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MAPPINGS BY PARALLEL NORMALS PRESERVING
PRINCIPAL DIRECTIONS

DiMITRI KOUTROUFIOTIS

Two smooth surfaces S, S with positive Gaussian curva-
ture and with the same closed hemisphere as spherical image
can be mapped onto each other by parallel normals. It is

- assumed, in addition, that principal directions at every point
on S are mapped into principal directions at the image point
on S. Let k,(=1,2) be the principal curvatures of S, %; the
corresponding principal curvatures of S. Via the spherical
image mapping, one may consider the function ¢ = (k7! — kr?)-
(k;'—ks') as being defined on the unit sphere 5. We show:
If ¢ does not change sign and appropriate boundary condi-
tions are satisfied, then S differs from S by a translation.
Since the spherical image mapping always preserves principal
directions, one obtains in particular characterizations of the
hemisphere. Further results for ovaloids S, S within this
class of mappings: If k =k, k, =k, everywhere, then a
translate of S fits inside S; if S and S have the same total
mean curvature, then | ¢dow < 0 with equality if and only if

by

S is a translate of S.

Let S, S be smooth, oriented surfaces with positive Gaussian
curvature in fixed position in E°. Assume that their spherical images
are simple and coincident, so that they can be mapped diffeomorphically
onto each other by equal normals. We impose the additional condition
that, under this standard mapping—which we shall henceforth call
the normal mapping—, principal directions are preserved, i.e., that
at every point on S there exists a pair of principal directions which
are mapped into principal directions at the image point on S. The
normal mapping between surfaces of revolution with parallel axes of
rotation has this property. If S is an ovaloid and S a sphere, then
the normal mapping again certainly preserves principal directions.
Further “trivial” examples are furnished by pairs of homothetic sur-
faces or pairs of surfaces which are parallel in the classical sense of
Steiner. This last class has been investigated in [9]. Here various
geometric conclusions will be drawn from the existence of such a
mapping in the large in conjunction with given boundary conditions
and inequalities connecting the principal curvatures of S, S at corre-
sponding points. In particular, we shall obtain congruence theorems,
characterizations of the sphere and statements about relative size.
These geometric results are in part generalizations of our geometric
results in [8]. They are for the most part direct consequences of the
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analytic results in that paper which we will review briefly in the next
section. However, Proposition 1 and Theorem 3 are new and belong
properly the analytic results in [8].

2. We denote by X the unit sphere in E?, centered at the origin.
We choose parameters (u',u?) so that the unit vector 7%(u', u?) de-
scribing Y is analytic and the unit normal of Y at the point % is —%
(interior normal). We will use the summation convention throughout
this paper; thus n;,du‘du*, where n,, = 7%;-n,, denotes the standard
metric on 3. The discriminant tensor &¢** is defined by

et =e2=0,e" = —¢e? = (det n,,) .

Let f, f be real-valued functions of class C? on a subset of 3.

We introduce the classical invariant differential operators on 2. The
scalar product of the gradients of f and f:

(2.0) P(f, F) = 0L 8T
out ou*

where n®* = e*“c*n,,; the Laplace-Beltrami operator
4dof = Y

where (7,.f) is the tensor of the second covariant derivatives of f.
We set /** f = e, f and define

4:(f, F) = Vaf V7 = 4u(F, £)

Note that 4,(f, f) is twice the Hessian of f.
Our main concern will be with the operator M defined by

M[f,f] :Azz(f;f)+fdzf+fdzf+2ff-

We review some of its theory. See [8] and [9] for more details. M is
clearly bilinear and symmetric. If L is the restriction to 2 of a
linear function defined on E°®, one verifies directly that, for arbitrary
fy M[f, L] = 0. Further, for any C* functions %, f, f on 3 we have
(Minkowski):

@.1) Sth[ 7, Fldw = Ssz[ £, hldo .
See e.g., [13], p. 244 for a proof. In particular,
2.2) STLM[ £, Fldw = 0, for any L on % .

Now let g be a given continuous function on 3. We obtain from
(2.2) a necessary condition for the existence of global C* solutions
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of the nonlinear equation

(2.3) Mlf, f1=9,
namely,
(2.4) gngdw = 0, for all linear function L on X .

Condition (2.4) is also sufficient for solvability in case g is strictly
positive and sufficiently smooth on ¥ ([10], p. 381, Theorem 4).

If g =0, then, of course, all linear functions satisfy (2.3). A
global converse is also true [8]:

THEOREM 1. Let f be of class C* on a closed hemisphere and
satisfy M[f, f]1 = 0 there. Then f s linear (i.e., the restriction to
the closed hemisphere of a linear function in E®).

In case g <0, condition (2.4) is not sufficient for solvability. In
fact, we have:

PROPOSITION 1. There exists no function f, defined and of class
C* on 3, satisfying M[f, f]1 < 0 everywhere.

Thus, for example, M[f, f] = —1 is not solvable, although (2.4)
is satisfied.

Proof. Assume such an f exists. Define the vector-valued func-
tion @(u,, u,) of class C* by

2.5) &= i+, n),
where 7(f, %) is defined as in (2.0) with the vector % replacing f.
One has

o%

n=0 =1, 2
22 (=12

and, using the Gauss equations for 3, one computes

ox  on _
Tm'?ﬁ“fn”'J“V”f’

% 0% ) o7 :m>
(aw * T <au,1 X o
___(aac . 8%)(850’ _ a%)_<agz . 8%)2
o ow Now ow o o

%(det n)MLf, f1 0.

(2.6)

I
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The mapping (2.5) of 3 into E* defines a compact, oriented surface
S of class C', with normal +# of class C°, so that S is in fact of
class C* ([4], p. 307). From (2.6) we deduce that S is a regular
differential-geometric surface and, since it is of class C? its Gaussian
curvature K is defined and continuous. Now, by a classical formula
of differential-geometry,

O [y o o
R (C- )

ou out ou?

Since M[f, f]1 < 0, one would therefore have, from (2.6), a compact
C* surface in E® with negative curvature throughout, an impossibility
since every such surface possesses points of positive curvature.

A statement can also be made in the case ¢ < 0 [8]:

LEmMA 1. Let f be of class C* on a closed hemisphere and
satisfy MI[f, f1 =0 there; then f wvanishes at some point on the
bounding great circle.

THEOREM 2. Let f be of class C7 on a closed homisphere and
satisfy M[f, f1 =0 there and f = constant on the bounding great
cirele. Then f s linear.

The proof of this theorem makes use of the preceding lemma to
conclude that f = 0 on the bounding great circle; and of Bernstein’s
theorem [6] concerning the growth of saddle surfaces defined over
the whole plane to conclude that M[f, f1 = 0. By Theorem 1, f must
then be linear.

In the case g = 0 the preceding lemma does not hold. However,
a slightly weaker form of Theorem 2 still holds:

THEOREM 3. Let f be of class C* on a closed hemisphere and
satisfy M[f, f1> 0 there and f =0 on the bounding great circle.
Then f is linear.

The proof is formally the same as that of Theorem 2; we merely
replace Bernstein’s theorem by its companion theorem concerning the
growth of convex functions defined over the whole plane ([11], p. 623,
and [5] for the C? case): Let the function F(z, y), defined and of class
C? for all (x, v), satisfy F,.F,, — F?, = 0 everywhere and I(x, y) =
o(V'#* + ¥¥ at infinity; then F,,F,, — F?, = 0.

3. We shall be concerned exclusively with surface in E®, of
class C? having positive Gaussian curvature, oriented by “interior”
normals so that the principal curvatures are positive, and mapped
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diffeomorphically onto a schlicht subset of ¥ under the normal
mapping; we shall cal them strictly comwvex surfaces. For the sake
of brevity, we shall call a surface of this type with boundary and a
closed hemisphere as spherical image strictly convexr hemispherical.
Every enveloping cylinder of an ovaloid (compact surface, K > 0)
divides it into two strictly convex hemispherical surfaces with com-
mon boundary. When we consider pairs of such surfaces in the
sequel, we shall always assume implicitly that their spherical images
coincide.

If the surface S is mapped with preservation of principal direc-
tions onto the surface S, we denote by k(i =1, 2) the (principal)
curvature of the direction on S which is the image of the principal
direction on S with curvature k,.

If the strictly convex surface S of class C® has “interior” normal
Y at the point with position vector Z, we define the support function
pof Shy p=—z-v. We will view p as defined on the spherical
image of S. By the inverse function theorem, p is of class C°

LEMMA 2. Let S, S be strictly convex surfaces with support
functions p, B, mapped diffeomorphically onto each other by the normal
mapping. Assume that principal directions are preserved at an
interior point with wormal Y,. Then the following equation 1is
satisfied at Y,

(3.1) Tup-pp-n=(+-1)(+-1)-

b,k k,

Proof. Using the bilinearity and symmetry of M, we obtain:

On the other hand, by Weingarten’s formula (see [9] for a proof),
we have quite generally:

_ 2
Mmm=f%Mmm=p%,
1fvg vylvg

and by Lemma 1 of [9] we have specifically at the normal g

_ 1
Mlp, 7] :ﬁ—l— kll—c ’

and (3.1) follows.

We now apply Lemma 2 in conjunction with the theorems of §1.
Note that adding a linear function to the support function of a surface
amounts to a translation of the surface. From Theorem 1 we obtain
immediately:
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THEOREM 1’. Let S, S be strictly convex hemispherical surfaces;
assume that the normal mapping between them is a diffeomorphism
which preserves principal directions. If, in addition, (k, — k)(k, —
k) = 0, then S is a tramslate of S.

In particular, the same conclusion holds if S, S are ovaloids.
Note that this theorem does not hold in the small. Consider, for
example, a small piece S of a strictly convex surface of revolution
with the z-axis as axis of rotation. Take the meridian curve C on
the (z, x)-plane and translate it some distance in the z-direction: One
obtains a curve C wich one then rotates around the z-axis to obtain
a surface of revolution S. The hypotheses of Theorem 1’ are satisfied
for S and S, the conclusion is however false.

Proposition 1 applied to our context says that the inequality
(k, — k,)(k, — k,) < 0 is not possible everywhere on X if the normal
mapping between the ovaloids S, S preserves principal directions.

The geometric version of Theorem 2 via Lemma 2 reads:

THEOREM 2. Assume that the mormal mapping between the
strictly convex hemispherical surfaces S, S preserves principal direc-
tions. If (b, — k)(ky — ky) < 0 everywhere and p — P = constant on
the bounding great circle of their common spherical tmage, then the
surfaces differ by a translation.

The condition “p — P = constant on the boundary” means that the
enveloping cylinders of S, S touching along their respective boundaries
are, after a possible translation, parallel surfaces in the classical
sense. Thus, if for example the enveloping cylinders are circular or
if the surfaces touch along their common boundary, we may assume
that » — p = constant.

If we take for S a closed hemisphere centered at the origin, we
conclude that if a strictly convex hemispherical surface has a circular
enveloping cylinder along its boundary and satisfies (k, — ¢)(k, — ¢) <
0 for some constant ¢, it must be a hemisphere [8]. From this we
deduce in particular:

COROLLARY. Let F(x, y) be a real-valued function, defined for
r =y =0, monotonic in the same sense in both arguments and not
identically zero on any open set. Let S be a strictly convex hemi-
spherical surface, with circular enveloping cylinder along its boundary
and at least one umbilic. If F(k, k.) = 0 everywhere (k, = k,), then
S is a hemisphere.

The proof is standard. Let P, be the umbilic and let %,(P,) =
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ky(P)) = ¢. If for any point P = P, we had k,(P) > ¢ and ky(P) > ¢,
then the equation F(k,, k,) = 0 and the monotonicity of F' would imply
that F(zx, y) is identically zero on the sete <z Z k(P), ¢ = y = ky(P)
in contradiction to our hypothesis. The possibility k(P) <c¢ and
k(P) < ¢ is discarded in the same fashion. Therefore (&, — ¢)(k, — ¢) =
0 everywhere, hence S must be a hemisphere.

The existence of an umbilic on S in this coroliary is certain if,
for example, the enveloping cylinder touches S along a circle. Note
that no smoothness is required of F. If, however, F is of class C?,
then this characterization of hemispheres follows from a theorem of
Aleksandrov ([1], p. 349).

From Theorem 3 we obtain:

THEOREM 3'. Let S, S be strictly convex hemispherical surfaces,
diffeomorphic vnder the normal mapping which should preserve prin-
etpal divections, and with enveloping cylinders along their boundaries
which are translates of one another. If, in addition, (k, — k)(k, —
%) =0, then S is a translate of S.

In particular, a strictly convex hemispherical surface with (%, —
c)(k, — ¢) = 0, whose enveloping cylinder touching along the boundary
is circular of radius ¢, is a hemisphere.

ReMARK. If we replace the inequality in Theorem 3’ by the
stronger hypothesis that %, = %, and %, = k, everywhere, then the
conclusion holds even without the assumption that the normal mapping
preserves principal directions. In fact, we have more generally: If
the strictly convex hemispherical surfaces S, S have identical envelop-
ing cylinders along their boundaries and their Gaussian curvatures
satisfy K = K at all points with the same normal, then they are
identical. The proof is contained, in its essential, in [1], p. 348; the
support functions », p satisfy respectively the partial differential
equations M[f, f]1 = 2K ' and M[f, f] = 2K~ which are elliptic because
K>0 and K > 0. It follows that the operator M is elliptic with
respect to all the functions tp + (1 — )P, t €[0, 1], which are also
support functions of strictly convex surfaces. After an appropriate
translation in the direction of their common enveloping cylinder, we
may assume that S lies below S and touches S “from the inside” at
a point (which may be a boundary point). We then have M[p, p] <
M[p, ] and p = P, therefore, by the maximum principle ([12]), S
and S coincide.

A result concerning the relative size of pairs of ovaloids within
our class is this:
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_THEOREM. Assume that the normal mapping between the ovaloids
S, S preserves principal directions and that k, =k, k, =k, at all
corresponding points. We can then translate S so that it lies entirely
within S.

Proof. For any ¢ > 0, consider the ovaloid S., parallel to S,
obtained by moving along every outward normal of S a distance e.
If p is the support function of S and k;* its radii of curvature, S.
has support function ¢ + p and radii of curvature ¢ + k7 ([3], p.
273). Since the normal mapping between parallel surfaces preserves

principal directions, so does the normal mapping between S and S..
Therefore, by Lemma 2,

(3.2) —;—M[€+p—ﬁ,€+p—ﬁ]

[+ G-l (-2

Set e+ p— P =f. As in the proof of Proposition 1, we consider
the C'-, compact, oriented surface S* defined by (2.5), where 7% de-
scribes the unit sphere oriented by interior normals —7%. Since M[f,
1+ 0, equation (2.6) implies that S* is regular, with normal —#% and
hence of class C®. The support function of S* is z.n = f. The
Gaussian curvature of S* is therefore 2(M[f, f])~* which is positive
throughout S*. By Hadamard’s theorem, S* is simple and convex
and the mapping of 3 onto S* defined by (2.5) is the inverse of the
spherical-image mapping of S*, which preserves orientation. Hence,
—7 is the interior normal of S* and we may translate S* so that the
origin lies in its interior and the new support function is positive.
Thus, f + L > 0 for a certain linear function L, or: e+ » + L > 7;
which means that, after a possible translation, S lies inside S,. Since
this is true for every ¢ > 0, it must also be true for S =S,, which
proves the theorem.

In particular, we may take one or the other of the two surfaces
in this theorem to be a sphere. It follows that if the maximal
principal curvature k, of an ovaloid S satisfies k, < ¢, then a sphere
of radius ¢™* fits inside S; and if the minimal principal curvature
k, of S satisfies %k, = ¢, then S fits inside a sphere of radius ¢*. Of
course these special cases are well-known and much more can be
said about them [7].

4. Some information about normal mappings which preserve
principal direction can also be obtained with the aid of integral
formulas.
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Consider a C* function f on the unit sphere Y. By Green’s
theorem,

[ Ir, 5+ Fafldo = 0.

Therefore,

(4.1) |, f@.s + 200 = | 12/* =7 (f, H)ldo .

Wirtinger’s lemma ([2], p. 108) states that if

g_(fda) ~0, then SZ[2fZ —P(f, fldw <0,

with equality holding if and only if f is linear.

Consider now an ovaloid S, with area element dA4, total area A,
mean curvature H, total mean curvature M, etc. We have, as is
well-known:

MngdAzgpdw, A2p+2p=ﬁ.
s s K
We note in passing an immediate consequence of the above, valid for
arbitrary normal mappings (take f = p — p):

PROPOSITION 2. Assume that the ovaloids S, S have the same
total mean curvature. Then

4.2) [ -n(Z - <o,

with equality holding if and only if S is a translate of S.

In particular, we may take for S a sphere centered at the origin,
with radius (4r)*M. Then M = M and multiplying out in (4.2) we
obtain Minkowski’s inequality:

4rA < M*,

with equality if and only if S is a sphere.

If at all pairs of points of S, S with the same normal we have
HK™* = HK™, then automatically M = M and we obtain as corollary
of Proposition 2 the theorem of Christoffel: S is a translate of S.

Note, from the definition of M, that M[f, 1] = 4,f + 2f. From
(2.1), setting f = f, h = 1, we obtain:

S:M[f, fldw = szM[f’ lldw = S:f(dzf + 2f)dw .
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From (4.1) and Wirtinger’s lemma we conclude that if
Szfdco =0, then | MIf, fldw =0,

with equality if and only if f is linear.
Consider now two ovaloids of the type under investigation. Setting
f =1p — p and using Lemma 2, we obtain

—PROPOSITION 3. Let the normal mapping between the ovaloids
S, S preserve principal directions. If, in addition, S and S have the
same total mean curvature, then

1 1\/1 1
= —Z )= —-—=ldw =0,
G- 3G - Flaes
with equality holding if and only if S, S differ by a translation.

REFERENCES

1. A. D. Aleksandrov, Uniqueness theorems for surfaces in the large I, Amer. Math.
Soc. Translations, (series 2) 21, 341-354.

2. W. Blaschke, Kreis und Kugel, 2. Auflage, Berlin, 1956.

3. L. P. Eisenhart, An Introduction to Differential Geometry, Princeton, 1947.

4. P. Hartman and A. Wintner, On the third fundamental form of a surface,
Amer. J. Math., 75 (1953), 208-334.

5. , On isometric immersions in euclidean space of manifolds with non-
negative sectional curvatures II, Amer. Math. Soc. Transactions, 147 (1970), 529-540.
6. E. Hopf, On S. Bernstein’s theorem on surfaces z(x,y) of nonpositive curvature,
Proec. Amer. Math. Soc., 1 (1950), 80-85.

7. D. Koutroufiotis, On Blaschke’s rolling theorems, Arch. Math., 23 (1972), 655-660.

8. , On a conjectured characterization of the sphere, Math. Ann., 205 (1973),
211-217.
9. , A characterization of parallel ovaloids, to appear.

10. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in
the large, Comm. Pure Appl. Math., 6 (1953), 337-394.

11. R. Sacksteder, On hypersurfaces with mo mnegative sectional curvatures, Amer.
J. Math., 82 (1960), 609-630.

12. J. Serrin, Nonlinear elliptic equations of second order, Amer. Math. Soc. Summer
Institute on Partial Differential Equations, Berkeley, 1971.

13. J. J., Stoker, On the uniqueness theorems for the embedding of comvexr surfaces
in three-dimensional space, Comm. Pure Appl. Math., 3 (1950), 213-257.

Received March 5, 1973.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA





