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COMPARISON OF THE STATES OF CLOSED
LINEAR TRANSFORMATIONS

J. D. FAIRES

Let X and Y be Banach spaces and T, respectively S,
be a bounded linear transformation mapping X into Y, re-
spectively Y into X. It is well-known that a nonzero complex
number 2 belongs to the spectrum of ST precisely when 2
belongs to the spectrum of 7'S. The main result of §2 shows
that for 20 the states of the operators ST — Ay, TS — Iy
agree.

Sufficient conditions are obtained for this same result to
hold when T and S are unbounded closed linear transfor-
mations from X into Y and Y into X respectively. Section 4
compares spectral decompositions of ST and T'S when these
sufficient conditions are satisfied.

Throughout this paper D(4) and R(A) will denote the domain and
range of A. The resolvent of A will be denoted p(A4), the spectrum
0(A), the point spectrum p(A) and the approximate point spectrum
a(A). [X, Y] will denote the set of all bounded linear transformations,
defined on the Banach space X into the Banach space Y. Any other
notation used will agree with that of [3]. When no confusion will
arise the identity operator will be denoted by I regardless of the space.
The following preliminary result can be easily varified.

ProrosiTioN 1.1. Iy T:D(TYCc X—Y,S: D(S)c Y—-Xand =0,
then ne p(TS) iof and only if »e p(ST).

2. Continuous transformations.

ProrosiTION 2.1. If N5 0 then R(ST — \I) = X precisely when
R(TS — M) =Y.

Proof. R(ST — M) = X implies that there exists an z'e¢ X',
2’ # 0 such that ’((ST — M )(z)) = 0 for all xe X. Consequently for
allze X, 0 = (ST — AI) (z'(x)) = (TS’ — A)(x'(x)) and X € p(T'S"). By
Proposition 1.1, xe p(S'T") so y' € Y’, ¥y’ = 0 exists with the property
that for each ye Y, 0= (ST — A)(¥'(y)) = ¥'(TS — AN[)(y)). Thus
R(TS — M) = Y.

The following is a construction of a “generalized” Banach space
in the manner of that of Berberian [2].
Denote by glim a fixed “generalized Banach limit” defined for all
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bounded sequences of complex numbers and having properties: ([1] —
page 34)

(i) glim(\, + p,) = glim, + glim #,;

(ii) glim (A \,) = A glim \,;

(iii) glim \, = lim X\, if {\,} converges;

(iv) glim\, = 0 whenever A, = 0 for each n.

For a Banach space X, denote by <#(X) the set of all sequences
{z,} of elements of X for which sup ||z,| < . If for s = {z,} and
t = {y.} in ZZ(X) and complex ) we define s + ¢ = {2, + ¥.}, As = {\a,}
and ||s], = glim||z,]|| it is clear that <#(X) is a prenormed space.
If 4(X)={seZX):|s|,=0} then FX)=ZX)4(X) is a
normed vector space whose completion will be denoted by 2#(X). Since
x+— {x} + #°(X) is an isomorphism of X into a closed linear subspace
X’ of the Banach space 2#(X), X can be identified with this subspace
and X' is called the generalized extension of X.

For Te[X, Y] define &Z(T): Z(X)— Z(Y) as Z(T):s = {x,}—
{Tx,}. T is bounded so <Z(T) is bounded and ||Z(T)|.= 1| T|.
Moreover, <Z(T): 4" (X) — 4"(Y) so & (T) may be extended to F(X)
and consequently to X’ to obtain a unique extension 7" € [X’, Y] of
T with || T'|| = [| Tl

For T, T,€[X, Y] and Se[Y, X] the following properties can be
verified directly:

(1) (I'+ T) =T+ T;

(ii) (AT =\Ty;

(iii) (STY = S'T,.

The next proposition gives the results which necessitated the
preceding construction. For the Hilbert space analogue of this propo-
sition, see Berberian [2], Theorem 1.

PROPOSITION 2.2. Let Ac[X, X] then a(A) = a(4') = p(4).

Proof. nea(A') implies that for each € >0 an se X' exists with
| (A" — M)s|| <el|s]|. Since Z?(x) is dense in X', it may be assumed
that s = {z,}e ZP(X). Thus [[(4’'— A)s||=glim||(4A — M)z, || <
eglim||z,|| so 0> glim[e]||x,|] —|| (A — N])z,||]]. By property (iv) of
glim it must be true that for at least one n, 0 <e ||z, || —|[(4 —N])z, ||
and hence for some x,¢ X, [|(4A — AM)z,|| < el z,|/, which implies
rea(A).

To complete the proof of this proposition, if suffices to show that
a(A) c p(4"). For nea(A), a sequence {z,} in X exists with ||z, || =1
for all » and || (4 — M)z, ||—0. {x,} is bounded in norm so s = {x,} € X',
I|s||=1and |[(A"— A])s|| = glim || (A — A])z,|| = 0. Hence re p(4’).

Considering Te[X, Y] and Se[Y, X] we obtain:
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COROLLARY 2.1. If N\ = 0 then ne a(TS) if and only if n€a(ST).

Proof. By Proposition 2.2, » € a(7'S) implies » € p((TS)) = p(T"S).
Hence by Proposition 1.1, v e p(S'T") = a(ST).

The preceding corollary together with the result of Propositions
1.1 and 2.1 prove the following theorem. The classification of states
of a linear operator may be found in [5].

THEOREM 2.1. If Te[X, Y], SelY, X] and X\ =0, then the
states of TS — N and ST — \I agree.

Proof. To show that one of the operators cannot be in state I,
while the other is in state II,, a theorem of Goldberg [4], Theorem
11 4.4, is used which in our case states:

(i) 7T has a bounded inverse if and only if R(T*) = X*.

(ii) 7* has a bounded inverse if and only if R(T) = Y.

3. Closed transformations. Let 7 be a closed linear transfor-
mation with D(T) and R(T) both contained in the Banach space X.
Suppose further that o(T) s ¢, that aec p(T) is fixed and A e [X, X]
is defined by 4 = (T — aI)*. The following theorems are due to
Taylor [6].

THEOREM 3.1. Suppose ft and M are complex numbers satisfying
N —aye=1:

(i) If xeX and (I — Az =y then (T — N)(px — y) = 'y
(ii) If e D(T) end (T — Nz =y then (¢l — A)x = (Ay.
Furthermore, pI — A is 1-1 precisely when T — N 1s 1-1 and on the
common domain of their inverses (¢ — A)™ = p?[pl + (T — M )77

and (T — M) = p{pl — A)7A = pA(pd — A)7.

THEOREM 3.2. Let N and [t satisfy (M — a)pt =1. Then ) belongs
to o(T) if and only if p belongs to p{A).

The following lemma follows from the closed graph theorem and
will be needed often in our development:

LeMMA 8.1. If P: D{PYC Y—Z is a closed linear transformation
and Qe l[X, Y] where X, Y, Z are Banach spaces, then PQ s elosed
and 1f R(Q) C D(P) then PQc X, Z].

For T closed with D(T) and R(T) both in X and 0 = aeco(T)
we define A = (T — al)y*and B= T(T — al)™(T—«I’). (By Lemma
3.1, BelX, X].)
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The next three propositions give the substance for a method of
referring a pair of closed operators to a pair which are continuous and
everywhere defined.

ProrosiTION 3.1. Consider T, A, and B as defined above and 0+
acpo(T). For 0x=a, let v=OO—a)), p=1/(N—a)). Then
R(B — vI)C R(T — \I).

Proof. Suppose y = (B — vl)x. Then y + vz = (T — al) ‘[z +
(T — al)x]le D(T — al) = D(T — M) and (T — N)(y + vx) + (v —
a)y +vx)=x+ a(T—al)z; so —1/a[(T — M)y + vz) + (A — a)y] =
px — Azx. If Theorem 8.1, part (i), is applied, we obtain that
1/a[(T — AM)(y + vx) + (v — @)y] € R(T — AI) so that

(T—xn@x+%uT—xDW+»@+wx—mw

(1) 1 L1
+ =y + wc)} =——yeR(T— ).
ro avp

PROPOSITION 3.2. If N == 0 is such that for some 0= acpo(T),
a’/ne o(T) also, then R(T — \I)cC R(B — vI).

Proof. We may assume, without loss of generality, that » = «,
for if 0 = a € p(T) there exists some ¢ > 0 with 0¢ {¢|| ¢ — 1| < a}C
o(T) and M = @ + (a/2)e?’, where 6 is the argument of a, will satisfy
our hypothesis.

For e D(T), BTx = « + aAx + aBx. Consequently, if (T —
M)z =y, then (y — a)Bx = © + aAx — By. Theorem 3.1, part (ii),
implies (I — A)x = ptAy so (A — @)Bx = Mux — apAy — By. Thus

(B = »D + py) = ==X Ay — vy

ay 1
- —____q.
A [A (@*/n — a) y
By hypothesis, a*/» € o(T), so Theorem 3.2 may be used to obtain

1
@h —a "W
and

av, [, A B _
——y_[A m[] (B — vI)(x + 1y) .

Since [A - ——N—I ]—1 and B — vl commute,
(a* — an)
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(2) ~Ly=B- uI)[A . (az—/xli—aTIT @ + ry)e R(B — vI) .

The following proposition follows easily by considering equations
(1) and (2), together with the result of Theorem 3.2.

PROPOSITION 3.3. Suppose ) = 0 and for some « = 0 in o(T),
a?/ne o(T) also. Then T — NI is 1-1 precisely when B — vI is 1-1.

The following theorem is an immediate consequence of the Propo-
sitions 3.1, 3.2, 3.3, and the closed graph theorem.

THEOREM 3.3. Let T be a closed linear operator with D(T) and
R(T) both contained in the Banach space X. Suppese v+ 0 15 a
complex number with the property that for some ae o(T), a*/nc o(T)
also, then the state of T — NI is the same as the state of B — vI.

For the remainder of this section, we consider a pair of closed
linear transformations, T: D(T)c X— Y and S: D(S)cC Y — X, with
the property that ST and TS are both closed on their respective
domains. We assume moreover that o(7S) N o(ST) == ¢ and for
aco(TS) N p(ST) fixed we define:

ATy = ST — al)™, A(TS) = (TS — ad)?
and
B(ST) = ST(ST — «I) (ST — aI)™*
B(TS) = TS(TS — aI) (TS — o)™ .
When z € D(T), TA(ST)x = A(TS)Tx; thus B(ST) and B(TS) may
be rewritten:
B(ST) = S(TS — aI)T(ST — al)™ = SA(TS)TA(ST)
B(TS) = T(ST — aI)™*'S(TS — al)™ = TA(ST)SA(TS) .
Since R(A(ST))c D(T) and R(A(TS)) < D(S), Lemma 3.1 shows
that TA(ST)<c[X, Y] and SA(TS)e[Y, X]. By Theorem 2.1, when-

ever v == 0, the state of B(TS) — vI is the same as the state of
B(ST) — vI, which gives the main result in this section:

THEOREM 3.4. If X = 0 s such that for some a € o(ST) N o(TS),
a*/ne o(ST) N o(TS) also, the state of ST — M is the same as the
state of T'S — \I.

It is conjectured that the hypothesis of Theorem 3.4 can be
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weakened to simply requiring that o(ST) N o(TS) = {0}. A different
method of proof would likely be needed, however.

In the remainder of this section we consider conditions on the
transformations S and 7 which will ensure that the hypotheses of
Theorem 3.4 are fulfilled. We first need the following propositions:

ProrosiTioN 3.4. If T, S, TS, and ST are closed and N = 0 is
such that xeoa(TS) N o(ST), then whenever a e p(TS) N o(ST),

aZ
N €o(ST) .

Proof. Since ne p(ST), ST — M is 1-1; so by Theorem 3.4, T'S — M1
is also 1-1, and N € 6(TS) implies R(TS — M) = Y. For 0= a e o(TS)
and ¥y = A/(A — a)® we have by Proposition 3.1

R(B(TS) — vI) = R(TS — A\I)

and consequently

R(B(TS) —vI)+ Y.
By Theorem 3.3 R(B(ST) — vI) =+ X. If a*/xep(ST), then
R(ST — NI)C R(B(ST) — vI),
S0
R(ST) —\) # X .

This clearly contradicts our assumption of \e o(ST).

ProrosiTiON 3.5. If T, S, TS, and ST are closed and 0,, respec-
twely 0, are connected components of p(ST), respectively p(TS), then
(101 - 102) U ((02 - pl) - {0}

Proof. It suffices to show that both p, N dp, {0}, where dp,
denotes the boundary of p,, and p, N dp, < {0}.

To prove the former, suppose 0= Ae p, Nop,. Then \eo(TS)
and there is an open set N with Ae NC p,. We may therefore con-
struct a sequence N, € p, N P, for all » with the property that A,
converges to . By Proposition 3.4 2/x € 0(ST) whenever pe o(ST) N
o(TS). In particular (A\,)/»€o(ST) for all ». This is clearly im-
possible since (\,)*/n converges to M and eventually (. )/x€ N.

The next two propositions give sufficient conditions for the
hypothesis of Theorem 3.4 to be fulfilled.
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ProposITION 3.6. If T, S, TS, and ST are closed and such that
there exists a meighborhood of zero imtersected with anm open half
plane about the origin which is a subset of ©(ST) N (TS) then the
state of TS — NI 1s the same as the state of ST — NI whenever pt = 0.

Proof. Suppose D = {g||p| <r}c U is contained in o(ST) N
©(TS), where U denotes the open upper half plane.

Given \ %= 0, choose « satisfying

(i) 0<|a| <min{r, [N}

(ii) argument of «, arg«, is as follows:

(a) =/4if argn = 0;

(b) argx if 0 <argx <7,

(c¢) 3z/4 if arg N = 7;

(d) 72+ argr/4 if 7 < argx < 2r.

By direct calculation, it can be shown that both a and a®/A
belong to D o(ST) N o(TS) and consequently by Theorem 3.4, the
states of TS — Al and ST — M\ agree. It is clear, by the method
in which a was chosen, that our assumption of U being the open
upper half plane involves no loss of generality. Any other open half
plane about the origin would simply introduce a change in arg «.

Note that if S, T, ST, and TS are closed operators in a Hilbert
space with both ST and TS self-adjoint, the hypotheses of Proposition
3.6 hold.

ProrosiTION 3.7. Let T, S, TS, and ST be closed and such that
there extists a half plane entirely contained in o(ST) N p(TS). Then
the state of ST — NI is the same as the state of TS — NI whenever
A= 0.

Proof. Suppose that Uis a half plane contained in o(ST)N o(TS).
We may assume, without loss of generality, that

U= {p|IM() > R} where R > 1.

For N\ s 0 we choose a as follows:
(i) If argx =0, then arga = 7/4 and |a| = max{aR, |[\]};
(ii) If argn = =m, then arga = 3x/4 and |a| = max {aR, | \|};
(iii) If 0 <arg <, then arga = arg )\ and
- aR
a| = A —
el max{\ ” sin (arg k)}

(iv) If 7 <arg\ < 27, then arga = arg\ — @ and

— f R
|} = max g} sin(arg,\—-ﬂ)} )
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It can be demonstrated in a straight forward manner that both
a and a*/n are in o(ST) N o(TS) in each case.

4. Spectral decompositions. The notation in the following dis-
cussion is full explained in [5].

THEOREM 4.1. If D is a bounded Cauchy domain satisfying
oD c p(ST) N p(TS)

then there exists a pair of closed subspaces (X, X;) of X and (Y, Yy)
of Y such that

(i) (X, X,) completely reduces ST,

(ii) (Y, Y,) completely reduces TS;

(iii) (ST),=ST| X, and (TS),= TS|Y, are continuous with
domains X,, Y, respectively;

(ivy T"X,—-Y,8 Y, —-X,t1=1,2.

Proof. Let

o,=Dnao,(ST),
o,=DnNo(TS),

where o, denotes the extended spectrum of the transformation. o,
and o, are bounded spectral sets for ST and TS respectively. Let
7, = 0,(ST) — 0, and 7, = 0,(TS) — 0, be their complementary spectral
sets. ‘

If E(o),), E(0,), E(z,), and E(z,) are the projections associated with
these spectral sets with ranges X,, Y, X,, and Y, respectively, it is
well-known, see [5], that statements (i), (ii), and (iii) are satisfied.

For 2z e X, E(o)x e X, and

TE(o)x = T[—Z_}M_- Sm (ST — kI)“dx:lx

_ [_% SW T(ST — kI)*idx]x

- [——1 : S (TS — M)“ldx] To
27w J+op
= E(o,)Tx .
so T X,— Y.
Similarly, if € X, E(r,)x € X, and

TE(c) = T — E(o))x = Tx — TE(c)z
= (I — E(0.))Tx = E(z,)Tx .
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So T X,— Y,
In a similar manner S:Y,— X, S: Y,— X, which completes the
proof of the theorem.

THEOREM 4.2. If D is a bounded Cauchy domain with
oD c o(ST) N p(TS)
and
o,=DnNa(ST), o,=DnNao,(TS),
then
(0, — o)) U (0, — g,) {0} .

If in addition 0e D, then

(i) the complementary spectral sets 7, and 7, are equal;

(ii) the state of ST — NI is the same as the state of TS — N,
whenever N == 0.

Proof. Using the notation of Theorem 4.1, let T,=T]X,,
S;=81Y,4i=1,2. Since T, S, T.S,, and S;T;, ¢ = 1, 2, are restric-
tions of closed operators to closed subspaces, they are closed. Fur-
thermore, S, T, = (ST),, T.S; = (TS), for = =1, 2.

By Theorem 4.1, ST, e[X,, X|] and T.S,¢[Y, Y.] and therefore
satisfy the hypotheses of Theorem 1.1. Thus for )\ == 0, the state of
ST, — ME(c)) agrees with the state of T.S, — MNE(g)).

When 0e D the sets 0(S,7,) =, and o(T,S,) = 7, are bounded
away from zero. Consequently by Proposition 3.6, the state of S,T, —
NE(7,) agrees with the state of T.S, — ME(7,) whenever X\ = 0.

It can be seen that the above is both necessary and sufficient for
the state of ST — M to be the same as the state of TS — AL

From the preceding theorems we obtain the final results:

THEOREM 4.3. Suppose 0¢ o(TS) N o(ST) and a bounded Cauchy
domain D exists satisfying:
(i) oDc o(ST) N o(TS);

(ii) 0eD.
If o, ---, 0, ts o spectral decomposition of ¢, (ST) then g, 0,,
-+, @, 18 a spectral decomposition of o (TS) where

o, = {0}

whenever 0 o(TS) N p(ST), and is empty otherwise.
Moreover, if E(ST) and E,(TS) are the projections associated
with these spectral sets with ranges X, and Y, respectively, then
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T X, —Y,;
S Y, — X,

where v =1, -+, n, and when 0eo(TS) N o(ST),
S:Y,— {0} .
Proof. First note that by Theorem 4.2,
(0.(ST) — 0(T8)) U (6(TS) — 0(ST)) < {0}

and since 0,(ST) and ¢,(TS) are both closed subsets of the complex
plane, if 0eo(TS) N o(ST) it must be an isolated point in o(7TS).
This demonstrates that the spectral decomposition a,, -+, g, of d,(ST)
gives rise to the spectral decomposition o, o, -+, 6, of d,(TS).

If «e0(ST), ie., if ST¢[X, X], assume that < eo,. Then
0y +++, 0, are bounded spectral sets for both ST and TS.

Let D, be an admissible domain for o,, 1 =1, ---,n — 1. Then

E(ST) = ——1_ S (ST — AI)'dr
2w, J+ap;
and

E(TS) = —% g (TS =D

+3
By Theorem 4.1,
T:-X,— Y,,
S:Y,— X,

1=1, -+, m — 1, moreover T, S are continuous and everywhere defined
on these subspaces.

Further, if 0e0(TS) N o(ST) and D, is an admissible domain for
0, let ye Y,. By Theorem 4.1, y € D(S) and

Sy = SE(TS)y

— s(_% SWO (TS — kI)“dk)y
_ <~Ezlr—z Lwo (ST — M)™dn) Sy

=0.
To show that T: X,— Y,, S: Y, — X, observe that

E(ST) = I~ 5, E(ST)

and
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E(TS) =1 — gEL(TS)

where E,(TS) = 0 if 0¢ p(TS).

When Te[X, Y], Se[Y, X] we clearly have a bounded Cauchy
domain

D= {p||p] <max(|ST|, || TS| + 1}
which satisfies the conditions of Theorem 4.3. Hence:
COROLLARY 4.1. If TelX, Y], SelY, X] and 0¢ o(TS) N a(ST)

then a spectral decomposition a,, ---, 0, of o(ST) gives a spectral
decomposition o, ., ---, 0, of o(TS) where

{0} whenever 0eca(TS)N p(ST)
6 otherwise .

0 =

Moreover, iof E(ST) and E,(TS) are the projections associated
with the spectral sets with ranges X, and Y, respectively, then

T"X,—-Y, S:Y,—X,, 1=1,.---,n and when 0ca(TS)N o(ST),
S: Y,— {0}.
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