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ON DEFORMATIONS OF COMPLEX COMPACT
MANIFOLDS WITH BOUNDARY

GARO K. KIREMIDJIAN

Let Mf be a complex Kahlr-Einstein maniford of negative
scalar curvature. Let M be a relatively compact submanifold
of M' such that dimcM = dimcM

r — n and the boundary bM
is a C°° submanifold of M' of real dimension 2n — l. It is
further assumed that the following condition holds: There
exists a constant c > 0 such that for all φe C°>q(M, Θ), q —
1, 2, ((2Π; — Δ))φ, φ) ̂  c(φ, φ) where Θ is the holomorphic
tangent bundle of M', Ofl(Λf, Θ) is the space of all C°° Θ-
valued (p, q) forms extendible to a neighborhood of M, Πf

(resp , Δ) is the complex (resp., the real) Laplacian on
Cp>q(M, Θ) and ( , ) is the L2-inner product.

The main result of this paper is that there exists a uni-
versal family of deformations of M whose parameter space
is, in general, a Banach analytic set. In the case when M
is a compact Riemann surface with boundary it is shown
that real analytic families of complex structures on M can
be described in terms of an open set in Rm where m is the
dimension of the reduced Teichmuller space. The proof of
this fact is independent of the theory of quasiconformal
mappings and Schwarzian derivatives.

The results of the present work are obtained by extending the
methods of M. Kuranishi developed for the case of compact manifolds
without boundary ([8], [9]). This approach has already been used
successfully in the study of complex structures on noncompact
manifolds ([6], [7]). The conditions imposed on M' (for a large class
of such manifolds we refer to [1]) enable us to use effectively the
theory of elliptic boundary value problems (see [5], [10], [11]). Thus
we have at our disposal Sobolev A -norm estimates without loss of
derivatives. This is crucial for the proof of Proposition 3.6 where,
by using the implicit function theorem for Banach spaces, we conclude
that every almost complex structure Mφ represented by an element
φ 6 COtl(M, Θ) with sufficiently small /b-norm is isomorphic to an almost
complex structure Mψ with d*ψ — 0. Moreover, in the proof of our
main theorem (Theorem 3.7), the &-norm estimates allow us to use the
inverse mapping theorem for Banach spaces and the result of Pro-
position 3.6 for the actual construction of the universal family.

1* Preliminaries* Let Mr be an ^-dimensional Riemannian
manifold and MaM' a subset with nonempty interior such that the
boundary bM is a C°° submanifold of M' and ϊ = J l ί U bM is compact.
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Then any boundary point of M has a neighborhood U with coordi-
nates (xr, , xn~\ y) such that Un bM = {y = 0}, *7fΊ ifef = {2/ < 0}
and Uf] (Mf - M) = {y > 0}.

We denote by Cr(M) the space of C°° differential form of degree
r which are axtendible to an open neighborhood of M. For each
pe M the Riemannian metric on M induces an inner product in Cr(M)
denoted by < , ) p . Then one has the operator *: Cr(M)-* Cn~r(M)
given by φ A *Ψ = (φ, ψ)dM, φ, ψ e Cr(M), where dM is the volume
element of M. The inner product over M is defined by (φ, ψ) =

\ φ Λ *φ. We denote by £fτ the completion of Cr(M) in the L2-
J M

norm \\φ\\ = (φ, φ)112.

Let d:_Cr(M) — C r+1(M) be the exterior derivative and let d* =
-*d*:C r (M)-^C r - 1 (Λf) be its formal adjoint. By Stokes' theorem
we have that

(1.1) (dφ, ψ) - (<p, d*ψ) + I φ A *Ψ , φ G C^^M) , f € Cr(M) .

Thus, (d<p, f ) = (9, d*ψ) for all ^ if and only if *^ = 0 on bM. In
terms of an admissible boundary coordinate system (i.e., (x'n9 y), xf

n =
(x\ x2

9 , xn~x) such that for y = 0 the Riemannian metric is of the
form ds2 = Σ ί ϊ U Qaβ{%'n, 0)dxadxβ + (ώx%)2) this condition means

if some i r = w, where ^ = Σ i Ψidx1, I={ix< < ί r } , dxτ=dxhA
(see [10]). Let ^ r = {f e Cr(M) | * ^ = 0 on bM).

We now consider a linear mapping A:C r(M)-+C%M) which, on
a coordinate neighborhood Z7, is given by Aφ = Σ J . J -Aίί^)^!^)^ 7*
The A5's are C°° functions on ?7 and if x = (a;1, , α?w) are the local
coordinates of j> e bM, then -45(aj) is a C°° function in a neighborhood
of p. We further assume that A is self-adjoint and there exists a
constant c > 0 such that (Aφ, φ) ^ e \\φ\\2. Then the bilinear form
Q(φf ψ) = (dφ, df) + (d*φ, d*ψ) + (Aφ, ψ)gives 3?r the structure of a pre-
hilbert space. Let & be the completion of &r in the norm || ψ \\Q =
Q(^, α^)1/2. The Riesz representation theorem implies that for each
a e = ^ ' r there exists a unique φ G ̂ r such that Q(φ, ψ) = (α, ψ) for
all ψeέkr. The theory developed in [5], [10], and [11] enables us
to conclude that φ e &r whenever a e Cr(M) and || φ \\k+i <Lck\\a\\k

where || ||A is the Sobolev Λ-norm and ck is a constant depending on
k only. In this case Aφ + Aφ = a, Δ = cίd* + d*d and *ci9 = 0 on
bM. It is easy to verify the last assertion:

For all ψ e C;(M) = {C°°r-forms with compact support in M) we
have that
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(1.2) (dd*φ, t ) + (d*dφ, f) + (Aφ, ψ) = (a, f) .

Since Q(M) is dense in Jί?r, this implies

(1.3) Aφ + Aφ = a .

Hence (Δφ, ψ) + (Aφ, ψ) = (α, α/r) for all ψ e & and by Stokes'
theorem

C

(1.4) \ ^ Λ **P = 0 for all ψ e .^r .

This gives *dφ = 0 on δikf.
Next we consider the case when M and Mf are complex manifold

and E—* Mf is an m-dimensional complex vector bundle. We introduce
on the fibers of E a hermitian metric which, on a coordinate neighbor-
hood U, is expressed by a positive definite hermitian matrix h whose
elements depend differentiably (i.e., C°°) on x e U. Let CPtQ(M, E) be
the space of C°° forms of type (p, q) with values in E which are
extendible to an open neighborhood of M. On a coordinate neighbor-
hood U an element of Cp-q(M, E) is given by a column vector φ =
'OP1, , <Pm) whose components are C°° forms of type (p, q) on U.
Then we have the ismorphism *: Cp'q(M, E) -> Cn~q'n~p(My £?)_locally
defined by *φ = *(*φ\ , *ζPw) and the anti-isomorphism #: Cp'g(M, E) —>
C^^iίf, ,&*), #9? = A ^, where £/* is the dual bundle of E. We note
that # commutes with *. If φ, f e C ^ ί , E), ιφ Λ *#?^ is a global

S ί
'P Λ *#VΓ Let Jyfp'q(E) be

.)/
the completion of C*-q(M, E) with respect to the L2-norm ||9>]Ί = (9>, φ)1/2.

The covariant differentiation associated to the connection 0 of
the hermitian metric h is given (locally) by Dφ = dφ + θ Λ ψ The
local expression of θ is h~ιdh, d = 3 + 3. For ^reCr'8(MfE), φe
Cp>q(M, E), r + s = p + q — 1, we have by Stokes' theorem

(1.5)
6ΛΓ

ThusJDf, φ) = (̂ r, D*φ) for all ψ if and only if φe&p-9(E) =
{φeCp'q(M,E) I *φ = 0 on 6Λf}. As in the case of scalar differential
forms, let A: C^ii?, J?) -> Cp q(M, E) be a continuous linear mapping
such that (Άφ, φ) ̂  c0 \\ φ ||2 for all ^ and some fixed constant c0 > 0,
independent of φ. Then, as before, έ@PΛ(E) is a prehilbert space with
respect to the bilinear form Q(φ, ψ) = (Dφ, D^r) + (D*φ, D*ir) + (Άf, ψ)
and we let .ώp>q(E) be the completion of &p-q(E) with respect to
the norm || φ | |j = Q(φ9 φψ1. For each α: e =5^p ff(J^) there exists a
unique ^ e ,ώp'q(E) such that Q(φ, ψ) = (a, ψ) for all f e ώp'\E).
Again, the theory developed in [5], [10], and [11] implies that
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w h e n e v e r aeCpq(M,E) a n d \ \ φ \ \ k + 2 g ck \\a\\k f o r s o m e
ck > 0 depending on k only. Also, in this case we have that Δφ +
Άφ = a, 1= DD* + D*D and *Ώφ = 0 on 6Af.

2* Complex structures on complex manifolds* In this section
we collect some well known fact about almost complex and complex
structures. For a complete discussion we refer to [8] and [9].

We assume now that M is a complex manifold of dimension n
and let M be the underlying C°° manifold of dimension 2n. If CTM
is the complexification of the real tangent buudle TM, then CTM—
Θ 0 Θ where Θ is the holomorphic tangent bundle of M.

DEFINITION 2.1. An almost complex structure on X is given by
a C°° vector subbundle θ' of CTM (over C) such that CTM = & 0 B\

Let ρ"(M) be the projection of CTM onto θ.

DEFINITION 2.2. The almost complex structure & is of the finite
distance from the given complex structure M on M if ^"(M) induces
an isomorphism from θ' onto B.

The set of almost complex structures of finite distance from M
is in bijective correspondence with the set of all φ e C01(M, θ) such
that, at each point peM, φoφ:Θp—>Θp does not have an eigenvalue
1. An almost complex structure determined by such φ will be denoted
by Mψ.

THEOREM 2.3 (Newlander-Nirenberg). Mφ is induced by a com-
plex structure if and only if dφ ~ [φ, φ] — 0.

Here d is the exterior differentiation operator with respect to the
complex conjugates of local holomorphic coordinates and [φ, φ] e
C°'2(M, Θ) has a local expression

[φ, φ] = Σ (φ'M- - V^W Λ d^JL , φ = ^
a.β.r.Λ dzr dzr I dza «.β dza

Let / be a diffeomorphism of M and let Θ[ and Θ'2 be almost
complex structures on M.

DEFINITION 2.4. / is an isomorphism between θ[ and θ'2 if its
differential sends θ[ to θ'2.

If φ e CQΛ(Mf θ) such that Mφ can be defined and if / is sufficiently
close to the identity map of M in C^-topology, then there exists a
unique almost complex structure Mω induced by an element ωe
C01(M, θ) such that /: Mω —> Mφ is an isomorphism. We denote ω by
φ°f and in terms of local coordinates z = (z1, , zn)
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(2.1) Σ α*(*)(jj£ + Σ §ζ>ί(/<*))) = J£ + Σ g f X

PROPOSITION 2.5. Let V be a normed vector space and let ξ: F—>
C° °(M, Θ) be an R-lίnear map. Let fs(s eV,\s\ is small) be a C°°
family of diffeomorphisms of M such that f° is the identity map.
Assume that, for each chart z — (z\ , zn) of M,

fa's(z) = za + ξa(z, s) (mod 1 s |2)

where ξ(s) - Σ«ί"O, s)d/(dza). Let φeC° ι{M, Θ) such that φofs can
be defined. Then

(2.2) φ °fs = φ + dφ(ξ(s) + φ o ξ(s)) + (dφ - [^ ^]) o f (s) + 0(] S |2) ,

where

= Σ

4-1 a n d t ° I = ΣΣ

t - Σ tί^«α Λ dz*4-£C*-\M, Θ) .

Proof. Throughout the proof we will make use of the Einstein
summation convention. We write φ °/s = φ + ^(s) (mod | s |2). By (2.1)

σzp ozp

s | 2 ) ,

Hence, by collecting terms linear in s we have

&ί(z) + ψfξ? + -pif' (mod I a !
dza dzβ dzβ

Therefore,

ozz"
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The sum of the first three terms on the right is the expression of
dφξ. The fourth term is equal to d/(dza)(φr

μ(z)ξμ) - (dφr

μ)/(dza)ξμ. The
fifth term is equal to

H = VP, <P\\& + ̂ ξβ + Φ<? - \Ψ,

Therefore, η = drξ + d(φ o f) + χ + φφ — [φ, φ\) o f, where

ll = VP, φ\\& - ψ

# -- (**

dzμ dzμ

Hence η = dφ(ξ + ^of) + (βφ — [φf φ])oξ.

3* Families of complex structures on certin manifolds with
boundary• Let M and M' be complex manifolds of dimension n such
that M c M'9 the boundary bM is a C°° submanifold of Λf' of (real)
dimension 2n — 1 and M = Ml) bM is compact. We fix once and for
all a sufficiently large integer k with the following property: There
exists a constant ck > 0 such that if Z7 is a coordinate neighborhood
of M and if u19 u2 are C00 functions with supp ut = {# e ikf' | ^(ίc) =£ 0} c
ί7, i = 1, 2, then

(3.1) I D'ui I ̂  cfc || ^ ||fc , || %!• w2 ||fc ^ cfc || u, \\k || ^ 2 1| & ,

for I ^| - < + + /2n ^ fc - n - 1, where i ) ^ = 3<+-+/> /(3a?< 3a?On)
and || ||fc is the Sobolev Λ-norm over M. The existence of such an
integer k is guaranteed by Sobolev's lemma.

If E is a vector bundle over M' we will denote by <%7'q{E) the
completion of Cpq(M,E) in the norm || ||Λ. It is clear that φe C01(M,Θ)
with sufficiently small ||<p||i. represents an almost complex structure
Mφ on M.

Before stating and proving our main result we will give some
definitions.

DEFINITION 3.1. A subset S of a complex Banach space X is a
Banach analytic set (or simply an analytic set) if for each se S there
exists an open neighborhood Ω of s in X, a Banach space Y and an
analytic map g: Ω—>Y such that S f] Ω = ^""'(O).

DEFINITION 3.2. If S and T are analytic sets in the Banach
spaces X and Y, resp., a map τ: S-+T is analytic if, for each point
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se S, T can be extended to an analytic map of an open neighborhood
of s in X into Y.

DEFINITION 3.3. A complex analytic family of deformations of
M is a triple (S, ψ, s0) where S is an analytic set, ψ: S—>C0Λ(M, Θ)
is an analytic map (i.e., the composition of ψ with the inclusion
C01(M, Θ) c 3ίf£Λiβ) is analytic) such that for each seS, γ(s) re-
presents a complex structure Mψ{8) on M and soe S with ψ(s0) — 0.

DEFINITION 3.4. A complex analytic family (T, φ, t0) is a universal
family of deformations of M if for any other family (S, ψ, s0) there
exists a neighborhood S' of s0 in S, an analytic map τ: S' ~>T and a
C°° family of diffeomorphisms fs of M such that τ(sQ) = tQ, fs° = id
and ψ(s)ofs = <p(τ(s)).

REMARK 3.5. Let σ be a Riemannian metric on M' with respect
to which bM is a totally geodesic submanifold. It is well known
that such a metric always exists. Let ς e C0>0(M, Θ) such that the
real vector field ξ + f is tangent to bM. Then, if ξ is sufficiently
small in (^-topology, the map f:M—>M defined by p H / ( p ) , where
f(p) is the end point of the geodesic (with respect to σ) of length
[|f + HI drawn from p to the direction (ξ + f)/|| ξ + f||, is a dif-
feomorphism. It is easy to see that in terms of local coordinates

(3.2) /*(s) = s α + £"(*) (mod |! ξ | | 2 ) .

We will denote the diffeomorphism / by e(ζ).

PROPOSITION 3.6. Assume that Mf has a Kdhler-Einstein metric
g of negative scalar curvature. Let P = {ξ e C°'\M, Θ) \ *(#f + #1) =
*d($ς + #f) = 0 o^ 5ikΓ} where the operators # α^d * are defined with
respect to the metric g, viewed as a metric on the fibers of Θ, and
§ζ is considered as a scalar form of type (1, 0). Then there are
neighborhoods of the origin V and W of C0Λ(M, Θ) and P, respectively,
in the \\ \\k-norm topology so that for each φe V there exists a unique
ξ = ξ(φ) in W such that d*(φoe{ξ)) = 0, where 3* = -*#5#* is the
formal adjoint of the operator 3.

Proof. We first note that for ξ e CQ%MΘ), ξ + f is tangent to
bM if and only if *(#ς + #f) = 0 on bM. This is easily checked in
terms of admissible boundary coordinates. Thus it makes sense to
speak of the diffeomorphism e(ξ).

In terms of local coordinates z = (z\ •• , ^ ) w e can write e(ξ) =

(/'(«), , /*(*)) as fa(z) = za + ξa(z) + r%z), where r« - 0(| ξ(z) |2) is a
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C°° function in z and £. This follows from the definition of geodesies
and standard existence and uniqueness theorems from the theory of
ordinary diffierential equations. Then (2.1), for ω = <p<>e(ξ), becomes

β L dzβ dzβ μ \dzβ dzβ

dξr dr7 f dίμ drμ \ (0 7

If ψ and ξ are sufficiently small in || ||fc-norm topology the ex-
pression in the brackets [—] represents an element of an invertible
matrix B = (br

β). Multiplying both sides of the above equality by B~ι

we get

(3.3) ψ o e{ξ) = dξ + φ + F(φ, ξ) ,

where F(φ, ξ) is of at least order 2 in φ and ξ, i.e., it involves ex-
pressions which are at least quadratic in φί(e(ξ))f ξa and the first
order derivatives of ξa.

Now, if VΊ and W1 are sufficiently small neighborhoods of the
origin in JgtM((9) and in the completion Pk+1 of P in the || ||fc+1-norm
topology, respectively, then it is easy to see that j : V1 x Wx—> ^^{(Θ),
ΰdPi ί) — d*(Φ°e(ζ))> is a C°° map in the sense of the theory of Banach
spaces. It follows from (3.3) that the derivative of j with respect
to ζ is the linear map 3*3: PM —• g^i\{θ).

Since the metric g = ^aj gaβdzadzβ on M' is Kahler, the complex
Laplacian Π ^ of a scalar (1, 0)-form ψ = χ α ψadz" is given by

(3.4) Df = Σ ( - Σ ^ M W , where (gaβ) = (g^)'1 .

Also, if ξe C00(M, θ), then

(3.5) d*dξ = Σ (- Σ ίήrjjΓλ-ii;
* V «,/3 /32; v

Now we set ψ = #£ = ^ v gμ~ξvdzμ. Then, using the fact that
the components of the metric tensor are covariant constants and the
Ricci identity (FaF-β - Vj7a)ζ" -
ΣrΣr g"r(dg7σ)/(dza)), we obtain, by combining (3.4) and (3.5), the relation

(3.6) •#£ - #3*3f + Σ Rμiί°dzμ .

Here the jβ^'s are the components of the Ricci tensor Rμ~ =
Σ^ Rμβσ The metric g is also an Einstein metric, i.e., Eμ-a — B/(2n)gμa
where JB = 2^aR" = 2 Σ«.β9"*R«β is the scalar curvature and n —
dimcM = dimcikf'. Thus we get that
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(3.7) •#£ - fd*dζ + A # ί .
2n

On the other hand, • = (1/2)A = l/2(dd*__+ d*d). It follows from
§ 1 that for each C°° real 1-form rj e C\M) there exists a unique
v, e C\M) such that (l/2)Au — R/(2n)u = η9 *u = *du = 0 on bM and
|| % ||Λ+1 <L ck\\τ] ll^i. We note that by assumption R < 0.

Now if ψ1 e C10(iί?), then η = ψ + ψe C\M) and, conversely, every
real 1-f orm can be represented uniquely as a sum of a scalar form of
type (1,0) and its conjugate. Thus we can write u = ω + ώ, ωe Cι \M).
Since Δ is a real operator we get, by comparing types, that for each
feCι'\M) there is a unique ωeC10(M) with

1 7?
—Aω — — ω = i/r , *(α> + ώ) = *d(ω + ώ) = 0 ,

(3.8) 2 2 ^

for some constant c'k depending only on k.
Furthermore, we observe that #: C0 0(M, Θ) —• C 1 0(M) is an isomor-

phism with respect to the norm || \\k for any k. This fact and (3.8)
imply that for each ζ e C0 0(M, Θ) there exists a unique ξeP with
3*3f = ζ, || £ ||fc+1 g cfc || ell*-!, for some constant cfc > 0.

But this shows that 3*9: P - ^ C00(i(f, β) is an isomorphism of
normed spaces. Since P and C°'°(M, Θ) are dense in Pk+1 and ^Λ-ί(θ),
respectively, 3*9: Pk+1 —> .^^-ϊί®) is an isomorphism of Banach spaces.
By the implicit function theorem it follows that there exists a neighbor-
hood V of the origin in ^ 0 1 ( 6 > ) and a C°° map ζiV-^W, such that
d*(φ o e(ξ(φ)) — 0. This equality can also be written as d*dξ(φ) + 9*<p +
d*F(φ, ξ(φ)) = 0, which is a second-order elliptic differential equation
with respect to ζ. Thus ζ(φ)eC°'°(M, Θ) whenever φeC"Λ{M, Θ).

We now consider the covariant differentiation operator D — 3 + 9
on Cp q(M, Θ). Here §φ = dφ + θ Λ <P and 0 is the connection of the
metric g. Since gr is Kahler we have that

Δ = DJ5* + D*D = Π f + • " , where Q ' = 99* + 9*9 , • "

^ ' * = 3d* + d*d , 9* = - * 9 *

(3.10) A = Π ' - D " = V^l(e(8M - Λe(s)) ,

where β(s)φ = dθ A ψ and Λφ = *-1(/o Λ *9) with ^ = i / ^ I χ α ; j S gajdza A
dzβ.

We refer to [2] for verification of the above identities.
In addition to the Kahler-Einstein condition on the metric g we

also make the following assumption:
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(3.11) There exists a constant c > 0 such that for all

°-\M, θ ) , ί = l f 2 , Ά

A large class of Kahler-Einstein manifolds of negative scalar
curvature satisfying (3.11) is considered in [1].

It follows from (3.9) and (3.10) that • ' = l/2(i + A). Then (3.11)
together with the results of § 1 imply that for each φ e C°'Q(M, θ),
q = 1, 2, there exists a unique ^ e C0 9(M, Θ) with *f = * D ^ = 0 on
δM, Π V — Ψ a n ( i II ̂  IU+2 ^ const. || £> ||fc. In the sequel we will denote
ψ by Gφ. Moreover, φ can be uniquely represented as φ — ψι

Jr φ2

where φι = G Π V a n d DV 2 = 0. We set Hφ = <p2. Similarly, using
the notation introduced in Proposition 3.6, for each ζe C°'°(M, θ) there
exists a unique ζe P (denoted by Gξ) such that d*dGξ = ξ, \\Gξ \\k+2 <̂
const. || ί IL. Also, ξ can be uniquely represented as ζ = f: + f2 where
fL = G9*af and 3*3f2 = 0. Again we set Hξ = ί2. The use of the
same letters G and if for the spaces C°'q(M, Θ) and C°'°(M, Θ) will
not cause any confusion.

We are now ready to prove our main result.

THEOREM 3.7 (Main Theorem). Let M' be a complex Kahler-
Einstein manifold of negative scalar curvature. Let M he a subset
of Mr with nonempty interior such that its boundary bM is a C°°
submanifold of Mr of {real) dimension (2n — 1) (n — dimcM), M =
MϋbM is compact in M'\ and condition (3.11) is satisfied. Then
a universal family of deformations of M exists.

Proof. Proposition 3.6 suggests that it is natural to construct
a universal family by considering the set Φ = {φ e C0Λ(My Θ) | dφ —
[φ, φ] = 0, d*φ = 0}.

If φeΦ, then ψ — G3*[<p, φ] — Hφ and thus

Φ C Ψ - {φ e C*'\M, θ)\φ- Gd*[φ, φ] G H0'1}

where H01 = {φ e C0Λ(M, θ) \ Q V = 0}.

The map J: C0 1(M, θ) -> C0 1(M, θ) given by Jφ = φ - Gd*[φ, φ]
is uniformly continuous in || Iĵ -norm topology and therefore it can
be considered as a continuous map J: ^%OΛ(Θ) —+ ^t o l (6)) Since the
operators G and 3* are linear and the bracket is bilinear, J is also
complex analytic. The differential of J at the origin is the identity
map. Hence, by the inverse mapping theorem for Banach spaces
there exists a neighborhood N of 0 in Sίf^ι{β) and a complex analytic
map t κ+ φ(t)9 t e N,_ such that J{φ(t)) = t. Let N' = N n -EΓ0'1. Then,
for teNf, φ{t) — Gd*[φ(t), φ(t)] = t and by applying the operator • '
we get that Πr<P(t)-3*[φ(t)9 φ(t)] = 0. Hence, φ(t) e COΛ(M, θ) if t e N'.
Moreover, φ(0) = 0 and if t is sufficiently small in || ||fc-norm, φ(t)
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represents an almost complex structure MφU) on M.
We now give a necessary and sufficient condition on t so that

φ(t) 6 Φ.

Since J(φ(t)) = ί, 3^(ί) - 3G3*[<p(£), (£)] = <?*• By using the rela-
tions dGf = Gdψ + HdGψ and Π'Gω = GΠ'ω - J3ώ, ^ e CM(M, 0),
ωeC°'q(M9 θ), g = 0, 1, we obtain the equality

(3 12)
= 3ί - Gd*d[φ(t), Ψ(t)] - H[φ(t), φ(t)] + HdGd*[φ(t), φ(t)] .

Let ω(ί) be the right-hand side of (3.12). Since the operators
G, H, 3, 9* are linear operators and [ , ] is bilinear ω: N' -* β^c°il(Θ)
is complex analytic. Hence, φ{t) e Φ if and only if t e T = Tλ f) T2,
where Ti = {t G Nf \ ω{t) - 0} and T2 = {teN'\ d*φ(t) = 0}. Moreover,
T is a Banach analytic set and the map φ: T~>C01(M, 0), t\^>φ(t),
is analytic. Thus (T, φ, 0) represents a complex analytic family of
deformations of M. We will now prove that this family is univarsal.

Let (S, ψ, s0) be any other family of deformations of M. If S'
is a sufficiently small neighborhood of s0, then, by Proposition 3.6,
for each ψ(s) there exists a unique ξ(s) e P such that 3*(^(s) o e(f(β))) = O.
Thus ψ(s)oe(ζ(s)) e Φ, so there is a map r: S' —»Γsuch that ψ(s) o e(ί(s)) =
<£>(τ(s)). It only remains to show that τ is complex analytic.

We first observe that the proof of Proposition 3.6 also gives the
C00 dependence of ί on s. Next, φ(τ(s)) ~ Gd*[φ(τ(s)), φ(r(s))] = τ(s)
and τ(s)eH°'\ Therefore τ(s) = Hφ(τ(s)) - H(f(s)oe(ξ(s))). By defi-
nition, at each s G S', ^(s) can be extended to an analytic map of a
neighborhood U of s in the ambiant space of S. Then ς(s) has a C°°
extension in such £7's so that 3*(^(s)oβ(f(s))) = 0. Since τ(s) =
H(ψ(s) o e(ζ(s))) for points on S', it is clear that τ(s) can also be ex-
tended to a C°° mapping on a neighborhood Z7 of s in the ambiant
space of S. We will actually show that τ(s) is complex analytic on
U if S' is a sufficiently small neighborhood of s0 in S. Therefore,
without loss of generality, we may assume that U is an open subset
of a finite dimensional complex space. For each s, ue U we have
ψ(s + u)oe(ζ(s + u)) = ψ(s + u)oe(ξ(s)) - ^(s)oe(ί(s)) + IiΓ+ ̂ (s)°e(ί(s + %)),
where

i ί = t ( s + %) o e(ς(s + w)) - ^(s + u) o e(ξ(s))
(o.lo)

+ f ( s ) e(ς(s)) ψ(s) e ( ( s + %))

Since ^oβ(f) = ψ + 3f + ί 7^, ί), we find that K = 0(\u |2). The map
Γ will be complex analytic on U if we can show that for each tangent
vector /of type (0, 1), l[ψ(s + u)<>e(ξ(s + u))]u=Q = 0. First we observe
that for fixed s, ^(s + u) o β(ς(s)) depends complex analytically on ^.
Next by Proposition 2.5, we have that
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t(s)oe(ξ(s + u)) = ψ(s) + 9^(s)(ί(s + u) + ψ(s)oξ(s

. + (3f (β) - [t(β), Ψ(s)] o f (β + w) + 0(|
Therefore,

(3.15) = 3^(5)(^ί + ψ(s)o?ζ)

where /f = s[ζ(s + %)]«=<>

We apply the operator G3* to both sides of (3.15). We note that
since sξ e P Gd%d/ζ = •£. This, together with the fact that 3*(f (s +
u) o e(f (s + u))) = 0, implies that

/f = G3*[t(s) •£] - G3*^ ( )(^(s) o 7f)
(o.lb)

- G

We estimate (3.16) in || l^-norm and obtain the inequality

(3.17) lkeil
Since f(s0) = 0, const. || ψ(s) \\k < 1 if iS' is sufficiently small. But

then (3.17) is satisfied if and only if sζ =• 0. Hence, /[τ{s + u)]u=0 =
iZ/[τ/τ(s + ̂ )o^(ί(s + ̂ ))]M=0 = 0. Therefore, the map τ is complex
analytic.

4* Compact Riemann surfaces with boundary* It is natural
to ask the following question: By introducing suitable boundary
conditions on the elements of CQΛ(M, θ) can one find a category of
families of complex structures of M such that the universal family
is parametrized by a finite dimensional space? We will answer this
question affirmatively in the case of bordered compact Riemann sur-
faces M. At the same time, without making use of quasiconformal
mappings and Schwarzian derivatives, we will describe sufficiently
small complex structures on M in terms of the reduced Teichmuller
space considered in detail in [3] and [4].

Let M' be the double of M, i.e., if, for some Fuchsian group
Γ,M= UjΓy then Mf = Ω/Γ, where U is the upper half plane of
the complex plane C and Ω is the complement of the limit set of Γ.
The symmetry / of M', changing the orientation of M\ is an anti-
conformal involution and can be lifted to the involution z \-*~z of C.
It is shown in [3] that there is a bijective correspondence between
CM(M, θ) and C r

0'W, θ) = {φ_eC0Λ(M', θ) \ φ commutes with J], i.e.,
iίφ = μ(z)dz(d/dz) t h e n , o n Ω, μ(z) = μ{2). L e t T = {φeCo

r'\M', θ ) \ φ =
X~2vdz(d/dz), sup^, I X~2v \ < 1} where X2dzdz is the Poincare metric on
Mr and vdz* is a holomorphic quadratic differential. It is well known
(see [4]) that T is a finite dimensional real vector space. Let
be the completion of C°r

Λ(M', θ) is the || ||λ-norm.
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THEOREM 4.1. The space T represents a universal family of
deformations of M in the category of real analytic families of
deformations of M, i.e., if (S, ψ, s0) is given with S an open set of
a (real) finite dimensional Euclidean space, ψ: S~+C°r

Λ(M', Θ) a real
analytic map (ψ composed with the inclusion C°r

Λ(M\ Θ) c Sίf?$(β) is
a n a n a l y t i c m a p of r e a l B a n a c h s p a c e s ) , sup-g j μ(z, s)\ < 1, ψ(z, s) —
μ(z, s)dz(d/dz), and ir(s0) = 0 then there exists a real analytic map
τ:S-*T with τ(sQ) = 0.

Proof. We first note that each φ = μ(z)dz(d/dz) e C M (M, Θ) with
sup^ I μ(z) I < 1 represents an almost comlex structure on M and thus
a complex structure since dφ = [φ, φ] = 0 on a Riemann surface.
Next, we observe that M' is a Kahler-Einstein manifold of negative
(scalar) curvature. Thus, by Proposition 3.6, if \\φ\\k is sufficiently
small then there exists a unique ξ = ξ(φ) e P such that d*(φ°e(ξ)) — 0.
Now, if / = e(ξ) and dpf is the differential of / at pe hM, then

(4.1) dPf(ή) || bM for any real vector η \\ bM

(4.2) dPf(O 1 bM for any real vector ζ 1 bM.

The first statement follows from the fact that / carries bM onto
bM. For the second statement we make, as in [7], the following
observation. Let &(£), 0 <; t <; t0 = || ξ + f 1]̂ , be the geodesic with
6(0) - p, b(t0) - f(p) and 6(0) - (ξ(p) + ξ(p))/(\\ ί + ξ \\P). We note t h a t

the construction of / given in § 3 implies b(t) a bM. Then dpf(ζ) =
v(tQ), where v(t) is the Jacobi field along b(t) with v(0) = ζ and
v'(0) = Fζ(ξ + ξ) = (ζψxu

ι + QVyu
ι)dj{dx) + (ζψxu

2 + ζΨvu
2)d/(dy) where

ζ = Q(djdx) + ζ2(d/dy), ξ = (u1 + m2)3/(d2) and F, and Fy represent
covariant derivatives. It is easy to check, in terms of boundary
coordinates, that if ζ 1 bM at p = 6(0) then v'(0) 1 bM at p since the
condition ζ e P implies that Fxu

2 = Vyv> = 0 on 6(ί). Then it follows
from the properties of Jacobi fields that v(t) _L b(t) for each t, 0 <̂
ί ^ ί0. Hence, at ί = έ0? d*/(u -L δ ^

Next, (4.1) and (4.2) imply that, in terms of boundary coordinates,
fz and f-z are real on bM. Now, if φ e Q:l{M\ Θ) then φ is real on
bM and, therefore, φ<>e{ξ) = (f-z + <p(f(z))fΊ)/(f8 + φ(f{z))ft) is real on
δikf. On the other hand, 3*ω = 0 for o ) e C u ( M , θ ) if and only if
ω = X~2vdz(d/dz) where vdz2 is a holomorphic quadratic differential on
M. In our case, ω = φoe(ξ) and hence v is real on bM. Since Λίr is
symmetric with respect to 6ikΓ, vd^2 can be extended to a holomorphic
quadratic differential on Mf. Therefore, φ e ClΛ(M', θ) implies that
φoe(ζ)e T.

If (S, ψ, s0) is any real analytic family of deformations of M, the
arguments given above show that there is a C°° map τ: Sf —* T where
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S' is a neighborhood of s0. Let S' be an open subset of Rm and let
S* be an open subset of Cm such that S* n Rm = S' and ψ(s) has a
complex analytic extension ψ*: S* -> C^Cflf', (9). By Proposition 3.6
the C00 family of vector fields £(s) e P, s e S', with τ(s) = f (s) o e(£(s))
can be extended to a C°° family f ( s*)eP, s* e S* such that
d*(ψ(s*) o e(ξ(8*)) = 0. Therefore, r can be extended to a C°° map
τ*: S* —> T* = {ft) 6 CM(Λf, Θ) | 9*ω = 0}. It follows from the proof of
Theorem 3.7 that r* is complex analytic if S' is a sufficiently small
neighborhood of s0. Hence τ: S' —> T is real analytic.
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