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A UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS
ON COMPACT INTERVALS

FrankLIN T. IHA

Let L be a formal differential operator of order » and
consider L as an operator from C"([a,b])  L*([a,b]) into
L¥([a, b]). Let {f,---,7} be a set of linear functionals
defined on C*([a,b]) with the property that each 7T, j =
1,---,1, is continuous, where T is a continuous right inverse
of L. Let M be the set of all f€ C*([a, b]) such that 7,(f) =0,
1=<j =1, and N be the set of all f€ M such that Lf =0.
It is shown that the inverse of L from L(M), the image of
M under L, into M N N* is a compact operator and can be
represented as an integral operator. In particular, if [=1n
and {7,} is linearly independent, the inverse of L maps C([a, b])
onto M and it is compact. The Hilbert-Schmidt expansion
theorem is generalized to these inverse operators when L is
self-adjoint on M.

The purpose of this paper is to put the homogeneous boundary
value problems of ordinary differential equations in an abstract’
setting, so that the properties which make the whole analysis go
through become transparent. We replace the usual boundary con-
dition with a linear functional 7 defined on C"([a, b]), where n is the
order of the differential equation. This has been done by many
authors, but their main purpose was to facilitate the notation and,
with the exception of Calkin in [1] and Dunford and Schwartz in [2],
the topological property of 7 was never used. In this paper, however,
the continuity of 7T, where T is an operator whose construction will
be given later, is essential. It is this property which will make the
integral representation of the inverse of a differential operator possible.
Once the integral representation is obtained, we can generalize the
Hilbert-Schmidt expansion theorem to this inverse operator when the
differential operator is self-adjoint on M where M is the set of all
functions in C*([a, b]) satisfying the boundary conditions. The integral
representation of the inverse of a differential operator has been
obtained almost always through the use of the Green’s function
associated with the boundary value problem. But it is easy to find
an example for which the Green’s function does not exist. Even in
such a case, however, we can construct an inverse of a differential
operator L from the range L(M) of L on M into M N N+, where N
is the null space of L in M, and this is the operator for which we
obtain an integral representation and prove that it is compact.
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2. Notations. Throughout the paper L denotes the operator
defined by

(1) (Lf)(x) = kZ:oPk(x) “H@)y, feCa,b],

where each P.(x) is a continuous function on the closed finite interval
[a, b] and P,(x) = 0 for any wxe[a,b]. We regard L as a mapping
from C*([a, b]) < L¥([a, b]) into C([a, b]) < L¥([a, b]), and whenever con-
tinuity is mentioned, it is with respect to the norm of L*([a, b]). All
the functions are restrictions to [a, b]. Thus we simply write Lf = 0
meaning (Lf)(x) = 0 for all z¢€ [a, b].

We set

(2) S ={feC(a, b)) | Lf = 0} .

It is a classical result that S is an n-dimensional linear space.

3. Generalized homogeneous boundary value problems. We
first of all construct an operator T from C([a, b]) into C*([e, b]) having
the property LTf = f for all fe C([a, b]). For this purpose we take
a basis {y;(x)} of S and consider the system of equations

(3) 3, e @) = 0 f@PE),  1Sism,

where 6, =0 if j== n and §,, = 1. Since {y,} is a basis for S and
P(x) = 0 for any x¢[a,bd], the Wronskian W(x) of {y;} does not
vanish at any point of [a, b]. Hence we can solve the system (3) for
a,(x) and obtain

(4) a;(x) = Fyx)f(x), 1sj<mn,

in which each F; is of the form Q;(x)[P,(x)W(x)]™* where @;(x) is a
polynomial in ¥ (x), 1<j<mn, 1<k =<mn. Since W(r)= 0 for any
z € [a, b, it follows each F; is continuous on [a, b]. We define T by

(5) (@@= |[SueFRerede,  reclb.
From (8) and (4) we obtain
(6) S U@ F) = 04/Ple),  1sisn.

From (5) and (6) we obtain the following properties of T: For each
fe(a, b)),

(7) Tf e C*([a, b])
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DI = |3 v @Fio) [r@as

(8) e
DNIN@E) = £@) + || S v @F,© |reas
(9) LTf =

The clue to the generalization to the standard boundary value
problems is given by the following very simple observation:

LEMMA 1. Let T be the operator defined by (5) and ce<la, b].
Let C, , be the linear functional defined by ¢, (f) =f®(x), fe C*(a, b]),
0=k<n—1. Then each (.. T, 0 <k <n—1, is continuous, that
18, there exists a constant A, such that

|G/ TH = Adlfll,  feC(a, b)),
where || || denotes the norm of L([a, b]).

From the lemma it follows that the linear functional » occurring
in the usual boundary value problems all have the property that »T
is continuous.

LEMMA 2. Let T, be an operator having the following properties:
(i) LT.f =1 for all feC(a, b)),
(it) [[Tofll = A|Fl for all fe C(a, b]).

If 7 is a linear functional such that »7, is continuous, then T
is also continuous.

Proof. Let {z, 2, -+-, 2.} be an orthonormal basis for S. Then
Tf — T,fe S and in fact Tf — T.f = 32, (Tf — T\f, #2;)2;. Hence,

DTf = DTof + 3(TF — Tof, 2:)(z,)
from which the assertion follows.

DEFINITION 1. Let T be the operator defined by (5). A linear
Sfunctional 1) defined on C*([a, b]) is said to be a boundary functional
for L if it has the property that nT is continuous (with respect to
the norm of L([a, b])).

DEFINITION 2. A set {1, ---, 7} of boundary functionals for L
is said to be linearly independent if they are linearly independent as
duals on S, that is, if X', a;(f) =0 for all fe S implies a; =0,
1<j=1, where S is the set defined in (2), or equivalently, if for
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any basis {f;} of S, the rank of the matrix [7,(f;)] is [.
As a direct generalization of the usual homogeneous boundary
value problem, we have

THEOREM 1. Let {n, ---,7,} be a set of linearly independent
boundary functionals for L and let

(10) M={feCa,bD 7:(f) =0, 1=j=mn}.

Then the inverse K of L from C(la, b]) into M exists, and it s
compact. Moreover, there exists a function K(x, &) having the fol-
lowing properties:

(1) &N = || K@, 9@z, feClla, b
for cach ¢ [a, b]

(12 K(, &) e Lila, b)

and

(13) S" | K, &) "ds < B* for all zela,b]

for some comstant B.

Proof. Let {y, ---, y,} be a basis for S. It is straightforward
to show that L is one-to-one on M.

Since det [7,(y;)] = 0, given feC([a, b]), there exist unique C,,
1 =<j =< n, such that

(14) S @G = —7(Tf), l=iszn.
Moreover, each C; is of the form
(15) C; = 3} @l IF)

where «,; are constants which depend only on 7,(y;), 1=1=mn,
1<j=<mn. From (14) and (15) we obtain

(16) 77@ S, Iy + Tf> =0, 1=Zi<n.
We set
(17) (T)@) = 3, 3, @ Ty, feClla, b)

and
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(18) Kf=Tf+Tf, fel(a,b]).

From (16), (17), and (18) we have 7(Kf) =0, 1 <1 < n, fe(a, b)),
so that Kfe M for all fe C([a, b]). Moreover, from (9), (17), and (18),
we see that L(Kf) =f for all feC([a, b]). The compactness of K
follows from the fact that 7, is a continuous operator with finite
dimensional range, so that T, (along with T') is also compact. From
the hypothesis, for each j, 1 <j < n, there exists a constant 4;
such that

17(TH | = A Wfll,  feC(a, b)) .

Since C([a, b]) is dense in L*([a, b]), we can extend the continuous
linear functional f— 1;(Tf) continuously to L*([a, b]) with the same
bound A;. Hence it follows that there exists G; € L*([a, b]) such that

(19) nTf) = || GOr@dE,  feCa, b
and
(20) [1G@pra=s 45

Substituting (19) in (17), we obtain

a

@) (@) = [ [SEen@e]ros,  recia .

2=1j=1

We set

(22) i@, ) = 3 3, @ @Gd)

(23) J@, &) = z Y@FE) if a<éi<w
=0 if &>z,

24) K, §) = Iy, &) + J(=, &) .

Then, from (18), (5), (23), (21), (22), and (24) we obtain
EN@ = | K@, 97@ds,  feCla, b)) -

From (20), (22), (23), and (24) and from the fact that y; and F},
1 < j =< n, are continuous functions on the compact set [a, b], it fol-
lows that K(x, &) has the desired properties (12) and (13).

We next consider the case in which the number of boundary
functionals is not necessarily # and may not be linearly independent.
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THEOREM 2. Let {n;}} be a finite collection of boundary func-
tionals for L. Let

={feC(a, b)) [7:(/)=0, 1=j=1
N=MnNS={feM,| Lf = 0}
M, = M,nN N* = {fe M,|(f, 9) = 0 for all ge N}
L(M) = {f|f = Lu for some u< M}.
Then there exists an operator K, from L(M,) into M, such that
(i) LK.f=7f for all fe L(M,),

(ii) K, is compact on L(M,),
(iii) there exists a function K/(x, &) such that (K ) =

Sb K\(z, §)f(6)d&, fe L(M,); for each xe [a,b], K|z, &) e L¥([a, b]), and
Sb | Ki(x, &) ’dé < B} for all x € [a, b] for some constant B,.
Proof. Let dim N = p. Let {g,} be an orthonormal basis for N
and let
i) = (f,95), fel¥a,b), 1=j=p.

Then clearly 7,.;, 1<j=<p, are boundary functionals for L.
Moreover,

={feC(a, 0D [7:(/) =0, 1=j=l+p}.

Since M, = M, @ N and N is the null space of L on M, L is one-
to-one on M,, so that if a solution in M, of the equation Ly = f does
exist, it is unique. Let {y,} be a basis for S. Then if fe L(M,) =
L(M,), there exist unique C;, 1 < j < n, such that

>, Ci(a) + (TF)(@)

is the solution of Ly = f in M,, that is,

(25) L(% Cos + Tf) = f
and
(26) WS 0w+ IF) =0, 1=isl+p.

From (26) it is seen that each C; is of the form
I+p
C;= kZ:‘al a0 Tf)

where a;,€C depend only on 7;(¥:), 1<j =<1l +p, 1<k=<mn. Let
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@) (KN =3 S s THu@ + (TN, Fe L.

Then from (25), (26), and (27) we have K,fe M, and L(K,f)=f
for all fe L(M,). The proof that K, is compact and that it can be
represented as an integral operator satisfying (i)-(iii) is the same as
in the proof of Theorem 1.

4. Generalized Hilbert-Schmidt theorems. We get back to
Theorem 1. We need to extend the operator K to L*[a,b]) and
establish some elementary facts before we can state the next theorem.

Since each 7,;T is a linear functional continuous on the dense
set C([a, b]), it has a unique continuous extension to L*([a, b]). Hence
T, has a unique continuous extension f’o to L¥[a, b]). We observe
that

(28) T.fe C(a, b)) for all fe LX[a,b]).

The integral defining T makes sense even if fe L¥([a,b]), and
denoting this extended operator by T, it is easily seen from (5) that

(29) Tfe C(a, b]) for all fe L¥([a, b]) .
Let
(30) K=17+T.

Then K is the continuous extension of K and K is compact on
L¥([a, b]). From (28) and (29), we have

(31) KfeC(la, b)) for all fe L([a,b]) .

With these definitions and notations, we have the following
lemma.

LEMMA 3. Let N be a nonzero eigenvalue of K and @ be the
corresponding eigenfunction. Then @< C*([a, b]), and in fact € M,
where M is defined by (10).

Proof. By definition, K¢ = »p and ¢ € L¥([a, b]). Hence from (31)
we have K, e C([a, b]). Since ) = 0, it follows @ € C([a, b]). But this
means that K, = K, e M, so that @ e M.

From this lemma it follows that every eigenfunction of K cor-
responding to a nonzero eigenvalue is also an eigenfunection of L.

We now prove the Hilbert-Schmidt theorem for the inverse
operator of Theorem 1 when L is self-adjoint on M, that is, when
(Lf, 9) = (f, Lg) for all f, ge M. (For the conditions as to what
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differential operators can be self-adjoint, see Naimark [3].) Before
we state the theorem, however, we observe that if L is self-adjoint on
M, K is self-adjoint on C([a, b]) and so K is self-adjoint on L¥([a, bD).
Moreover, since the range of K contains an infinite dimensional
subspace M, it follows that K has infinitely many eigenvalues. With
these and the elementary properties of self-adjoint compact operators
on a Hilbert space in mind, we state the theorem.

THEOREM 3. Let L have the additional property that it is
self-adjoint on M. Let {p;} be the complete system of orthonormal
eigenfunctions of K corresponding to monzero eigenvalues, and Nj
be the eigenvalue of K corresponding to ®;. Then for each f e L¥([a, b)),

(82) Ef = 3, (Kf, 2)9; = 3,0, 2P
and the series converges to Kf uniformly on [a, b].

Proof. The fact that the series converges to Kf in L*([a, b])
follows from the theory of self-adjoint compact operators on a Hilbert

space.
Using the Cauchy’s inequality, we obtain

m m 1/2[C m 1/2
PRI AT R PSPHEIOTI i
Since \,;@;@) = S"K(x, Op;(&)dé, fixing z€[a, b], recalling (12) and
179
(13), and applying the Bessel’s inequality to the function K(x, §), we
obtain

Snle@rs | 1K@ oras B
Hence,

m " e

EEDWICIES: PAIGESTY

for all z¢€[a, b], from which we see that the sequence of the partial
sums S;(z) of the series in (32) is uniformly Cauchy on [a, b]. Each
@; is continuous by Lemma 3, so that S, C([a, b]) for each . Hence
the limit of the partial sums S)(x) is also continuous on [a, b]. But
{S} converges to Kf in L*([a, b]) and KfeC([a,d]) by (31). Hence
the function to which {S;(x)} converges uniformly must be Kf, which
completes the proof.

As an immediate consequence of Theorem 1, Theorem 3, and
Lemma 3, we have the following theorem:
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THEOREM 4. Let {9, --+, 0.} be a linearly independent set of
boundary functionals for L and let L be self-djoint on M = {fe
C"([a, b)) [ 7;(f) =0, 1L < j < n}. Let {p;} be the complete system of
orthonormal eigenfunctions of L and p; be the eigenvalue correspond-
ing to ;.  Then for every fe C([a, b]) the solution of the generalized
boundary value problem

Ly=f
7i(y) =0, 1<j<n

exists and can be represented by the series
S 155, )2
the series converging to the solution umniformly on [a, b].

In order to facilitate the statements of the following two theorems,
we state conditions and definitions used in the theorems.

(i) {my, -+, 1 1< m, is a set of boundary functionals for
L, in which {n, ..+, 7} is linearly independent in the sense of
Definition 2.

(i) M, ={feC(a, b)) | 7:(f) =0, 1 <j =<1

(iii) L is self-adjoint on M,.

iv) N=M,nS;dimN=p=n—r;q=1—1.

(v) {4y, -+, ¥,} is an orthogonal basis for N.

i) &) = (f, ¥;), feL¥a,b]), 1 =<7 =<p. Then each ; is a
boundary functional for L and the set {9, --+, %,, {, -+, {,} is linearly
independent in the sense of Definition 2.

1, there exists a compact operator K such that
for all fe C([a, b]).

(vii)) {®;} is the complete system of (orthonormal) eigenfunctions
of L in M,N M, and p; is the eigenvalue corresponding to ®;, that
is, ;€ M,N M, and Lp; = p;p;.

;} Then by Theorem
LKf =f and Kfe M,

THEOREM 5. For every fe C([a, b]) we have
Kf = 3, 1575, 9% + 3 (F, v) K,

and the series (together with the second sum) converges to Kf
uniformly on [a, b].

Proof. Since L is self-adjoint on M, N M,, K is self-adjoint on
L(M, N M), the image of M,N M, under L. We want to show that
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L(M,n M) is invariant under K. We first show that Kge M,N M,
for every g€ C([a, b]) N N*. To this end we show that every fe C([a, b])
can be expressed in the form

-9+ g(f, Vvi)vs

with g e L(M, N M,).

Let ¢, = Ky, 1 £k < q. We claim that the determinant of the
q x ¢ matrix [7,.,(e;)] is not zero. Suppose the contrary. Then
there exist a; e C, not all zero, such that

q
%%H(ea’)“a’:o, 1=si=4¢,
or
q
77r+i(z ajej) =0, 1=7=¢.
J=1
Since >, aje;€ M, it follows 7,(3 - aje;) =0, 1<k =1, that is,
>, ae;€ M, Hence, (L3, @je;), ¥) = 0 for all ¥+ € N since L is
self-adjoint on M, and NcC M, Since L3, a.e) =D, a;€N,
it follows that >72., a;y; = 0, which implies a; =0, 1 <j < ¢, con-
tradicting the choice of a;’s. Hence, det [7,,,(¢;)] % 0. Let fe C([a, b]).

Then Kfe M, and since det[7,..(e;)] # 0, there exists a unique set
{B;}f, B;€C, such that

S 7o) = 7dKS),  1Sisa,
or

77¢+1(Kf““]i=15j9f>:0, 1=i=4q,
from which we have

Kf — g,@,-e,-eMoﬂ M, .
Let g =f— 3%, Bsv;. Then Kge M,N M, and we have
=9+ gl Bivi «

Since g = L(Kg)e L(M, N M,) and L is self-adjoint on M, we have
(9, ¥) = 0 for all € N. Hence (f, ¥4) = (9, ¥3) + Xi= Bi(¥s, V) = Bus
1<k <q. Thus, for every feC([a, b))

(33) f=0+ 3 i
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with Kge M, N M,. It follows immediately from (33) that
(34) KfeM,N M, for all feC(le,b]))N N-.

To prove the invariance of L(M,N M,) under K, let ge L(M,N M,).
Then Kge M, N M, and since M, c N-, we have Kge N-. Moreover,
Kge(C([a, b]). Hence from (34), K(Kg)e M, N M, or Kge L(M,N M,).
Thus L(M,N M,) is invariant under K.

We let:

K, be the restriction of K to L(M,N M),

H, be the closure of L(M,N M) in L*(Ja, b)),

K, be the continuous extension of K, to H,.
Then K, is a compact self-adjoint operator on the Hilbert space H,.
We next show that if @c H, and » = 0 such that K,» = \@, then
pe L(M, N M,).

Since K is representable as an integral operator by Theorem 1,
K, is representable as an integral operator and consequently just as
in the case of Theorem 1 we can show that

K,feC(a, b)) for all feH,,

so that @ = V' K@ € C({a, b]). Hence by (33) we can write ¢ = g +
D= (@ Yri); with g € L(M, 0 M). But (f, ) = 0 for all fe L(M, N M)
and for all y€ N. It follows from this that (f, +r) = 0 for all fe H,
and for all e N. Hence (p,%;) =0, 1=<j7=4¢q, so that p=ge
L(M,n M)). Hence Kp = Kp = K@ =9 and so Lp =1'p. It
follows from this that {®,} is also the complete system of (orthonor-
mal) eigenfunctions of K, corresponding to the nonzero eigenvalues
of K,. Hence by the same argument as in the proof of Theorem 3,
for every fe H,

Rof = 5, (Baf, 2)ps = 3 157, )%

the series converging to K,f uniformly on [a, b]. Now let fe C{{a, b])
and

ng—jZ:l(f, vV
Then from (33) ge L(M, N M), so that
Kf= Ky + JZ:‘ (f, v K

= 3, 1570, )Ps + 3 (F, 1)K
= g v (s P)Ps + g (f, ¥ Ky,
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since (¥4, ;) = 0 for all k¥ and j, and the series (together with the
second sum) converges to Kf uniformly on [a, b].

THEOREM 6. Under the conditions (i)—(viii), for every fe
C([e, b)) N N*, the generalized homogeneous boundary value problem
Ly=rf

has a unique solution in M, and the solution can be represented by
the series

!

A

3 15, 2P
the series converging to the solution uniformly on [a, b].
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