + C_k + \left(\bigcup_{j=1}^m \operatorname{supp} \mu_j \right)_n \right] = 0$ $(x \in G; k = 0, 1, 2, \cdots).$

Proof. For each $j=1, 2, \dots, m$, choose and fix a measure $\tau_j \in M_0^+(K_j)$ with $||\tau_j||_M = m^{-1}$ whose support is totally disconnected. In the proof of Lemma 4, replace λ and $K_0 - x_0$ by $\lambda' = \sum_{j=1}^m \tau_j$ and $\bigcup_{j=1}^m \sup \tau_j$, respectively; take off condition (9); and let σ_∞ be any measure constructed as there with $\sigma_1 = \lambda'$ and $\mathcal{I}_1 = \{\sup \tau_j\}_{j=1}^m$. Then

$$0
eq\mu_j=\sigma_\infty\mid K_j\!\in\! M^+_{\scriptscriptstyle 0}(K_j) \qquad (j=1,\,2,\,\cdots,\,m)$$
 ,

and $\{\mu_i\}_{i=1}^m$ satisfy (P_i) . We repeat the same argument replacing

 $\{C_k\}_{k=0}^{\infty}$ and $\{K_j\}_{j=1}^m$ by $\{C_k + (\bigcup_{j=1}^m \operatorname{supp} \mu_j)_1\}_{k=0}^{\infty}$ and $\{\operatorname{supp} \mu_j\}_{j=1}^m$, respectively; and continue this process. At the *n*th step, we will obtain m nonzero measures satisfying the required condition. This completes the proof.

Proof of Theorem 1 for metrizable groups. Suppose that G is a given metrizable group. Let $\{\lambda_k\}_{k=0}^{\infty}$, $\{C_k\}_{k=0}^{\infty}$, x_0 , and K_0 be as in Lemma 4. Let also $\hat{G} = \bigcup_{n=1}^{\infty} \hat{E}_n$ be as in the proof of Lemma 4. We construct a sequence $(\mathscr{I}_n)_{n=1}^{\infty}$ of finite collections of disjoint compact subsets of K_0 , a sequence $(\sigma_n)_{n=1}^{\infty}$ of probability measures in $M_0(K_0)$, and a consequence $(\hat{F}_n)_{n=1}^{\infty}$ of compact subsets of \hat{G} . They satisfy the following four conditions. Every σ_n has the form

(i)
$$\sigma_{\scriptscriptstyle n} = \sum\limits_{\scriptscriptstyle I \in \mathscr{S}_{\scriptscriptstyle n}} a_{\scriptscriptstyle I} \mu_{\scriptscriptstyle I}$$
 ,

where each a_I is a real positive number, μ_I a probability measure in $M_0(I)$ with supp $\mu_I = I$, and

$$||\sigma_n||_{\scriptscriptstyle M}=\sum\limits_{\scriptstyle I\in\mathscr{S}_m}a_{\scriptscriptstyle I}=1$$
 .

(ii)
$$\sup \{ | \, \widehat{\mu}_I(\chi) \, | \colon \chi \in \widehat{G} \backslash \widehat{F}_n \} < 2^{-n} \alpha_I \qquad \forall \, I \in \mathscr{I}_n \, \, .$$

(iii)
$$\hat{E}_{\scriptscriptstyle n} \subset \hat{F}_{\scriptscriptstyle n}$$
 .

(iv)
$$\lambda_k[x + C_k + (K_1)_1 + (K_2)_2 + \cdots + (K_n)_n] = 0$$

$$(x \in G; k = 0, 1, 2, \cdots),$$

where $K_1 = \bigcup \{I: I \in \mathscr{I}_1\}$ and $K_n = \bigcup \{I \in \mathscr{I}_n: I \in \mathscr{I}_{n-1}\}$ for $n = 2, 3, \cdots$. For n = 1, we apply Lemma 4 to obtain a probability measure $\sigma_1 \in M_0(K_0)$ such that $(\text{supp } \sigma_1) - x_0$ is independent and

$$\lambda_k[x+C_k+(\operatorname{supp}\sigma_1)_1]=0 \qquad (x\in G; k=0,1,2,\cdots).$$

Set $\mathcal{J}_1 = \{I = \text{supp } \sigma_i\}, \ \mu_I = \sigma_i, \ a_I = 1, \text{ and take any compact subset } \hat{F}_1 \text{ of } \hat{G} \text{ satisfying (ii) and (iii) for } n = 1.$

Suppose that $(\mathscr{I}_i)_{i=1}^n$, $(\sigma_i)_{i=1}^n$ and $(\hat{F}_i)_{i=1}^n$ have been constructed for some $n \in \mathbb{N}$. Choose and fix any $I_n \in \mathscr{I}_n$ with

$$a_{I_n} = \sup \{a_I \colon I \in \mathscr{I}_n\}.$$

Applying Lemmas 3 and 5, we can find a (finite) collection $\{b_{nj}\}_j$ of real numbers, a collection $\{L_{nj}\}_j$ of disjoint compact subsets of I_n , and a collection $\{\mu_{nj}\}_j$ of probability measures in $M_0(I_n)$ with supp $\mu_{nj} = L_{nj}$ which satisfy the following four conditions.

$$(2) \hspace{1cm} 0 < b_{\scriptscriptstyle nj} < n^{\scriptscriptstyle -1} \cdot \min_{\stackrel{\scriptstyle I \in \mathscr{I}_n}{}} a_{\scriptscriptstyle I} \hspace{0.5cm} orall \, j \; .$$

$$\sum_{j} b_{nj} = a_{I_n}$$

$$\left|\sum_{j}b_{nj}\widehat{\mu}_{nj}(\chi)-a_{I_{n}}\widehat{\mu}_{I_{n}}(\chi)
ight|<2^{-n}\qquad orall\ \chi\in\widehat{F}_{n}\ .$$

$$(5) \qquad \lambda_k \left[x + C_k + (K_1)_1 + \cdots + (K_n)_n + \left(\bigcup_j L_{nj} \right)_{n+1} \right] = 0 \qquad \forall x \in G$$

for all $k=0,1,2,\cdots$. Put $\mathscr{I}_{n+1}=(\mathscr{I}_n\setminus\{I_n\})\cup\{L_{nj}\}_j$, and $a_I=b_{nj}$, $\mu_I=\mu_{nj}$ for $I=L_{nj}$ \forall j. Define σ_{n+1} by the right-hand side of (i) with n replaced by n+1. Finally, we take any compact subset \widehat{F}_{n+1} of \widehat{G} , with $\widehat{F}_{n+1}\supset\widehat{E}_{n+1}\cup\widehat{F}_n$, so that (ii) holds with n replaced by n+1.

This completes the induction. Let σ be a weak-* cluster point of $(\sigma_n)_{n=1}^{\infty}$ in M(G). Then it is easy to prove that σ has all the required properties (see [5: Ch. XIII, 151-153]). This establishes Theorem 1 for metrizable groups.

To prove the general case, we need one more lemma.

LEMMA 6. Let $\{\lambda_k\}_{k=0}^{\infty}$ and $\{C_k\}_{k=0}^{\infty}$ be as in Theorem 1. Then, given a σ -compact subset \hat{F} of \hat{G} , we can find a σ -compact, noncompact, open subgroup Γ of \hat{G} so that $\hat{F} \subset \Gamma$ and

(i)
$$\lambda_k[x+C_k+H_r]=0$$
 $(x\in G; k=0, 1, 2, \cdots)$,

where H_{Γ} denotes the annihilator of Γ .

Proof. Let C_{kn} be as in the proof of Lemma 4, and let \mathscr{F} be the family of all σ -compact, noncompact, open subgroups of \hat{G} which contain \hat{F} . Since every C_{kn} is compact, we have

$$(1) \quad C_{kn} = \bigcap \{C_{kn} + H_{\Gamma}: \Gamma \in \mathscr{F}\} \qquad (k = 0, 1, 2, \cdots; n = 1, 2, \cdots).$$

Applying Lemma 1, we can find neighborhoods V_{kn} of 0 so that

(2)
$$\lambda_k[x+C_{kn}+V_{kn}] < n^{-1}$$
 $(k=0,1,2,\cdots;n=1,2,\cdots:x\in G)$.

By (1), there exist subgroups Γ_{kn} in \mathscr{F} such that

$$(3) \quad C_{kn} + H_{kn} \subset C_{kn} + V_{kn} \qquad (k = 0, 1, 2, \cdots; n = 1, 2, \cdots)$$
 ,

where H_{kn} is the annihilator of Γ_{kn} . Let Γ be any subgroup in \mathscr{F} which contains all Γ_{kn} . Then, it follows from (2) and (3) that (i) holds. This completes the proof.

Proof of Theorem 1 for general groups. Let G be an arbitrary nondiscrete LCA group, and let $\{\lambda_k\}_{k=0}^{\infty}$ and $\{C_k\}_{k=0}^{\infty}$ be as in Theorem 1. For $\widehat{F} = \{\chi \in \widehat{G} \colon \widehat{\lambda}_0(\chi) \neq 0\}$, take a $\Gamma \subset G$ as in Lemma 6. Setting

 $H=H_{r}$, we denote by π and m_{H} the natural mapping of G onto $G_{0}=G/H$ and the Haar measure of H with $m_{H}(H)=1$, respectively. For each $\mu\in M(G)$, define a measure $\mu'\in M(G_{0})$ by setting

(1)
$$\int_{G_0} f d\mu' = \int_G f \circ \pi d\mu \qquad \forall f \in C_0(G_0) .$$

Identifying Γ with \hat{G}_0 in the usual way, we see $\hat{\mu}' = \hat{\mu} \mid \Gamma$ for all $\mu \in M(G)$, so that $0 \neq \lambda_0' \in M_0(G_0)$. On the other hand, we have

(2)
$$\lambda'_k[x'+C'_k]=0 \qquad (x'\in G_0;\,k=0,\,1,\,2,\,\cdots)$$

by (i) in Lemma 6 and (1), where $C'_k = \pi(C_k)$. Therefore $\{\lambda'_k\}_{k=0}^{\infty} \subset M_c^+(G)$, and we can apply our result for metrizable groups to find a nonzero measure $\sigma' \in M_c^+(\text{supp } \lambda'_0)$ with compact support such that

(3)
$$\lambda'_k[x' + C'_k + G_p(\text{supp }\sigma')] = 0$$
 $(x' \in G_0; k = 0, 1, 2, \cdots).$

Now define a measure $\sigma \in M(G)$ by setting

$$egin{aligned} ig(4\,) & \int_G f d\sigma = \int_{G_0} \left\{ \int_H f(x\,+\,t) dm_H(t)
ight\} d\sigma'(x') & orall \, f \in C_0(G) \;. \end{aligned}$$

As is easily seen, we then have

(5)
$$\operatorname{supp} \sigma = \pi^{-1}[\operatorname{supp} \sigma'] \quad \text{and} \quad \operatorname{supp} \lambda_0 = \pi^{-1}[\operatorname{supp} \lambda_0']$$

(note that $\sigma * m_H = \sigma$ and $\lambda_0 * m_H = \lambda_0$). It is also easy to check that $0 \neq \sigma \in M_0^+(G)$, that supp σ is a compact subset of supp λ_0 , and that

$$\lambda_{\scriptscriptstyle k}[x+C_{\scriptscriptstyle k}+G_{\scriptscriptstyle p}({
m supp}\,\sigma)]=\lambda_{\scriptscriptstyle k}'[x'+C_{\scriptscriptstyle k}'+G_{\scriptscriptstyle p}({
m supp}\,\sigma')]=0$$

for all $x \in G$ and all $k = 0, 1, 2, \cdots$.

This establishes Theorem 1.

Proof of Corollary. Let Y be as in the present Corollary. Setting $C_k = \{0\}$ for all k and applying Theorem 1 to $\{|\lambda_k|\}_{k=0}^{\infty}$, we obtain a nonzero measure $\sigma \in M_0^+(\text{supp }\lambda_0)$ with compact support such that

$$(1) |\tau| [x + G_p(\operatorname{supp} \sigma)] = 0 (x \in G)$$

holds for all $\tau \in \bigcup_{k=0}^{\infty} L^1(\lambda_k)$. But then we have

$$egin{aligned} |\, oldsymbol{
u} * au \,|\, [x + G_p(\operatorname{supp} \sigma)] & \leq (|\, oldsymbol{
u} \,| * |\, au \,|) [x + G_p(\operatorname{supp} \sigma)] \ & \leq \int_G |\, au \,|\, [x - y + G_p(\operatorname{supp} \sigma)] d\, |\, oldsymbol{
u} \,|\, (y) = 0 \end{aligned}$$

for all $x \in G$ whenever $\nu \in M(G)$ and $\tau \in \bigcup_{k=0}^{\infty} L^1(\lambda_k)$. Since the ideal Y is generated by $\bigcup_{k=0}^{\infty} L^1(\lambda_k)$, this implies that (1) holds for all $\tau \in Y$.

The last statement in the Corollary is now trivial and the proof is complete.

To prove Theorem 2, we need some notation. Let \mathscr{J} be a non-empty family of (locally) Borel measurable subgroups of G such that for any countable subfamily \mathscr{J}_0 of \mathscr{J} there exists a subgroup $H \in \mathscr{J}$ which contains all $L \in \mathscr{J}_0$. Define

$$I(\mathcal{I}) = \{ \mu \in M(G) : |\mu| (x + H) = 0 \ \forall x \in G \text{ and } \forall H \in \mathcal{I} \}$$

and

$$\mathscr{R}(\mathscr{T})=\{
u\in M(G)\colon |\, u\,|\, (G\backslash(D+H))=0 \text{ for some countable } D\subset G \text{ and some } H\in\mathscr{T}\}$$
 .

Then it is easy to prove the following (cf. [1]):

- (a) $I(\mathcal{F})$ is a closed ideal in M(G) such that $I(\mathcal{F})^* = I(\mathcal{F})$.
- (b) $\mathscr{R}(\mathcal{F})$ is a closed subalgebra of M(G) such that $\mathscr{R}(\mathcal{F})^* = \mathscr{R}(\mathcal{F})$.
- (c) $M(G) = I(\mathcal{J}) + \mathcal{R}(\mathcal{J})$ and $I(\mathcal{J}) \cap \mathcal{R}(\mathcal{J}) = \{0\}$. We denote by $\Phi_{\mathcal{J}}$ the projection of M(G) onto $\mathcal{R}(\mathcal{J})$ which is induced by the direct sum decomposition $M(G) = I(\mathcal{J}) + \mathcal{R}(\mathcal{J})$. Note that $\Phi_{\mathcal{J}}$ is a *-homomorphism of M(G) onto $\mathcal{R}(\mathcal{J})$.

Proof of Theorem 2. Let $\{\lambda_k\}_{k=0}^{\infty}$ and Y be as in Corollary; without loss of generality, we may assume that $\lambda_k \geq 0$ for all k. By Lemma 6, there is a σ -compact, noncompact, open subgroup Γ of \widehat{G} such that

(1)
$$\lambda_k(x+H)=0 \quad (x \in G; k=0, 1, 2, \cdots),$$

where H is the annihilator of Γ . Let $G_0 = G/H$, and let $\mu \to \mu'$ be the mapping of M(G) onto $M(G_0)$ defined in the proof of Theorem 1 for general groups. Note that $\mu \to \mu'$ is a *-homomorphism. Since (1) implies $\lambda'_k \in M_c(G)$ for all k, Theorem 1 assures that there exists a nonzero measure $\sigma' \in M_0^+(G_0)$ with compact support such that $K' = \sup \sigma'$ is independent and

(2)
$$\lambda'_k[x' + G_p(K')] = 0 \qquad (x' \in G_0; k = 0, 1, 2, \cdots).$$

Let ω_1 be the first countable ordinal and let $W = \{1, 2, \cdots\}$ be the well-ordered set consisting of all ordinals smaller than ω_1 . We now construct a family $\{L'_{\alpha}: \alpha \in W\}$ of disjoint compact subsets of K' such that

(3)
$$M_{\scriptscriptstyle 0}(L'_{\scriptscriptstyle lpha})
eq \{0\} \quad ext{and} \quad \sigma'(L'_{\scriptscriptstyle lpha}) = 0$$

for all $\alpha \in W$. First, by Theorem 1, there exists a compact subset L'_1 of K' having property (3). Let $\beta \in W$, $\beta \geq 2$, and suppose that L'_{α} has been constructed for all $\alpha \in W$ with $\alpha < \beta$. Then $E'_{\beta} = \bigcup \{L'_{\alpha}: \alpha < \beta\}$ is σ -compact, and by (3), has σ' -measure zero. Therefore, there exists a compact subset F'_{β} of $K' \setminus E'_{\beta}$ having positive σ' -

measure. Applying Theorem 1 again, we can find a compact subset L'_{β} of F'_{β} so that (3) holds for $\alpha = \beta$. By transfinite induction, we obtain a family $\{L'_{\alpha}: \alpha \in W\}$ of disjoint compact subsets of K' satisfying (3).

Let $\mathscr{S}(W)$ be the family of all nonempty subsets of W; hence $\operatorname{Card} \mathscr{S}(W) = 2^{\omega}$, where ω denotes the smallest uncountable cardinal. For each $A \in \mathscr{S}(W)$ and $\chi \in \Gamma$, we construct a complex homomorphism $\Psi_{A\chi}$ of M(G) as follows. Let $\mathscr{T} = \mathscr{T}_A$ be the family of subgroups of G each of which is generated by $\bigcup \{L'_{\alpha}: \alpha \in B\}$ for some countable subset B of A. We define $\Psi_{A\chi}$ by setting

$$\Psi_{A\chi}(\mu) = \widehat{\Phi_{\mathscr{I}}((\chi\mu)')}(1) \qquad (\mu \in M(G)).$$

It is easy to see that $\Psi_{A\chi}$ is a symmetric complex homomorphism of M(G). Also $\Psi_{A\chi} \neq 0$ because

$$\Psi_{AY}(\delta_x) = \chi(x) \neq 0 \qquad (x \in G) ,$$

where δ_x denotes the unit mass at x.

Fixing an $A \in \mathcal{P}(W)$ and $\chi \in \Gamma$, we now prove

$$(6) \quad \bigcup \{L^{\scriptscriptstyle 1}(\mu) \colon \mu \in Y\} \cup M_{\scriptscriptstyle a}(G) \subset \operatorname{Ker} \Psi_{\scriptscriptstyle A\chi} \quad \text{but} \ M_{\scriptscriptstyle 0}(G) \not \subset \operatorname{Ker} \Psi_{\scriptscriptstyle A\chi} \ .$$

First note that $\nu \in M^+(G)$ and $\mu \in L^1(\nu)$ imply $\mu' \in L^1(\nu')$. In fact, if w is a bounded Borel function on G, we have

$$\left| \int_{G_0} f d(w \nu)' \right| = \left| \int_{G} (f \circ \pi) w d\nu \right| \le \int_{G} (|f| \circ \pi) |w| d\nu$$
$$\le ||w||_{\infty} \int_{G} (|f| \circ \pi) d\nu = ||w||_{\infty} \cdot ||f||_{L^{1}(\nu')}$$

for all $f \in C_0(G_0)$, so that $(w\nu)' \in L^1(\nu')$. Since the mapping $\tau \to \tau'$ is norm-decreasing, we see

$$\inf \{ \| \mu' - \tau' \|_{\mathcal{M}} : \tau' \in L^1(\nu') \} \leq \| \mu' - (w\nu)' \|_{\mathcal{M}} \leq \| \mu - w\nu \|_{\mathcal{M}}.$$

Since w was arbitrary and $\mu \in L^1(\nu)$, this implies $\mu' \in L^1(\nu')$. Suppose now that $\nu \in M(G)$ and $\lambda \in L^1(\lambda_k)$ for some k. Then, the above observation and (2) show

$$|(\nu * \lambda)'| (x' + T') = |\nu' * \lambda'| (x' + T') \leq (|\nu'| * |\lambda'|)(x' + T')$$

$$\leq (|\nu'| * |\lambda'|)[x' + G_n(K')] = 0$$

for all $x' \in G_0$ and all $T' \in \mathcal{J} = \mathcal{J}_A$. Since the linear span of the sets $M(G) * L^1(\lambda_k)$, $k = 0, 1, 2, \cdots$, is dense in Y, it follows that

$$|\tau'|(x'+T')=0$$
 $(x'\in G_0; T'\in \mathscr{T})$

holds for all $\tau \in Y$, and so for all $\tau \in \bigcup \{L^1(\mu): \mu \in Y\}$. Therefore we have

$$\bigcup \{L^1(\mu): \mu \in Y\} \subset \operatorname{Ker} \Psi_{A_{\mathcal{X}}}$$
.

Note now that $\lambda_0' \neq 0$, and so $G_p(\operatorname{supp} \sigma')$ has no interior point by (2); hence the Haar measure of $G_p(\operatorname{supp} \sigma')$ is zero. Since $M_a(G)' = M_a(G_0)$, it follows that $M_a(G) \subset \operatorname{Ker} \Psi_{A\chi}$. To prove that $M_0(G) \subset \operatorname{Ker} \Psi_{A\chi}$, take any $\alpha \in A$. Then $L'_{\alpha} \subset G_p(L'_{\alpha}) \in \mathscr{T}$, and so $\Phi_{\mathscr{F}}[M_0(L'_{\alpha})] = M_0(L'_{\alpha}) \neq \{0\}$. This establishes (6) because $M_0(G)' = M_0(G_0)$.

Finally, take any A, $B \in \mathscr{S}(W)$ and any $\chi, \gamma \in \Gamma$. If $\chi \neq \gamma$, (5) implies that $\Psi_{A\chi} \neq \Psi_{B\gamma}$. If $A \neq B$ (say $A \not\supset B$), take any $\beta \in B \backslash A$; we claim

$$(7) M_c(L_\beta') \subset \operatorname{Ker} \Phi_{\mathscr{F}} \text{where } \mathscr{F} = \mathscr{F}_{\mathbb{A}}.$$

In fact, let T' be an arbitrary subgroup in \mathscr{T} ; there exists a countable subset A_0 of A such that $T' = G_p(\bigcup \{L'_\alpha : \alpha \in A_0\})$. Since K' is independent and since L'_β and $\bigcup \{L'_\alpha : \alpha \in A_0\}$ are disjoint subsets of K', it follows that $L'_\beta \cap (x' + T')$ contains at most one point for each $x' \in G_0$. In particular, if $\mu' \in M_c(L'_\beta)$, then $|\mu'|(x' + T') = 0$ for all $x' \in G_0$. Since $T' \in \mathscr{T}$ was arbitrary, we see that (7) holds. On the other hand, we have $\Phi_{\mathscr{C}}(M(L'_\beta)) = M(L'_\beta)$ for $\mathscr{U} = \mathscr{T}_B$. Thus $\Psi_{A^\chi} \neq \Psi_{B^\gamma}$, as is easily seen. This clearly establishes Theorem 2.

REMARKS. (i) If G is a metrizable I-group, then the element x_0 in Theorem 1 (and Corollary) can be chosen $x_0=0$. In fact, take any nonzero $\lambda_0 \in M_0^+(G)$, and assume that $E_{qy}=\{x \in G\colon qx=y\}$ has positive λ_0 -measure for some $q \in N$ and some $y \in G$. Let μ_0 be the restriction of λ_0 to E_{qy} , so that $0 \neq \mu_0 = M_0^+(G)$. It is trivial that E_{qy} is a coset of some closed subgroup H of G which is of bounded order. If Γ is the annihilator of H, we see $|\hat{\mu}_0| = \text{const} \neq 0$ on Γ . Since $\hat{\mu}_0$ vanishes at infinity, it follows that Γ is compact, or, equivalently, that H is an open subgroup of G. This is a contradiction because G is an I-group while H is of bounded order. Thus, our assertion follows from the last paragraph of the proof of Lemma 2 and the proof of Theorem 1 for metrizable groups.

(ii) Let \hat{G}^- denote the closure of \hat{G} in the maximal ideal space Δ_{σ} of M(G), and let Y be as in Theorem 2. Then, for some $\tau \in M_{\circ}^+(G)$, the set E_{τ} of all symmetric $\Theta \in \Delta_{G}$ such that

$$\bigcup \{L^1(\mu): \mu \in Y\} \cup M_a(G) \subset \Theta \text{ and } \widehat{\tau}(\Theta) = 1$$

has cardinal number $\geq 2^{\omega}$, where $\hat{\tau}$ denotes the Gelfand transform of τ . Note that E_{τ} is a closed subset of Δ_G disjoint from \hat{G}^- . To see this, redefine $\mathscr{S}(W)$ in the proof of Theorem 2 to be the family of all subsets of W containing $1 \in W$, and fix any probability measure $\tau \in M_0^+(G)$ such that $\tau' \in M(L'_1)$. Then we have

$$\Psi_{A1}(\tau) = \hat{\tau}'(1) = \hat{\tau}(1) = 1 \qquad (A \in \mathscr{P}(W))$$
.

(iii) Let Y be as in Theorem 2. Then there exist a measure $\tau \in M_0^+(G)$, a nondiscrete LCA group G_0 , and an independent compact subset K' thereof, with $M_0(K') \neq \{0\}$, having the following property: the set of all asymmetric $\Theta \in \Delta_G$ such that

$$\bigcup \{L^1(\mu): \mu \in Y\} \cup M_a(G) \subset \Theta \text{ and } \hat{\tau}(\Theta) = 1$$

has cardinal number $\geq \operatorname{Card} M_c(K')^*$, where $M_c(K')^*$ denotes the conjugate space of $M_c(K')$. This can be proved using the proof of Theorem 2 and a theorem of Hewitt and Kakutani [2]. We omit the details.

(iv) Some analogs to our results hold for non-abelian groups. For example, we have the following: Let G be a nondiscrete locally compact group, $\{\lambda_k\}_{k=0}^{\infty} \subset M_c^+(G)$, $\lambda_0 \neq 0$, and let $\{C_k\}_{k=0}^{\infty}$ be a countable family of σ -compact subsets of G such that

$$\lambda_k(xC_k) = 0$$
 $(x \in G; k = 0, 1, 2, \cdots)$.

Then there exists a nonzero measure $\sigma \in M_c^+(\operatorname{supp} \lambda_c)$ with compact support such that

$$\lambda_k[xG_p(\operatorname{supp}\sigma)C_k] = 0 \qquad (x \in G; k = 0, 1, 2, \cdots).$$

References

- 1. E. Hewitt, The asymmetry of certain algebras of Fourier-Stieltjes transforms, Michigan Math. J., 5 (1955), 149-158.
- 2. E. Hewitt and S. Kakutani, A class of multiplicative linear functionals on the measure algebra of a locally compact abelian group, Illinois J. Math., 4 (1960), 553-574.

 3. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag,
- Heidelberg, 1963.
 4. E. Hewitt and K. R. Stromberg, A remark on Fourier-Stieltjes transforms, An. Acad. Brasil. Ci., 34 (1962), 175-180.
- 5. L.-Å. Lindahl and F. Poulsen, *Thin Sets in Harmonic Analysis*, Marcel-Dekker, Inc., New York, 1971.
- 6. L. Pigno and S. Saeki, Fourier-Stieltjes transforms which vanish at infinity, (submitted).
- 7. W. Rudin, Fourier-Stieltjes transforms of measures on independent sets, Bull. Amer. Math. Soc., 66 (1960), 199-202.
- 8. ——, Fourier Analysis on Groups, Interscience, New York, 1962.
- 9. N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble), 16 (1966), 123-158.

Received March 15, 1973 and in revised form June 22, 1973.

KANSAS STATE UNIVERSITY

AND

TOKYO METROPOLITAN UNIVERSITY