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BRANCHED IMMERSIONS ONTO COMPACT
ORIENTABLE SURFACES

JOHN D. ELWIN AND DONALD R. SHORT

In this paper smooth maps /: Mn —> Nn with a zero-
dimensional critical set are considered. The singularities
of these maps in the case n — 2 are known to be points
where / is locally topologically equivalent to z -»zd {d~
2,3, •••)• Originally these singularities were studied in
connection with the regularity of Douglas' solution to
Plateau's problem.

In § 1, an Euler characteristic formula is developed which
generalizes both the Riemann-Hurwitz equation from complex
analysis and the usual Euler characteristic formula for covering
maps. Section 2 is devoted to several technical lemmas while § 3
applies these lemmas to the case where M is the disc (with holes)
and N is a compact orientable 2-manifold. It is shown that for the
existence of such a map there is a lower limit depending upon the
genus of N and on the number of holes of M.

The singularities of these maps have been characterized by
Church and Timourian [2]. In the case n — 2 these maps are locally
topologically equivalent to z —-> zd (d = 2, 3, ) and for n > 2, these
maps are covering projections. For n — 2, the singularities and
maps are special cases of branch points and branched immersions.
In this case, the Euler characteristic formula represents a generali-
zation of the classical Riemann-Hurwitz equation for light interior
transformations on 2-manifolds. When f'^dN) = dM, the formula
produced here reduces to the Riemann-Hurwitz equation. For n > 2,
the maps are covering projections and the Euler characteristic formula
reduces to the usual equation.

The mappings considered in this paper are not, in general,
interior transformations on the boundary of M. These considered
here, however, appear to have more applications with regard to
questions which have arisen from Plateau's problem. Heinz [6] and
Gulliver, Osserman, and Royden [5] have shown that these maps are
of much more interest than solely in the context of minimal surfaces.

A very readable account of the Riemann-Hurwitz formula may
be found in Whyburn [10]. The authors wish to express their
gratitude to the referee for his many helpful suggestions.

1* Let /: Mn —> Nn be a continuous map between orientable
^-manifolds with or without boundary having finite fibres. If dM Φ
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Φ, assume f(dM) is a closed orientable (n — l)-submanifold of N
without boundary. Let B be any finite subset of N. In addition,
let us assume that M, dM, N - (f(dM) U B), f(dM) - B and dN-
(f(dM) (J B) have finitely generated homology modules with dN —
(f(dM) U B) a closed subset of N. For notational convenience we
will write the last three spaces as the union of their topological
components i.e., N - (f(dM) U B) = U Aif f(dM) - B = \J B3 and
dN - (f(dM) U B) = U Ck. We then have the following Euler charac-
teristic relationship:

THEOREM 1. Suppose that under the above assumptions the
Leray sheaf is locally constant each component X (X = At, Bd or
Ck) with stalk given by Sίfe\f\ Z)lx = (Bμ{z) Z. Further, assume for
each component X that Z(i?*(X: Sίfe\f\ Z)) = χ(H*(X; ®μu)Z)) (here
%(•••) denotes the Euler characteristic). We then have

, χ v XiW - X(dM) = Σ μ{At)χ(At) -

( ) Σ
beB

where μ(b) is the cardinality of the fibre over b.

Proof. Since M and N are locally compact Hausdorff manifolds,
the family of compact supports c is paracompactifying and well
adapted [1]. In addition the fibres are c-taut in M and thus there
is a spectral sequence [1] with

/; Z)) => HΓ\M\ Z)

and natural isomorphisms

d>c U > ^Jix ^ Ήc V Kx)> £)

Since covering dimension dominates cohomological dimension [4], the
assumption that / is light implies that

(0 if q Φ 0 or p < 0
2 ~ (HC

P(N; <%fc\f, Z)) otherwise .

Let us denote έ%fc\f%, Z) by j y . Clearly this sequence satisfies
Serres? theorem [7] which gives the following isomorphism:

\ Z) ™ H?(N;

The sheaf theoretic version of Lefschetz duality [1] implies that

Hq(M, dM; Z) ~ HΓq(M; Z) .

Combining these isomorphisms and the fact that the homology
modules of M and dM are finitely generated we obtain
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( 2) χ(M) - χ(dM) = χ(Λf, dM) = ( - l) χ(fl?(JSΓ; J*0) .

Thus the proof is reduced to the computation of the sheaf
cohomology term.

Since f(dM) is a closed (n — l)-submanifold in N and B is finite,
f(dM) U B is a closed subset of JV. Thus there exists the following
long exact sequence [1]:

> Hΰ%N - (f(dM) U B); sf) > H>(N;

(3) > Ή(f(dM) U B;

N - (f(3M)

Let Bd = /(3ikf) n ^ and ^ = B - Bd. Since 5 , is finite, it is closed
in f(dM) U 5 and again we have the sequence

> H?(f(dM); j*) > H>(f(dM) U B;

Hr(B

Since Bd is finite, a third application of the sequence gives

> W(f(dM) -B j^)—^ H?(f(dM);

> H?(Bd; j*) > H*+1(f(dM) - B;

From the fact that the fibres over B are finite, we have

( 6 ) HXB,; JO ^ H\Bt; j*) « φ H,{Γ\b)\ Z)
beBi

and

(7) Hc°(Bd; Sf) ** H°(Bd; jf) « 0 iί0 (/-^δ); Z)
beBd

with all other dimensions trivial.
Using the hypothesis that f(dM) — J5 is an (n — l)-manifold

without boundary and the Euler characteristic formula for com-
ponents, Poincare Duality [1] gives the following equation:

, o x χ(Hβ*(f(dM) - B; J ^ ) ) = Σ X(HC*(B3;

= Σ X(H;(BJ; e ^)) = (-1)-1 Σ
i \ \ μ(Bj) / / j

Since the homology modules are finitely generated, we can
apply the Euler characteristic formula to each of the above sequences
(3), (4), and (5) to obtain

χ(H:(N; j*)) - χ{Hΐ(N - (f(dM) U B);

+ χ(Hc*(f(dM) U B;

and
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χ(H.*(f(dM); J * 0 ) = χ(H. (f(dM) - B;

Combining these equations with (6), (7), and (8) we have

X(H. (N; &)) = χ(H*(N - (f(dM) U B);
9

+ (-1)-1 Σ μ(BMBi) + Σ μ(b)

Since 3N - (f(dM) U 5) is closed in N, applying the Euler charac-
teristic to the exact sequence of the pair (N — (f(3M) U B), dN —
(f(3M) U B)) gives

χ{Hc*{N - (f(dM) U B);
= Σ x(H?(A<; J * ) ) + Σ ΆHc*(Ck;

= Σzta ίA,; θ z)) + Σzίi fa; θ

or by Poincare Duality

X(H.*(N - (f(dM) u B);

θ
μ(ck)

= (- D"[Σ μiAMAd - Σ μ(CMCk)\ •
i k

Combining this result with (2) and (9) completes the proof.

2* In this section we will develop several lemmas necessary for
the existence theorems of § 3. Recall that a topological submersion
is a continuous map /: ikf —> N which is locally topologically equivalent
to a projection. If / is smooth and its' Jacobian is of maximal
rank at each point of M, then / is a submersion. The following
lemma is a special case of a result proved in [8] for smooth sub-
mersions and again in [3] for general submersions.

LEMMA A. (Tubular Neighborhoods): If f: M-+N is a proper
surjective submersion between n-dimensional manifolds without
boundary then for every y e N there is a neighborhood U of y and
an embedding ε: U x f~\y) —> M such that

( i ) foe is projection onto the first factor.
(ii) ε(y, x) = x for all xzf~\y).
(iii) r\U) = e(U x f-\y)).

Thus each point y of N has a neighborhood U whose inverse image
is smoothly equivalent to a product of U with the fibre f'^y).
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The next lemma follows immediately from the existence of
tubular neighborhoods.

LEMMA B. (Covering Lemma): Suppose f:U—>V is a proper
surjective submersion between n-manifolds without boundary.
Assume that V is connected. Then

( i ) the multiplicity of the cover denoted by μ(V) is constant,
(ii) the her ay sheaf £έfe°{f', Z) is locally constant with stalk

given by §ίfc\f\ Z)]x = φμ{v) Z.

Lemma C verifies the Euler characteristic hypothesis of Theorem
1 for certain subsets of compact polyhedra.

LEMMA C. Suppose M is a compact polyhedron which is
triangulated by the finite simplicial complex K. Let X be any sub-
space of M formed by removing the interior of a number of
simplices and a number of vertices. Then for any locally constant
sheaf on X with stalk G,

χ(Hc*(X; j*)) = χ(H.*(X: G)) .

Proof. Suppose the dimension of K is m and let V denote
the intersection of the i-dimensional skeleton of K with X. Since
V is a closed subset of X for all i, applying the Euler charac-
teristic to the long exact sequence of the pair (L\ V~l) [1], we
obtain

for any sheaf &. Hence by induction we have

X(H.*(X; έ&)) = Σ X(H:{U - L'-ι\ &?)) where L"1 = φ .
3=0

However, Lj — L3'1 is the disjoint union of the interiors of simplices,
which are simply connected. Since any locally constant sheaf
is constant on these simply connected sets, we obtain

H*(U - L*-1; G)

and finally

χ(H.*(X; J^)) = χ(Hβ*(X; G)) .

In particular Lemma C applies to subsets of a compact 2-mani-
fold with boundary formed by removing a finite number of points
and boundary curves.

Our final lemma gives a description of the behavior of a smooth
proper surjection in a neighborhood of the image of a boundary point.
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LEMMA D. (Boundary Covering Lemma): Suppose f:Mn—*Nn is
a proper surjective map between n-dimensional nanifolds with
boundary having discrete fibres. Assume / G C 1 in the interior of
M and that Df extends continuously to dM. Let Df denote this
extension. Assume B = f({x: det (Df(x)) = 0}) is finite and in addi-
tion that f\dM is 1-1. Then there exist neighborhoods U of y e
f(3M) — (B U dN) and V of 0 e Rn and a local homeomorphism
h: f~ιU—* V such that

( i ) Λ(/"1y) = 0.
(ii) h(dMn f-ιU) = {(zu , zn) eV:zn = 0}.
(iii) there exists an integer q > 0 with {z e V: z%^ 0} covered

q + 1 times and {z e V: zn < 0} covered q times by the map h.

Proof. Since / is proper the fibres are finite. Suppose y 0 B
and let f~\y) = {xQ, xu •••, xq} with xQedM and x^dM for i > 0.

Let g be a chart diίϊeomorphism mapping the closed upper half
plane of Rn onto a neighborhood of x0. Let g take the bounding
hyperplane onto a neighborhood in the boundary of M with g(0) = x0.
If follows from [9] that there is a C1 extension F of fog to all of
JBW whose derivative agrees with Dfog on the closed upper half
plane. Since f(x0) = y£ B we have that DF(0) Φ 0. Thus by the
inverse function theorem there exists a neighborhood V of the origin
in Rn and a neighborhood U of y e N such that ί7^ is a C1 diίfeo-
morphism onto U with U Π B = φ. Define F+ = F Π B,\.

Let # e ί 7 and let if be a compact set satisfying xeKczϋ.
Since / is a proper map f'^K) is compact in M. However, f~\K) —
#(F+) is a closed subset of f~\K) and hence compact. Thus /
restricted to f~\U) — #(F+) is proper. From Lemma A there exists
a neighborhood Udϋ such that f~1(U) — g(V+) is homeomorphic
to {xlf , xq} x ?7. Let Λ,: f~ιU-+V be defined by

3* We wish now to apply equation (2) to branched immersions
from the disc or multiply connected disc onto compact orientable
2-manifolds without boundary. Throughout this section we will
assume all branched immersions f:M~+N are surjective and that
/iβjf is 1-1.

Let Dm denote the disc with m holes i.e., dDm = VJίt1 S1 and let
N be a compact orientable 2-manif old without boundary of genus g.
It follows that
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THEOREM 2. For g > 0, there does not exist a branched immer-
sion from A<7-2 onto N.

The next proposition shows that this result cannot be improved.

PROPOSITION 3. For g > 0, there does exist a branched immer-
sion from A?-i onto N.

REMARK 1. The special case of g = 1 gives N— T2 (torus)
and it follows as a corollary to Theorem 2 that there does not
exist a branched immersion of D onto T2.

REMARK 2. It will follow from the proof of Theorem 2 that
if there exists an immersion /: Dm —• N with branch points then there
does not exist an unbranched immersion g: Dm—> N with the same
homotopy type as /. Conversely if there exists an immersion
g: Dm—> N then there does not exist an immersion with branch
points f: Dm—> N of the same homotopy type. The removal of branch
points is therefore, a global problem.

The proof of Theorem 2 will require the following two lemmas:

LEMMA E. χ(N - f(dM)) = χ(N) = 2 - 2g.

Proof. Since / is 1-1 on the boundary, f(dM) is a disjoint
union of 1-spheres VS^ Let each Sx be expanded to a band Sλ in
N with the bands pairwise disjoint. Consider the sequence

>Hn(N- VSd >Hn(N) >Hn(N,N- VSJ >

> Hn_x{N -VSJ

We have

χ(N) = χ(N - VSJ + χ(N, N - VSJ .

Now

Hn(N,N- VSd ~ Hn(VSl9 VS, ~ VS±) by excision.

However, χ(VSlf VSt - VSt) = χiVS, - VSJ - χ(VSd and the lemma
is proved.

LEMMA F. Assume the image of a boundary sphere S1af(dM)
encloses a simply connected region R. Further, assume that neither
R or its boundary contain any branch point images. Then if R
is covered n times there exists a deleted neighborhood of R covered
n + 1 times.
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Proof. From Lemma D it follows that the difference in covering
between interior points of R and points in a deleted neighborhood
of R is one. Suppose that R is covered one more time than any
deleted neighborhood. From Lemmas A and D, ff-iR is a covering
projection. Since R is simply connected this covering projection is
trivial. Thus, again by Lemma D, there exists a neighborhood of
R, say Z7, such that f~ι U = V Li Ut V R where each Z7, is homeo-
morphic to U via / and R is homeomorphic to R. Since R is a
connected component of the closed set f~ιR and is also a component
of the open set f^U, it is a component of the entire domain which
is a contradiction.

Proof of Theorem 2. Assume such an /: D2g_2-+ N exists.

Case I. B = φ i.e., / is actually an immersion. In this instance
equation (1) reduces to

χ(M) - χ(dM) = Σ X(N - f(dM))μ(f) .

Let N — f(dM) be written as the sum Σ At °f its topological com-
ponents. We have from Lemma E

- ΣX(N-f(dM)) = χ(i\Γ> = 2 - 2ff .

We want to show that

= 2-2g<3-2g = χ(M) - χ(dM) .

Now χ(Ai) ̂  1 for all i. Assume χ{A^) = 1 and ̂ 42 is the surround-
ing component of Ax. From Lemma F we have μ(A2) > M^ i) a n ( i
%(A2) ^ 0. If χ(A2) = 0 then A2 has the homotopy type of a 1-sphere
and there exists a component A3 surrounding A2 and satisfying
^(-43) ^ (̂-Ai). Wre may continue in this manner to find a component
Aj with χίAj ) < 0. If Aj serves as the surrounding component for
more than one disc then its Euler characteristic is lowered by one
for each disc. Hence

Σ XiAMAd ^ Σ X(At) = 2 - 2 g < 3 - 2 g .

Case II. B Φ φ. We want to show that the addition of branch
points makes the right hand side of equation (1) more negative.

Since the function / in a neighborhood of a branch point b has
the form z —> zn we have that μ(b) < μ(x) for x in a deleted neighbor-
hood of b. If b e Sιdf(dM) then χ(Sx - δ) = 1 but μφ) < μiS1 - b).
If be Ai where At is a component of N — f(dM) then χ(Aέ — b) —
χ{A%) - 1 and μ(At - b) > μ(b).
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Let Bi be the branch points of / contained in At and Bά the
branch points of / in S}ef(dM). Then by the above equations

t - Bt)μ(Λt - Bt) - Σ X(S} - Bj)μ(S} - Bs) + Σ μ{b)
beB

= Σ χ(A<)μ(A< - B() - Σ I B< I μiA< - Bt)

Σ
B

where | B̂  | denotes the cardinality of Bt.

d = 2~2g

concluding the proof.
For the proof of Proposition 3 let M be a disc with 2g — 1 holes

and N a surface of genus g. Map M onto the complement on the
Riemann sphere of a small disc by a linear fractional transformation.
The resulting image on the sphere will have 2g holes. Assume one-
half of these are located on the northern hemisphere. With proper
alignment we may then identify, with overlap, pairs of holes, one
from each hemisphere. The resulting surface is a compact orientable
surface of genus g covered once at all points except for a band in
the interior of each 2-dimensional hole covered twτice. It is easy to
see that given a disc with more than 2g — 1 holes the map described
above can be adjusted to map the additional holes onto the bands
which are covered twice. There is therefore no upper limit on the
number of holes but only a lower limit given by Theorem 2.

The special case of g — 0 i.e., N = S2 is also of interest. Let
M be the disc and f\M~-*Sz a branched immersion with f{dM 1-1 as
is assumed throughout this section. S2 — f(dM) consists of two
contractible discs Dx and D2. Lemma F shows that / must have
branch points.

Let us assume that each branch point of / is covered once and
that A (except at branch points) is covered n times by / while D<
is covered n + 1 times. Denote by Pif i — 1, 2; the collection of
branch points in Dz and let pt be the cardinality of P>. Then
equation (1) becomes

i - Σ χ(A - Pi)μ(D< - P<) + Σ μΦ)
beB

which reduces to

1 - (1 - Pl)n + (1 - P2)(n + 1) + p, + p2 .

The above equation has four possible solutions

2
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1. μ(D1 - P,) - n, μ(D2 - Pa) - n + 1; Pl = 0, p2 = 2.
2. ^(A - P0 - 2, μ(A - P2) - 3; P l = 2, p2 = 1.
3. μ(Dx - PO - 3, M A - Pd - 4; p, = 3, p s = 0.
4. M A - Pi) = 2, M A ~ P2) - 3; Pι = 4, p2 - 0.
The first solution is possible and is Example 5.2 in [5]. Solu-

tions 3 and 4 are ruled out by Lemma F. The second possibility is
also eliminated by the observation that D2 has a single branch point
and since D2 is covered 3 times, / must have the form z~+zd on D2.
It follows that fldM cannot be 1-1. Hence there is, up to winding,
only one branched immersion from D to S2 with the branch points
covered once.
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