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SEMIPERFECT RINGS WITH ABELIAN ADJOINT GROUP

W. KEITH NICHOLSON

A structure theorem is proved for semiperfect rings
(possibly with no identity) which have an abelian adjoint
group. This is used to give conditions when such a ring is
finite or commutative. In particular, a semiperfect ring with
identity is finite if its group of units is finitely generated
and abelian. Additional information is obtained if the adjoint
group is cyclic.

l Preliminaries* Throughout this paper all rings will be as-
sociative but need not contain an identity element. If R is a ring,
the adjoint group of R is the set R° of all elements of R which have
inverses with respect to the operation aob = a + b — ab. This opera-
tion will be called adjoint multiplication. If R has an identity the
multiplicative group of units of R will be denoted by ϋί*. It is well
known that R* and R° are isomorphic groups. The additive group
of a ring R will be denoted by R+.

If R is a ring, a left J?-module X will be called G-unital if
R°X — 0. If R has an identity this is equivalent to the condition
that ux = x for all ue R* and xe X, and so agrees with the usage
of this term in [4]. A bimodule is G-unital if it is G-unital on both
sides.

Let S and A be rings, let X be an S — A bimodule and let Y be

[ S X~\Y A is defined to be the

set of all 2 x 2 "matrices" with components as shown. This is a
ring if we use componentwise addition and multiplication

x\ίs x\ I ss sx + xa

aj\yr a'j \ysf + ay' aaf

The next proposition characterizes the adjoint group of such a ring
and its routine proof is left to the reader.

PROPOSITION 1. Let S and A be rings, let X be an S — A bimodule
ΓS -XΊ° ΓJS° XIand let Y be an A — S bimodule. Then \ γ Λ\ — \ γ ΛO\ and this

group is abelian if and only if S° and A0 are abelian and both X
and Y are G-unital. Moreover, when this is the case the adjoint

group \ Y A \ is isomorphic to the direct product of the adjoint

groups S° and A0 and the additive groups X and Y.

2. The structure theorem* The Jacobson radical of a ring R
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will be denoted by J(B). A ring R (possibly with no identity) will
be called semiperfect if RjJ(R) is semisimple and idempotents can be
lifted modulo J(R). A ring R is called local if it has an identity
and has a unique maximal left ideal. An idempotent e2 = ee R is
called a local idempotent if the ring eRe is local.

Suppose now that R is a semiperfect ring with JB° abelian. Then
we may choose an idempotent ee R such that e = ex + e2 + + en

where the et are orthogonal local idempotents and e = e + J(R) is the
identity of R/J(R). If R has an identity then, necessarily, e — 1.
We shall use the following notation:

S= eRe

X = {x e RI ex = x, xe = 0}

Y= {yeR\ye = y,ey = 0}

A — {a e R \ ea = 0 = ae) .

Clearly S and A are rings (S with identity), X is an, S - i bimodule
and Y is an A — S bimodule.

LEMMA 1. Suppose R is a semiperfect ring with R° abelian.
Then:

(1) S is a semiperfect ring with identity and S* is abelian.
(2) A is a commutative ring with J(A) = A.

PROOF. The identity e of S is the sum of the orthogonal local
idempotents e ^ S so S is semiperfect by a result of Mueller ([3],
Theorem 1). We have S* s S° S R° so S* is abelian, proving (1). If
a 6 A then a = ae ~ ea = 0 in R/J(R) and it follows that A g J(R).
This implies A is commutative since R° is abelian. If a e A, let 6 G i?
satisfy αo& = 0. Then & = ab — a so e& — 0. Similarly be — 0 so b e A.
This implies J(A) = A.

LEMMA 2. Lβί R be a ring with R° abelian. If e2 = ee R the
identities erse — erese and ser = eser + sere — esere hold for all
elements r and s in R.

Proof. Write a — er — ere and b = se — ese. Then a2 — 0 = b2

so that a, beR°. It follows that ab = ba and hence that ab = (ea)b =
eba = 0. But ab = erse — erese and δα = ser — sere — eser + esere.

Y A\

ere er — ere

re — ere r — er — re + ere
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This is obviously a monomorphism of additive abelian groups and it

is onto since an element (s x) 6 Γ%, A is the image oίr = s + x + y + a.
\y a/ \_i j±j

Lemma 2 guarantees that it is a ring isomorphism as an easy calcu-
lation shows. Hence R is represented as a semidirect sum and so
Proposition 1 and the fact that R° is abelian show that X and Y are
G-unital bimodules. But A° = A by Lemma 1 so XA = 0 = AY. This

in turn shows that \γ ^ ~ \γ Q 0 A using the definition of mul-

tiplication in the semidirect sum.
Now we consider the structure of the G-unital S-modules X and

Y. The identity of S can be written 1 = ex + + en where the et

are orthogonal local idempotents. Moreover, the local rings eββi are
commutative since they have abelian adjoint groups. Since the e, are
orthogonal we have a direct sum X = exX 0 0 enX of abelian
groups. Moreover, eέX is a G-unital ê Sβ -̂module for each i. Suppose
et Φ βj and s e S. Then (e^e^)2 = 0 so e^e^X = 0 because X is G-unital.
Hence, for each se S, sx = (e^e^e^x + + (ensen)enx holds for every
x G X. On the other hand, if Xi is a G-unital ^S^-module for each
i and if X — Xt 0 0 Xnf then Lemma 2 guarantees that X be-
comes a G-unital S-module if we define

for each s 6 S and (ĉ , , xn) e X. This shows that the structure of
the G-unital S-modules is completely determined up to the structure
of the G-unital ^Sfe.-modules.

Suppose et is such that the local ring e1Se1 has no nonzero G-
unital module. It was proved in [4] that eλ is central in S so we
can write S = e1Se10 St. Furthermore, eλX = 0 and Yeλ — 0 since these
are G-unital ^Stei-modules. It follows from the preceding paragraph

[ S X~\ VS X~\

γ Q = βίSβί 0 \ γ Q L In this way each local ring etSet which
has no nonzero G-unital module splits off as a direct summand of R.
Thus we may assume that S is indecomposable.

On the other hand, a local ring L which has a nonzero G-unital
module must satisfy LjJ(L) = Z2, the ring of integers modulo 2.
Moreover, the G-unital L-modules are precisely the elementary abelian
2-groups X and the action is given by ax = 0 or x according as a e J(L)
or α e L * . These will be referred to as trivial L-modules. Finally,
if L° is abelian the ring L must be commutative. The easy verifi-
cation of these facts can be found in Proposition 2 of [4].

We summarize the results of this discussion in the following
theorem.

THEOREM 1. If R is a semiperfect ring (possibly with no identity)
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YQ where T is

a finite direct sum of commutative local rings, A is a commutative
ring with J(A) — A and S is an indecomposable semiperfect ring
with identity such that S* is abelian and X and Y are G-unital
S-modules. Conversely every such ring is semiperfect with abelian
adjoint group. Furthermore:

(1.) The identity of S can be written 1 = eλ + + en where
the et are orthogonal local idempotents and e^e^^eSe^ ~ Z2 for each
i. The module X has the form I ^ I i φ φ I , where Xt is a
trivial eiSermodule for each i and s(xu , χn) = fase^, , ensenxn)
for each se S and (xu , xn)e X. The module Y has an analogous
structure.

(2) The adjoint group of R is isomorphic to the direct product
of the multiplicative groups T°, A0, and S° and the additive groups
X and Y.

The ring S is characterized in [4] (Theorem 1) up to the structure
of the commutative local rings etSet. Hence the present theorem
completely characterizes all semiperfect rings R with abelian adjoint
group up to the structure of commutative local rings and commutative
rings A with J(A) = A. Moreover, the adjoint groups of these rings
are direct factors of the adjoint groups of R and so they inherit
many other properties which R° may possess. In the cyclic case this
leads to a complete characterization and this will be given in §2.
But first we look at some other consequences of Theorem 1.

COROLLARY!. Let R be a semiperfect ring with abelian adjoint
group. Then R is commutative if either of the following conditions
is satisfied:

(1) 2x — 0 in R implies x = 0.
(2) R° has no direct factor each element of which has order 3.

Proof. Using the notation of Theorem 1, these conditions apply
to S so it is commutative by Corollary 1 of [4]. Both conditions
imply X = 0 = Y since these are (additive) elementary 2-groups. The
result follows.

Our next result applies a result of Watters [6] which states that
if A is a ring with J(A) = A then A0 is a finitely generated nilpotent
group if and only if A+ is a finitely generated group. Moreover,
when these conditions are satisfied A is a nilpotent ring ([6], Co-
rollary 2).

LEMMA 3. A local ring R has a finitely generated abelian ad-
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joint group if and only if R is finite and commutative.

Proof. The division ring R/J(R) has a finitely generated abelian
group of units and hence is finite. Since R° is abelian it follows that
ϋ?* is an abelian group and J(R) is a commutative ring. Since R is
local, this means it is a commutative ring. Moreover, R is noetherian
since any ascending chain of ideals is an ascending chain of adjoint
subgroups. It follows that J(R)nJJ(R)n+1 is a finite ring for each n
since it is a finite dimensional vector space over RjJ(R). But Watters'
theorem asserts that J(R) is nilpotent since J(R)° is a finitely generated
abelian group. Hence R is finite.

We remark here that this result in the cyclic case is proved in
[4] without appealing to Watters' theorem.

COROLLARY 2. Let R be a semiperfect ring. If the adjoint
group R° is finitely generated and abelian, then R ~ F@ A where F
is a finite ring and A is a commutative nilpotent ring such that A+

is finitely generated. In particular, a semiperfect ring with identi-
ty is finite if its group of units is finitely generated and abelian.

Proof. The last statement follows from Lemma 3 and Theorem 1
of [4]. Hence, using the notation of the theorem, S is finite since S°
is finitely generated. Lemma 3 implies that T is finite and X and Y are
finitely generated vector spaces over Z2 and so are finite. The results
of Watters show that A is nilpotent and A+ is finitely generated.

Theorem 1 also gives the following result of Fischer and Eldridge
([1], Theorem 1).

COROLLARY 3. If an artinian ring R has a finitely generated
abelian adjoint group then R is finite.

Proof. Since R is semiperfect we need only show that the ring
A in Corollary 2 is finite. An induction on the order of nilpotence
of the ring A shows that A+ satisfies the descending chain condition
on subgroups (Szele [5], Theorem 1). But then A+ has a composition
series and so is finite.

3* Cyclic adjoint groups. In this section we give a complete
characterization of semiperfect rings with a cyclic adjoint group.
This extends the results of Fischer and Eldridge ([1], Theorem 5).
The first result we need is

LEMMA 4. Let A be a ring such that J(A) = A and A0 is cyclic.



206 W. KEITH NICHOLSON

Either A is finite or A+ is cyclie and A2 = 0.

Proof. The ring A is commutative and is nilpotent by Watters'
theorem [6]. Suppose then that An Φ 0 and An+1 = 0. Assume A0

is infinite cyclic. We must show that n — 1. We have (A*)+/04.<+1)+ =
(AJI{Ai+ιy so that, in particular, (An)+ ~ (An)° is infinite cyclic.

Assume n > 1 and let 0 Φ a,a2 an e A*. Since J./A2 = A°/(A2)0

is finite there is an integer k > 0 such that kax e An. But then
k(axa2 an) e An+1 = 0 which contradicts the fact that (A")+ is infinite
cyclic. This means n — 1 as required.

We can now characterize all semiperfect rings with a cyclic ad-
joint group. The ring of integers modulo n is denoted by Zn.

THEOREM 2. Let R be a semiperfect ring with cyclic adjoint
group. Either R is the zero ring on the additive group of integers
or R is finite. If R is finite it is a finite direct sum of rings of
the following types chosen so that the orders of their adjoint groups
are relatively prime in pairs. (See Remark 1 below.)

N, {0, a, a2, a + a2 \ α3 = 0 = 2α}

N2 {0, a, 2a, , (pι — l)α | a2 = pιa), p any prime 1 ̂  i ^ t .

Lγ GF(pk), p any prime, k ^ 1

L2 Zq, q = pk, p an odd prime, k > 1

L4 Zp[x]/(x2), p any prime and x an indeterminant .

L5 Z2[x\l(x*)

L6 Z4[x]/(2x, x2 - 2)

Z2 Z2

0 Z2

M 'Z> •'
M> o

Proof. We note first that Fischer and Eldridge [1] show that
every finite ring A with J(A) = A and A0 cyclic is a direct sum (see
the remark below) of rings of type Nλ and N2. Gilmer [2] shows
that each finite local ring with cyclic group of units is of type L€

for some i.
Now suppose R is semiperfect and R° is cyclic. Consider the

decomposition of R given in Theorem 1. We can apply Lemma 4 to
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the ring A. If A+ is infinite cyclic then R — A is the zero ring on
the additive group of integers. If A is finite then R is finite by
Corollary 2. In this case the preceding paragraph asserts that the
rings A and T in Theorem 2 are finite direct sums of rings of type
Nt and L3. By Theorem 2 of [4] the indecomposable semiperfect ring
S is either Z2 or the triangular matrix ring Q 2 J L In the latter
case the fact that R° is cyclic forces X = 0 = Y in Theorem 1. In
the former case one of I or 7 must be zero and the other isomorphic

I Si X~\

to Z2
+ or zero. Hence the ring y Q in Theorem 1 is isomorphic

to Z2 or one of the rings of type Mk. This completes the proof.
REMARK 1. As Fischer and Eldridge point out, if p = 2 the rings

of type N2 may fail to have a cyclic adjoint group for certain values
of i. However, this is the only such case.

REMARK 2. The proof that any artinian ring with cyclic adjoint
group is finite and has the structure described here is given in [1].
However, the present proof of the way the summands of type Mk

arise is quite different.

The author would like to thank the referee for suggesting the
present proof of Lemma 4.
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