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COMPARISON OF THE STATES OF CLOSED
LINEAR TRANSFORMATIONS

J. D. FAIRES

Let X and Y be Banach spaces and T, respectively S,
be a bounded linear transformation mapping X into Y, re-
spectively Y into X. It is well-known that a nonzero complex
number λ belongs to the spectrum of ST precisely when λ
belongs to the spectrum of TS. The main result of § 2 shows
that for λΦO the states of the operators ST — λlx, TS — λlγ

agree.
Sufficient conditions are obtained for this same result to

hold when T and S are unbounded closed linear transfor-
mations from X into Y and Y into X respectively. Section 4
compares spectral decompositions of ST and TS when these
sufficient conditions are satisfied.

Throughout this paper D(A) and R(A) will denote the domain and
range of A. The resolvent of A will be denoted p(A), the spectrum
σ(A), the point spectrum p(A) and the approximate point spectrum
a(A). [X, Y] will denote the set of all bounded linear transformations,
defined on the Banach space X into the Banach space Y. Any other
notation used will agree with that of [3]. When no confusion will
arise the identity operator will be denoted by I regardless of the space.
The following preliminary result can be easily variίied.

PROPOSITION I.I. If T: D(T) c X-> Y, S: D(S) c Y-+Xand λ Φ 0,
then Xep(TS) if and only if Xep(ST).

2. Continuous transformations•

PROPOSITION 2.1. // λ Φ 0 then R(ST — λl) = X precisely when

E(TS- XI) = Y.

Proof. R(ST - XI) Φ X implies that there exists an x'eX',
%' Φ 0 such that x'((ST - Xl)(x)) = 0 for all x e X. Consequently for
all x e X, 0 = (ST - XI)' (x\x)) = (TS' - Xl)(x'(x)) and λ e p(T'S'). By
Proposition 1.1, Xep(S'T') so y' e Y', yr Φ 0 exists with the property
that for each y e Y, 0 - (S'T - Xl)(yf(y)) - y\(TS - Xl)(y)). Thus
R(TS~XI)Φ Y.

The following is a construction of a "generalized" Banach space
in the manner of that of Berberian [2].

Denote by glim a fixed "generalized Banach limit" defined for all
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bounded sequences of complex numbers and having properties: ([1] —
page 34)

( i ) glim (λΛ + μn) = glim Xn + glim μn;
(ii) glim (λ Xn) = X glim λΛ;
(iii) glim λΛ = lim Xn if {λΛ} converges;
(iv) glimλ% ^ 0 whenever Xn :> 0 for each n.

For a Banach space X, denote by &(X) the set of all sequences
{xn} of elements of X for which sup \\xn\\ < <*>. If for s = {#,Λ} and
* = {Vn} in &(X) and complex λ we define s + t = {#„ + #»}, λs = {λa?n}
and || s Ik = glim || α?Λ || it is clear that &(X) is a prenormed space.
If ^nX) = {se^(X):\\s\\1 = 0} then &(X) = &(X)/^T(X) is a
normed vector space whose completion will be denoted by 3ίΓ{X). Since
x ι-> {#} + ̂ V*{X) is an isomorphism of X into a closed linear subspace
X' of the Banach space JsΓ(X), X can be identified with this subspace
and Xf is called the generalized extension of X.

For Te [X, Γ] define ^ ( Γ ) : ^ ( X ) - > ^ ( Γ ) as ̂ T(T): β - {xn} ^
{Txn}. T is bounded so &(T) is bounded and || &(T) \l = || Γ | | .
Moreover, ^ ( Γ ) : ^ T ( X ) — ̂ T ( Γ ) so ̂ ( Γ ) may be extended to &*(X)
and consequently to X ' to obtain a unique extension 2* 6 [X', Yf] of
Γ with IIT'H = || Γ| | .

For Tlf T2e [X, Γ] and Se[Y, X] the following properties can be
verified directly:

( i ) (2\+ τ 2 y - τ ; + r;;

(ii)
(iii)

The next proposition gives the results which necessitated the
preceding construction. For the Hubert space analogue of this propo-
sition, see Berberian [2], Theorem 1.

PROPOSITION 2.2. Let A e [X, X] then a(A) = a(A') = p(A).

Proof, λ G a(Ar) implies that for each ε > 0 an seX' exists with
|| (A' — Xl)s || < ε || s | |. Since &(x) is dense in X', it may be assumed
that s - K } G ̂ ( X ) . Thus || (A' - Xl)s || - glim \\(A- Xl)xn \\ <
ε glim || xn \\ so 0 > glim [ε || xn \\ - \\ (A - Xl)xn | | ] . By property (iv) of
glim it must be true that for at least one n9 0 < ε || xn \\ — \\ (A — Xl)xn ||
and hence for some xneXy \\ (A — Xl)xn \\ < e \\ xn\\, which implies
λ G a(A).

To complete the proof of this proposition, if suffices to show that
a(A) c p(A'). For X e a(A), a sequence {xn} in X exists with || xn \\ = 1
for all n and \\{A — Xl)xn || —>0. {xn} is bounded in norm so s = {xn} e X',
|| s || = 1 and || (A' - λ/)s || = glim || (A - Xl)xn \\ = 0. Hence X G p(A').

Considering Te [X, Y] and S G [Γ, X] we obtain:
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COROLLARY 2.1. // λ ^ 0 then X e a(TS) if and only ifXe a(ST).

Proof. By Proposition 2.2, X e a(TS) implies X e p((TSY) = p(TS').
Hence by Proposition 1.1, Xep(SfT) = a(ST).

The preceding corollary together with the result of Propositions
1.1 and 2.1 prove the following theorem. The classification of states
of a linear operator may be found in [5].

THEOREM 2.1. If Te[X, Y], Se[Y,X] and X Φ 0, then the
states of TS - XI and ST - XI agree.

Proof. To show that one of the operators cannot be in state I3

Λvhile the other is in state I/3, a theorem of Goldberg [4], Theorem
II 4.4, is used which in our case states:

( i ) T has a bounded inverse if and only if R(T*) = X*.
(ii) Γ* has a bounded inverse if and only if R(T) = Y.

3* Closed transformations* Let T be a closed linear transfor-
mation with D(T) and R(T) both contained in the Banach space X
Suppose further that p(T) Φ φ, that ae ρ(T) is fixed and Ae [X, X]
is defined by A = (T — al)~\ The following theorems are due to
Taylor [6]

THEOREM 3.1. Suppose μ and X are complex numbers satisfying
(λ — ά)μ — 1:

( i ) If xeX and (μl — A)x = y then (T — Xl)(μx — y) = μ~'y;
(ii) If xeD(T) and (T - Xl)x = y then (μl - A)x = μAy.

Furthermore, μl — A is 1-1 precisely when T — XI is 1-1 and on the
common domain of their inverses (μl — A)~ι = μ~2[μl + (T — XPf1]
and (T - XI)-1 = μ(μl - A)-1 A = μA(μI - A)'1.

THEOREM 3.2. Let X and μ satisfy (X — ά)μ = 1. Then X belongs
to ρ{T) if and only if μ belongs to p(A).

The following lemma follows from the closed graph theorem and
will be needed often in our development:

LEMMA 3.1. If P: D(P)c Y—>Z is a closed linear trans formation
and Q e [X, Y] where X, Y9 Z are Banach spaces, then PQ is closed
and if R(Q) c D(P) then PQ e [X, Z\.

For T closed with D(T) and R(T) both in X and 0 Φ aep(T)
we define A = (T - al)~ι and B = T(T ~ aiγι(T- al~}). (By Lemma
3.1, Be[X,X).)
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The next three propositions give the substance for a method of
referring a pair of closed operators to a pair which are continuous and
everywhere defined.

PROPOSITION 3.1. Consider T, A, and B as defined above and OΦ

a 6 ρ(T). For 0 Φ X Φ α, let v = (λ/(λ - af\ μ = (l/(λ - a)). Then
R(B-vI)<zR(T- XI).

Proof. Suppose y = (B - vl)x. Then y + vx = (T - aΓf^x +
a(T - aiyιx] e D(T - al) = D(T - λl) and (T - \I)(y + vx) + (λ -
α:)(2/ + ra) = x + α ( Γ - Λ:/)-1^; SO ~l/a[(T- Xl)(y + w) + (λ - a)y] =
jtί» — Aa?. If Theorem 3.1, part (i), is applied, we obtain that
l/a[(T - Xl)(y + vx) + (λ - α)?/] e E(T - λ/) so that

( ϊ 7 - λ / ) j ^ + — [(T - Xl)(y + ra) + (λ - a)y)

J (,/ + ra)| - ^ L y G Λ(Γ - λl) .
μa J avμ

PROPOSITION 3.2. If XΦQ is such that for some 0 Φ ae ρ(T),
a2IX e ρ(T) also, then R(T - XI) c R(B - vl).

Proof. We may assume, without loss of generality, that X Φ a,
for if 0 Φ a e ρ(T) there exists some a > 0 with Oί{μ\\μ— X\ < a] a
ρ(T) and X = a + (a/2)eiθ

f where θ is the argument of a, will satisfy
our hypothesis.

For xeD(T), BTx = x + aAx + aBx. Consequently, if ( Γ -
Xl)x = y9 then (y - a)Bx = x + aAx — By. Theorem 3.1, part (ii),
implies (μl — A)x = μAy so (λ — a)Bx — Xμx — aμAy — By. Thus

(B - vl)(x + μy)= -—Ay - vμy
X

av
-a)

By hypothesis, a2/X e p(T), so Theorem 3.2 may be used to obtain

1
{aηx - a)

and

ep(A)

Since A — — -/ and B — vl commute,
L (a2 - ax) J
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(2 ) -^-y = (B- vlj^A - *_ ij (x + μy) e R(B - vl) .

The following proposition follows easily by considering equations
(1) and (2), together with the result of Theorem 3.2.

PROPOSITION 3.3. Suppose X Φ 0 and for some a Φ 0 in ρ(T),
a2/Xeρ{T) also. Then T — XI is 1-1 precisely when B — vl is 1-1.

The following theorem is an immediate consequence of the Propo-
sitions 3.1, 3.2, 3.3, and the closed graph theorem.

THEOREM 3.3. Let The a dosed linear operator with D(T) and
R( T) both contained in the Banach space X. Suppose X Φ 0 is a
complex number with the property that for some a e ρ(T), a2/Xep(T)
also, then the state of T — XI is the same as the state of B — vl.

For the remainder of this section, we consider a pair of closed
linear transformations, T: D(T) c X-* Y and S: D(S) c Γ-> X, with
the property that ST and TS are both closed on their respective
domains. We assume moreover that p(TS) Π ρ{ST) Φ ψ and for
aep(TS) Π ρ(ST) fixed we define:

A(ST) = (ST - al)'1 , A(TS) = (TS - al)~ι

and

B(ST) = ST(ST -
B(TS) = TS(TS - aiγ\TS - al)~ι .

When x e D(T), TA(ST)x = A(TS)Tx) thus B(ST) and B(TS) may
be rewritten:

B(ST) = S(TS- aiy'TiST - al)~ι - SA(TS)TA(ST)

B(TS) - T(ST - aiy'SiTS - al)-1 = TA(ST)SA(TS) .

Since R(A(ST)) c D(T) and R(A(TS)) a D(S), Lemma 3.1 shows
that TA(ST) e [X, Y] and SA(TS) e [Y, X]. By Theorem 2.1, when-
ever v ^ 0, the state of B(TS) — vl is the same as the state of
B(ST) — ϊλί, which gives the main result in this section:

THEOREM 3.4. If X Φ Q is such that for some a e ρ(ST) Π p(TS),
az/Xeρ(ST) Π p(TS) also, the state of ST - XI is the same as the
state of TS - XL

It is conjectured that the hypothesis of Theorem 3.4 can be
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weakened to simply requiring that ρ(ST) Π p(TS) Φ {0}. A different
method of proof would likely be needed, however.

In the remainder of this section we consider conditions on the
transformations S and T which will ensure that the hypotheses of
Theorem 3.4 are fulfilled. We first need the following propositions:

PROPOSITION 3.4. If T, S, TS, and ST are closed and X Φ 0 is
such that Xeσ(TS) Γ) ρ(ST), then whenever ae p(TS) Π p(ST),

— eσ(ST) .
X

Proof. Since X e ρ(ST), ST-Xlis 1-1; so by Theorem 3.4, TS - Xl
is also 1-1, and X e σ(TS) implies R(TS - XI) Φ Y. For 0 Φ a e ρ(TS)
and v = λ/(λ — a)2 we have by Proposition 3.1

R(B(TS) - vl) czR(TS- XI)

and consequently

R(B(TS) ~VI)ΦY.

By Theorem 3.3 R(B(ST) - vl) Φ X. If a2/Xe p(ST), then

R(ST - XI) c R(B(ST) - vl) ,

so

R(ST) -XI)Φ X .

This clearly contradicts our assumption of λe p(ST).

PROPOSITION 3.5. If T, S, TS, and ST are closed and ρ19 respec-
tively p2, are connected components of p(ST), respectively p(TS), then
(Pi - P*) U (ρ2 - px) c {0}.

Proof. It suffices to show that both ρλ Π dρ2 c {0}, where δρ2

denotes the boundary of p2, and p2 Π dpt c {0}.
To prove the former, suppose 0 Φ X e p1 Π dp2- Then Xeσ(TS)

and there is an open set iVwith XeNap^ We may therefore con-
struct a sequence Xn e p1 Π p2 for all n with the property that Xn

converges to λ. By Proposition 3.4 μ2/X e σ(ST) whenever μ e p(ST) Π
ρ(TS). In particular (Xn)

2/X e σ(ST) for all n. This is clearly im-
possible since (Xn)

2/X converges to λ and eventually (Xnfl^ £ N.
The next two propositions give sufficient conditions for the

hypothesis of Theorem 3.4 to be fulfilled.
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PROPOSITION 3.6. If T, S, TS, and ST are closed and such that
there exists a neighborhood of zero intersected with an open half
plane about the origin which is a subset of p(ST) Π p(TS) then the
state of TS — XI is the same as the state of ST — XI whenever μ Φ 0.

Proof. Suppose D = {μ | | μ | < r} c U is contained in p(ST) Π
p(TS)1 where U denotes the open upper half plane.

Given X Φ 0, choose a satisfying
( i ) 0 < \a\ <min{r, |λ|};
(ii) argument of a, argα:, is as follows:

(a ) ττ/4 if arg X - 0;
(b) arg X if 0 < arg X < π;
( c ) 37Γ/4 if arg λ = π;
(d) π/2 + arg λ/4 if π < arg λ < 2π.

By direct calculation, it can be shown that both a and a2/X
belong to Da ρ(ST) f] ρ(TS) and consequently by Theorem 3.4, the
states of TS — XI and ST — XI agree. It is clear, by the method
in which a was chosen, that our assumption of U being the open
upper half plane involves no loss of generality. Any other open half
plane about the origin would simply introduce a change in arga.

Note that if S, T, ST, and TS are closed operators in a Hubert
space with both STand TS self-adjoint, the hypotheses of Proposition
3.6 hold.

PROPOSITION 3.7. Let T, S, TS, and ST be closed and such that
there exists a half plane entirely contained in p(ST) Π p(TS). Then
the state of ST — XI is the same as the state of TS •— XI whenever

Proof. Suppose that Z7is a half plane contained in ρ(ST)f]p(TS).
We may assume, without loss of generality, that

U={μ\ IM(μ) > R} where R > 1 .

For X Φ 0 we choose a as follows:
( ί) If arg X — 0, then arg a = τr/4 and | a \ = max {aR, \ X |};
(ii) If arg λ = TΓ, then arg a = 3ττ/4 and | a \ = max {aR, \ X |};
(iii) If 0 < arg λ < π, then arg a = arg λ and

a\ = maxίiλ! a R ]

sin (arg λ) J

(iv) If TΓ < arg X < 27Γ, then arg a = arg X — π and

R
\a = max \ X sin (arg X — π)
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It can be demonstrated in a straight forward manner that both
a and a2jX are in p(ST) Π p(TS) in each case.

4* Spectral decompositions* The notation in the following dis-
cussion is full explained in [5].

THEOREM 4.1. // D is a bounded Cauchy domain satisfying

dDap(ST)f)p(TS)

then there exists a pair of closed subspaces (Xlf X2) of X and (Yl9 Y2)
of Y such that

( i ) (Xu X2) completely reduces ST;
(ii) (Yl9 Y2) completely reduces TS;
(iii) (ST), = ST I X, and ( Γ S ) 1 = Γ S | Γ 1 are continuous with

domains Xl9 Y1 respectively;
(iv) T:Xi-+Yi,S:Yi-+Xi,i = 1,2.

Proof. Let

σι = DΠ σe(ST) ,

σ2 = Df]σe(TS) ,

where σe denotes the extended spectrum of the transformation. σt

and σ2 are bounded spectral sets for ST and TS respectively. Let
τ1 = σe(ST) — σt and r2 = σe(TS) - σ2 be their complementary spectral
sets.

If EiσJ, E(σ2), E{τ^), and E{τ2) are the projections associated with
these spectral sets with ranges X19 Y19 X2, and Y2 respectively, it is
well-known, see [5], that statements (i), (ii), and (iii) are satisfied.

For x G X, E(ax)x e Xγ and

[ (ST -
D27Π,

= Γ - -i-r ( T(ST - \I)-ιd\\ x

- \--K [ (TS - Xiy'
L 2τπ, J+dD

( y ] Tx
dD J

- E(σ2)Tx .

so TiX,— Yi.

Similarly, if xeX9 E(τ^)x e X2 and

TE(τ,) = Γ(I - £/(^))^ = Tx - TE(σ,)x

= (I- E(σ%))Tx - E(τ2)Tx .
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So T:X2~+Y2.
In a similar manner S: Y1 —> Xlf S: Y2 —> X2 which completes the

proof of the theorem.

THEOREM 4.2. If D is a bounded Cauchy domain with

dDap(ST)nρ(TS)

and,

σ, = Dn σe(ST) , σ2 = D Π σe(TS) ,

then

(σ, - σ2) U (σ2 - σ,) c {0} .

// in addition Oeΰ, then
( i ) the complementary spectral sets τx and τ2 are equal;
(ii) the state of ST — XI is the same as the state of TS — XI,

whenever X Φ 0.

Proof. Using the notation of Theorem 4.1, let Tι=T\Xt9

St = S I Yi9 i = 1, 2. Since Ti9 Sίy T^, and StTif i = 1, 2, are restric-
tions of closed operators to closed subspaces, they are closed. Fur-
thermore, M = (ST)U T& = (TS)< for i = 1, 2.

By Theorem 4.1, Sx Γx 6 f̂ , XJ and Γ^efYi, ΓJ and therefore
satisfy the hypotheses of Theorem 1.1. Thus for λ Φ 0, the state of
$1T1 - \E{pύ agrees with the state of T.S, - XE{σ2).

When OeD the sets σ(S2T2) = τx and σ(T2S2) = τ2 are bounded
away from zero. Consequently by Proposition 3.6, the state of S2T2 —
χE(Tj) agrees with the state of Γ2S2 — XE(τ2) whenever λ Φ 0.

It can be seen that the above is both necessary and sufficient for
the state of ST — XI to be the same as the state of TS — XL

From the preceding theorems we obtain the final results:

THEOREM 4.3. Suppose θ£ p(TS) Π σ(ST) and a bounded Cauchy
domain D exists satisfying:

( i ) dDap(ST)np(TS);
(ii) OeD.
If 0"i, •••, ®n is a spectral decomposition of σe(ST) then σQ, σιy

•• ,(τn is a spectral decomposition of σe(TS) where

σ0 = {0}

whenever Oβσ(TS) Π p(ST), and is empty otherwise.
Moreover, if E^ST) and E^TS) are the projections associated

with these spectral sets with ranges Xi and Yi respectively, then



132 J. D. FAIRES

T: X, > Y<

S: Yt > X,

where i = 1, , n, and when 0 e σ(TS) Π p(ST),

S: γ0
0

Proof. First note that by Theorem 4.2,

(σe(ST) - σe(TS)) U (σe(TS) - σe(ST)) c {0}

and since σe(ST) and σe(TS) are both closed subsets of the complex
plane, if Oeσ(TS) f] ρ(ST) it must be an isolated point in σ(TS).
This demonstrates that the spectral decomposition σx, , σn of σe(ST)
gives rise to the spectral decomposition σ0, σu — ,σn of σe(TS).

If oo eσe(ST), i.e., if ST<£[X,X], assume that ooβσn. Then
oly •••, c7Λ_1 are bounded spectral sets for both ST and TS.

Let A be an admissible domain for σif ί = 1, , n — 1. Then

2TΓ^ J

ΛdX

and

2πi 1+dDi

By Theorem 4.1,

T: X, > Yt ,

i = 1, , n — 1, moreover Γ, S are continuous and everywhere defined
on these subspaces.

Further, if Oeσ(TS) Π p(ST) and DQ is an admissible domain for
σQ, let y e YQ. By Theorem 4.1, y e D(S) and

Sy - SE0(TS)y

- SΛ—^- ( (ΓS - Xiy'dx) y
V 2τrί J+«D0 /

- ( - - K \ (ST- Xiy'dx) Sy

- 0 .

To show that T: Xn — Yn, S: Yn — Xn observe that

and
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where E0(TS) = 0 if Oeρ(TS).
When Te[X, Y], Se[Y,X] we clearly have a bounded Cauchy

domain

D = {μ I I μ\< max( | | 5Γ |U | ΓS||) + 1}

which satisfies the conditions of Theorem 4.3. Hence:

COROLLARY 4.1. If Te [X, Y], Se [Y, X] and θ£p(TS) n σ(ST)
then a spectral decomposition σlf '' ,crn of σ(ST) gives a spectral
decomposition σQ, σίf , σn of σ(TS) where

{0} whenever 0eσ(TS) Π p(ST)

φ otherwise .

Moreover, if E^ST) and E^TS) are the projections associated
with the spectral sets with ranges Xύ and Yi respectively, then
T'.X^Yί, S'.Y^X,, i = l,...,n and when Oeσ(TS) 0 ρ(ST),
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