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A NULLSTELLENSATZ FOR NASH RINGS

GUSTAVE A. EFROYMSON

Let D be a domain in Rn defined by a finite number of
strict polynomial inequalities. Then the Nash ring AD is
the ring of real valued algebraic analytic functions defined
on Ώ. In this paper, it is shown that AD is Noetherian and
has a nullstellensatz. For & a prime ideal of AD, AΏ\&* is said
to be rank one orderable if its quotient field can be ordered
over R so that it has essentially one infinitesimal. Then
AD/^ is rank one orderable if and only if & equals the set of
functions in AD which vanish on the zero set of &* in D.

DEFINITION 0.1. Let B denote the real numbers. Let D be a
domain in Rn, defined by a finite number of polynomial inequalities
Pi(x) > 0. A function /: D —> R is said to be algebraic analytic if there
exists a non-trivial polynomial pf(z, xlf , xn) in R[z, xlf , xn] so
that pf(f(x), x) = 0 for all x in D, and if / is analytic (expandable
in convergent power series) at every point of D.

DEFINITION 0.2. The ring of all such algebraic analytic functions
f:D—>R is called the Nash ring AD; see [7] for this notation.

DEFINITION 0.3. (1) An ideal J of AD is real if Σ£=i λ* G J implies
all \eJ.

(2) For JdADf VB(J) = {aeRn |/(α) = 0 for all / in J}.
(3) For SczD, I(S) = {feAD\f(s) = 0 for all s in S}.
In § 1 and § 2 we develop some of the preliminaries for the

study of the Nash ring. Most of § 1 comes form Cohen's paper [3],
In § 2 we prove the finiteness of the number of components of an
algebraic set using Cohen's theory. In § 3 it is shown that AD is
Noetherian. Mike Artin made several valuable suggestions which
were very helpful in proving this theorem.

Finally in § 4 we get to the nullstellensatz. Originally it was
intended to prove the following conjecture.

CONJECTURE O.4.1 An ideal JaAD is real if and only if I(VE(J)) = J.
Instead of this we are only able to show that: If ^ c.AD is

prime, then ADj^ is rank one orderable (Definition 4.2) if and only
if I{VR{&*)) = &. This is sufficient to prove the conjecture in the
case DczR2. This is because the only nontrivial case is for & a
prime of dimension 1 in which case AΏ\^ real implies AΏ\^ rank
one orderable.

1 Added in proof, this conjecture is now a theorem proved by T. Mostowskί, pre-
print 1974.
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1, Cohen's effective functions* In his paper, [3], Paul Cohen
introduces the concept of an effective function. Since this concept
is very useful here and is used in [3] to prove the Tarski principle,
which we also find very useful, we will reproduce with some slight
modifications the discussion in [3]. The main change here is to drop
the term "primitive recursive" which is, I believe, not necessary for
our needs.

DEFINITION 1.1. Let i be a field. A polynomial relation
A(xlf , xn) is a statement involving a finite number of polynomials
in k[xlf '",xn] plus the terms: and, or, not, equals, greater than,
and also parentheses.

DEFINITION 1.2. Let k be a real closed field. A function /
defined on a subset D of kn is effective if for every polynomial re-
lation A(x, tu •••, ts), there exists a polynomial relation B(xu *-,xn,
tl9 , t 8 ) s o t h a t A ( f ( x l f , x n ) , tl9 , t s ) i f a n d o n l y if B ( x l f - - , x n ,

( 0 if x = 0
DEFINITION 1.3. Let sgn x = \ 1 if cc > 0.

( - 1 if x < 0

LEMMA 1.4. The function f is effective if and only if there
exists for each positite integer d a polynomial relation Ad(c0, , cd,
%u * •? %nf ̂ ) s o that Ad(c9 x, λ) if and only if

λ = sgn (cof(x)d + •-• + cd) .

Proof All polynomial relations can be constructed from in-
equalities p(x) > 0.

DEFINITION 1.5. Let p(x) = aQxm + + am be a polynomial. By
a graph for p(x) we mean a /b-tuple tx < t2 < <tk so that in
each interval ( - O Q , tt), (tu ί2), •••, (tk, ©o), p(χ) is monotonic. By the
data for the graph we mean sgn (α<), all i; ζtl9 •• ,ίΛ>> a nd^ sgn p(t%)
all i.

It is clear that from the data for its graph we can determine in
which (ti_lf tt) the polynomial has roots.

THEOREM Am. There are effective functions of a0, •••, am which
give the data for the graph of p(x) = aox

m + + αm. Namely, tυe
have effective functions: tι(a), sgn (p(ti(a)) and of course sgn (α )̂ so
that tx{a) < < £w_i(α) forms a graph for p(x).

THEOREM Bm. Let p(x) = aox
m + + am. There are m + 1

effective functions: k(a) and ζ^a) < ζ2(a) < < ξm(a) (possibly not
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everywhere defined) so that fi(α), •••, ?ft(α)(α) are the roots of p{x).

Proof. The proof is by induction. The theorems are trivial for
m = 0. We now assume that we have proven both Ar and Br for
all integers r < m. First we prove Am. The polynomial p\x) has
lower degree r than m and so by the corresponding Br, its roots
are effective functions of the coefficients of p'(x) and the coefficients
of p(x).

Next we prove Bm. First choose a graph ίL(α) < < ίw_i(α)
for p(a ) using Am. From the data we can determine the number of
roots k(a) effectively. We have to show that roots are effective. In
each interval (— oo, tλ)y , (£„ ti+1), , (tm_ly co), there is at most
one root of p(x). Some of the tt could be roots, but since we know
sgn tif this is no problem. Moreover, we can tell from (sgn ti9 sgn ti+1)
whether or not p(x) has a root in (ti9 ti+1). Suppose ζ is such a
root. Then, by Lemma 1.4, we have to show that if q(x) =
cox

s + + cs is another polynomial, sgn q(ξ) is an effective function
of the e/s and α/s. First divide q(x) by p(x) and if r{x) is the
remainder we can replace q(x) by r(x) since the coefficients of r(x)
are effective functions of the c/s and α/s, and q(ξ) = p(ζ)b(ς) + r(ς) =
r(ξ). So we can assume s < m. By induction, we know the roots
ut< < u s of #(#) effectively in terms of the c/s. Thus sgn (u, — t3)
is effective for all i and i, meaning that we know effectively which
of the ud are between tt and ti+ι. By checking sgn (p(uΊ)) for all j , we
can determine effectively where ς is relative to the %/s. Then from
the data for q(x) we know sgn q(ξ) also.

THEOREM 1.6. (Tarski and [3]). Let k be a real closed field
and let A(x1? •••,#„) be a polynomial relation in k[xlf •• ,a?»] with

n > 1. Tλ<m ί/^βrβ exists a polynomial relation B(xZf' ',xn) so

that {3λΊ e fc so that A(xl9 , xn) if and only if B(x2, , xn)}.

Proof. Regard the polynomials pλ(x), , ps(x) which appear in
A(xlf , xn) as polynomials in ^ : with their coefficients in k[x2, , x j .
Then one notes that the truth of 3 ^ A ^ , , xn) depends only on
the relative positions of the roots of the pt(x) and the sign of the
pt(x) in between these roots. By Theorems Am and Bm this data is
effectively determined from the coefficients of the pt which are just
polynomials in k[x2, * , x j .

THEOREM 1.7. The function f(xlf , xn) is effective if and only
if there exists a polynomial relation Af(z, xl9

 9-',xn) so that {z =
f(xu ••-,»„) if and only if Af(z, xl9 , xn)}.
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Proof. If / is effective, consider the polynomial relation t = z.
By the definition of effective function, there exists a polynomial
relation A/t, xl9 , xn) so that Af(t, xl9 , a?w) if and only if
f(xlf •-., a?Λ) = t.

Now suppose A/(£, xlf , α?Λ) exists so that {z = f(xl9 •••,&„) iff
A/(2, a?!, , xn)}. Given any polynomial relation A(z, tu , ίβ), con-
sider the relation (A/ and A). Then by Theorem 1.6, there exists
B(xlf , xn, tu , ίβ) so that (3s: A, and A) iff Bfo, •••,&„,«!, , ίβ).

Theorem 1.7 is the only result in this section which does not
appear in [3]. The reason for adding it is to give a possibly simpler
description of the concept "effective function".

THEOREM 1.8. (Tarski's principle as proved by Cohen [3]). Let
k be a real field with only one ordering and let A(xl9 •••,#„) be a
polynomial relation k[xu •••,#*]. Then if Qt is either V or 3, the
statement (*) {Qιxιe L, Q2x2 e L , , Qnxn e L, A(xl9 , xn)} is true for
one real closed field LZD k iff it is true for every real closed Lz) K.

Proof. First note that V# is just ~ Ix ~. Then use induction
and Theorem 1.6 to find a polynomial relation B involving only the
coefficients of the polynomials in A(xlf •••,&») so that(*) iff B. Since
any real closed field induces the unique ordering on k, B is true or
false independent of L.

2. Algebraic analytic functions*

THEOREM 2.1. Let A(xlf -—,xn) be a polynomial relation. Let
D = {(au •• ,an) in R*1 such that A{au , an)}. Then each con-
nected component of D is also defined by a polynomial relation.
Moreover, there is a finite number of such components.

Proof. We use induction on n. For n = 1, since D is a union
of points and intervals, the result is obvious. For n> 1, A(xlf •••,»»)
involves a finite number of polynomials pt{xu , xn) for i = 1, , s.
Consider each pt as a polynomial in xn with coefficients in k[xlf ,
fl5»_J. Then there exist functions φi3'(xu •••, v j as in Theorem Bn

giving the roots of Pi(x). So our region D will be a union of inter-
sections of sets of the form φi5(xu , xn_λ) < xn < 9V/Ό&1, , χn-i)
(where < could be ^ ) , where (xu •• ,^u_1) is such that (1) both
Ψii&if , &»-i) and ΨiΊ{xu •••, xn-d are defined, (2) (xlf •• , ^ _ 1 ,
Pain* , ̂ - 0 ) e A (3) (αjlf , xn_l9 <PiΊ>(xl9 , ^_i)) e A and (4)

It will be enough to show that the domain EcD oί φi5 — φ



A NULLSTELLENSATZ FOR NASH RINGS 105

can be split up as a union of Et where each Et is connected and
defined by a polynomial relation and φ is continuous on E{. This
is because we can further divide the Et into connected components
where other φx,ά, are defined, continuous and > φi3 by the same
process. Let pφ(xlt , xn_l9 z) = the irreducible polynomial for φ and
let g(xlf * " f xn_±) = the discriminant of pφ with respect to z. By
further subdividing and using Theorem Bm we can also assume φ —
ith root of pψ. So the subset of E where g(xlf , α^-i) Φ 0 can be
written as Eι U U Et where each Et is connected and by our
induction hypothesis each Et can be defined by a polynomial relation.
So fix Ex say. Then let ax(xu . ,αΛ_ 1), - , ad(xu -•-,a;n_1) be the
roots (real and complex) of pΨ(xu , xn-u z). The at are continuous
functions and if some aJJP) is not real, then there exists j Φ i with
θίi{P) ~ cCj(P). Since the a% are continuous, no complex root can
become real without pψ getting a double root so this cannot happen
in Et since g Φ 0 there. So let al9 az, •••, au be the real roots of
pΨ and suppose P G ^ that a^P) < ••• <α«(P) and a%(P) = φ(P).
For Q near enough to P, ^(Q) < < <xu(Q) and so φ(Q) = cct(Q)
which shows that φ is continuous at P (since at is) and so φ is
continuous on Ex. The other Et are handled just the same way.

On the rest of E, we have g(xu , xn-i) = 0 and so we can
solve for xn_x — ψ(xly •• ,x%_2), for possibly more than one ψ but
only a finite number. Now let

h(xu , a;Λ_2) = φ(xu , ίcn_2, ^(^ 1 ? . . . , χw_2)) .

Then, by induction, we can split up the domain F of ψ into sets
Fj which are connected and on which both φ and ψ are continuous.
Then Et+J = {(xl9 , xn^2, f(xlt -, xΛ_2)) | (x:, , x%_0 e ί7,-} is con-
nected and φ is continuous on Ei+j.

THEOREM 2.2. Let D be a domain of Rn defined by a finite
number of polynomial inequalities. Then, if f:D—>R is algebraic
analytic, f is effective.

Proof. There is a polynomial pf(z, xu , xn) so that pf(f(x), x) =
0 for all x in D. Let g(xlf , xn) be the discriminant of pf con-
sidered as a polynomial in z. Then in any connected subset of D
where g(x) Φ 0, / will equal a fixed root of pf(z, x). So /(ίc) is
effective there. When g(x) = 0, we can solve for xn in terms of the
other variables and in polynomially defined regions Dt of Rn~\ xn

will be an algebraic analytic function of xl9 •• ,a;Λ_1. There is a
finite number s of the A so that D = Dx U U Ds. On each Dif f
also will be an algebraic analytic function and so by induction on n
we are done.
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DEFINITION 2.3. Let D be the subset of Rn defined by D = {aeRn

such that pλ{a) > 0, , ps(a) > 0}, where all pt(a) are in R[xu , xn].
Let f:D—>R be an algebraic analytic function. By Theorem 2.1,
there is a polynomial relation Af(z, xlf , xn) in i?[2, xu , #Λ] so
that Af(z, x) iff 2 = /(#)• Finally let L be a real closed field con-
taining R. Now A/(£, x) makes sense for z, xu and xn in L. If
we let JDX, = {a e L% such that all pt{a) > 0}, we can define fL: DL —*
1/ by setting 2 = fL(xu ••-,#«) iff -4/(3, a?!, , α j

LEMMA 2.4. jPor / L defined as above, ive have (f + ^ ) z =
Λ + ^L α^d (/flr)L = fLgL.

Proof. We have f(x) = z iff A/(^, cc); ^(ίc) = w iff Ag(w, x) and
(/ + g)(%) = w- iff A/+g(%, a?). But Vic, ̂ , w, u in i2 we have: pt(x) > 0,
A/(^, x), Ag(w, x) and A/+ί7(%, cc) implies u = z + w. So by Theorem
1.8, the same holds for L.

One handles (fg)L similarly.

3. The Nash ring is Noetherian* We retain the notation of
§ 2 so that D is a domain in Rn defined by a finite number of
polynomial inequalities and AD is the ring of algebraic analytic
functions f: D—> R.

LEMMA 3.1. Every maximal ideal of AD corresponds to a point
of D and vice versa.

Proof. Let ^ be a maximal ideal of AD and suppose that for
every Pe D there exists fP e ^£ with fP(P) Φ 0. Then choose f=£θ,
fe ^€. Let VΓXf) denote the zero set of / in D. There exists a
polynomial pf(z, x) so that P/{f(x)9 x) ~ 0 for all x in D. Then if
pf(z, x) = ad(x)zd + + ao(x), we have ad(x)(f(x))d + + ao(x) = 0
for all x in D. Then it follows that α0 vanishes on VB(f)f and so
Fβ(/) c VR(a0). The singular points of V(a0) will have dimension <£
w — 2 and if we let TF be the singular set of VB(a0), then VB{aQ) —
W will be a union of a finite number of topological components;
Cu - , Cs by Theorem 2.1 or ([8], p. 547). For each C, choose P, e C,
and / t G ^ so that /.(P,) ^ 0. Then ft will vanish only on Wt c C f

which is of dimension <: n — 2. Then replacing F^α,,) by W U
TFi U U Ws, we go through the same process of removing the
singular points and finding new f which vanish only on a lower
dimensional piece of W U Wx U U Ws. Eventually we obtain
/i, , ft e ̂ £ so that for all P in D, there exist some /, with
ft(P) Φ 0. Let / = Σ / i 2 Then / is in .^f and also a unit in AD,
which is a contradiction.
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LEMMA 3.2. For every maximal ideal ^€ c AD = A, the local
ring A.*, is Noetherian.

Proof. (As in [1], p. 87). Every maximal ideal ^f corre-
sponds to a point of D, so we may as well assume that this
point is 0 = (0, 0, , 0). The completion of A at ^ is then
isomorphic to B[[xl9 , xn]] and thus Noetherian. We have B[xl9 ,
xn] c A[o) c R[[xl9 , xn]\ = i ( 0 ) .

Let / i d / z C be an increasing sequence of finitely generated
ideals of A;o). We will show that this sequence is eventually con-
stant. Since {IdAw} is eventually constant, it is sufficient to show
that I finitely generated implies IAW fl Ai0) = I. So let I = (al9 , as)
and let b e IAW Π A(o). Then there exists a finite etale extension B
of iφ.%, •••, xn] which contains al9 •••, αs, and δ. This follows from
the definition of A. Now B = A(o). So (α:, , α s )5 n B = (aίy , α s )5
(by [9], p. 269, Theorem 12). Thus h e (aί9 •••, αβ)A(0), since B c 4 ί 0 ,

LEMMA 3.3. Lβί q be a prime ideal of R[xl9 - , xn] c AD = A.
Then qAD = ^ λ D Π ̂ s where the &% are prime in A.

Proof. Let C = the complex numbers. Let V = the variety of
q in Cn. Let If be a normalization of V. Then we can consider
W<z.C^m so that π: Cn+m -^ CΛ induces TΓ: W-> V. If (^, , zn) are
coordinates for Cn, letting zd = xd + iyd, we get Cn ~ R2n and similarly
we get Cn'm = i22<Λ+«). If

D = {(xl9 "',xn,Vu " , 2/w) e i22% I Pi(x9 , xn) > 0, i = 1, , t] ,

then Tc-'iB) = {(xl9 . . . , x,+m, 7/x, , ^ + m ) e B2{n+m) \ Pi(x19 , xn) > 0, i =
1, , έ and 2/j = 0 for i = 1, , n). As usual pt{x) e B[xl9 , α J .
So π~ι{D) is defined by a polynomial relation. Also since W is the
zero set of some polynomials gfa, , zn+m)9 - , ^sfe, , zn+m) in
C[^, •••, zn±m], W considered in R^n+m] is the zero set of

Im

Then, by Theorem 2.1, π~1(D) f] W has a finite number of components

For each ^ , we define a prime . ^ in AD by letting . ^ =
{f e AP\ f o 7Γ vanishes on an open neighborhood of Et in TF}. Since
any / in AD can be extended to an open neighborhood U of D in
C%, / will be defined on π~\U) and so on π~\U) n W

Since IF is normal, about every point ReW, there exists a
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neighborhood UBaW so that UB — (UR Π W8ing) is connected. Here
Wsing = singular points in W. The above statement follows from
Zariski's Main Theorem [9], p. 320, Theorem 32, and [5] p. 115,
Theorem 16. So if foπ vanishes over some neighborhood UczW of
some Qe Eif it follows that foπ vanishes over some neighborhood of
Et. So if {fg)°π vanishes on a neighborhood of Ei9 then either
foπ or goπ will vanish on a neighborhood of some point of Et and
so over a neighborhood of Et. Thus ^ is prime.

It also follows that qAD = ̂  Π Π &*,. If /eq, then /
vanishes on W and so (/°π) will vanish on a neighborhood of each
Et and so / e ^ n Π M

If /G ̂  Π Π &*,f then foπ vanishes on a neighborhood in
W of 2^, for all i. So, if PeD, foπ vanishes on a neighborhood
of π~\P) on W so f vanishes on V near P. By the local nullstel-
lensatz [5], p. 92, Theorem 20, &[ f] Π ̂ s AP = qλP where AP =
the completion of the local ring AP. But, as in the proof of Lemma
3.2, this implies that ^ Π Π &*,AP = qAP. By Theorem 3.1, all
maximal ideals of A come from some P in D and so c\A =

THEOREM 3.4. AD is Noetherian.2

Proof. It is enough to show that & prime in AD implies &
is finitely generated, [6], p. 8, Theorem 3.4. Let A = AD — lim At

where Ao = R[xlf » , ^ J and A3 is finitely generated over AQ and
Aj is etale over Ao in a neighborhood of Zλ Let ^ n i , = q/
Then q0A = ̂  Π Ω ̂ . , all ̂  prime, by Lemma 3.3. If Ak 3 Ai?

then qy^ = qk f] qjk2 f] Π q, « where t depends on j and k, and
all qifci are prime and of the same dimension. Also q3A = qkA Π Π
qjktA. But qyA Z) q0A and so is the intersection of a finite number
of the ^ . Since lim qάA = &>, qy eventually stops splitting and
q̂ A = ̂ , for i large.

4* The Nullstellensatz* We retain the notation of the previous
sections so that D is defined by a finite number of polynomial
inequalities. AD is still the Nash ring.

LEMMA 4.1. If feAD and f(a) > 0 for all aeD, then, there
exists he AD so that f = h\ Moreover, f and h are units in A = AD.

Proof. Define h(a) = /(α)1/2 for all a in Zλ Then note that h
is in A. The fact that / and h are units is clear.

2 This theorem has been proved independently by different methods by J. J. Risler,
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DEFINITION 4.2. Consider L an ordered field containing R, the
reals. Then ε in L is infinitesmal if 0 < | ε | < λ for all λ in R.

We say L is rank one ordered if there exists ε infinitesmal in
L and if for any other infinitesmal a in L there exist positive
integers m and n so that | ε |m < | α: | and | a \n < | ε |.

THEOREM 4.3. Let ^ be a prime ideal in AD. Then the
quotient field of AD/^ is rank one orderable if and only if

Proof. The proof will occupy the rest of the section. We first
assume AD/&* rank one orderable and note that there are two cases
which will be handled separately. Let px{x) > 0, p2(x) > 0, , ps(x) > 0
be the polynomial inequalities defining D and let p(x) = Π Pi/0- + Σ Xf)1

where I > Σ deg pim Then there exists a real number M > 0 so that
I p(x) I < M for all x in Rn and so by Tarski's principle (Theorem 1.8)
I p(x) j < M for all x in Ln for L any real closed field containing R.

Now let L be a real closure of the quotient field of AΌ\^
which by hypothesis will be rank one ordered. We let φ be the
total map AD —> AΌ\^ —> L. Then since JR[xu , a?J c AD, we have
^ = ( î, ι ,aJ»)eίίB. So p(^x) makes sense and (considering RaL)
we have two cases (1) p{φx) is infinitesmal and (2) p(φx) — a is
infinitesmal for some a e R, a Φ 0. By Theorem 3.4, AD is Noetherian
and so & = (/i, ••-,/«) for some Λ, •••,/, e ^ . We let JC =
V ( ^ ) = {(»i, •••,»») e C * I Λί^, ...,a?n) i = l, ••-,%} and let q =
^ Π jβfo, , xn] and IF - F(q).

LEMMA 4.4. In Case (1), p(φx) = ε infinitesmal in L, X =
contains a real nonsingular point of W = V(q) and so

Proof. If XB, the set of real points of X, is such that XB is
contained in the singular set of W, then there exists q(x) e
B[xl9 - - , xn] so that q(XR) = 0 but φq Φ 0. This is because
R[xu •••, xn]/q is orderable and so q = I(VR(q)) by the Dubois-Risler
Nullstellensatz ([4], Theorem 2.1). Let / = Σ / Λ (recall & = (flt ,
/„)). Then for any aeRn, f(a) = 0 if and only if α e l β .

Now let h(x) = Π?=i P&7(1 + Σ?=i «ί)w where m ^ Σ deg ^ +
degq. Then A(a?) is bounded on Rn and so in particular on D. We
now define a new function g(r) = inf {/(a;) | x in D and A(α?) = r}.
For r small and positive, {x | h(x) = r} is a compact set in D and so
g(r) is defined and positive. Also g(0) = 0. By Theorem 1.8, Tarski's
principle, g(r) is defined by a polynomial relation. This means that
g(r) is "piecewise algebraic" and each of the pieces can be expanded
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in Puisseaux series. Then it follows easily that there exists an
integer λ so that g(r) ^ rλ for all r in the domain of g. Then
f(x) :> h(x)λ for all x in D. Since p(x) > 0 on D, we have f(x) —
h(x) + p(x)m > 0 for all x in D, and for any positive integer m.
Applying Lemma 4.1, we see <p/ — h(φx) + εm > 0 for all positive
integers m. But since ε is inίinitesmal in L and L is rank one
ordered, we see φf ;> h{φx) > 0. But this contradicts fe 3? — ker φ.
So X contains a nonsingular real point P of W.

That I ( F Λ ( ^ ) ) = ^ will now be shown. First, by the implicit
function theorem, we know that there exists a neighborhood U of
P in Rn so that Uf]WR = U Π XR is isomorphic to a ball in Rd, d =
dimension of W. That is we have an analytic algebraic map of a
ball B c Rd, B ^-> XR which induces a homomorphism AD/^J —* Ag,
g^goj. Now if (7 vanishes on XΛ, βroj" vanishes on B and since
fifoj1 is analytic, it is zero. But then g itself will vanish on a com-
plex neighborhood of P in X and so g = 0 on X and is in 0>.

LEMMA 4.5. In Case (2), p(φx) — o: infinitesrnal, a ψ 0 and
a e R, we have f(φx) makes sense and = φf.

Proof. For each p% we have p^a) > 0 for all a in D so by
Lemma 4.1, pt — h2 for some unit h in Ap. But then φpt = (&h)2 >
0. But φpi = Pi(φx) and so p1(^x) > 0 for all i which implies φx e
DL. This shows f{φx) is defined by Definition 2.3.

If any <p^ were infinite (larger in absolute value than all real
numbers), then we would be in Case (1), so we can assume that for
each i there exists ate R with at — φxt infinitesmal or 0. Now
p — (au - - , an) is not on the boundary of D for if it were then
p(alf , an) would — 0. This would imply p(φxu , φxn) infinitesmal
and put us in Case (1).

For notational simplicity, we assume P ~ (0, , 0) and by the
above, we can assume that P is in the interior of D. For any
fe AD, we can expand / in finite Taylor series about P so f(x) =
Σjh\^>mdf/dχi(p)χi + Σ u i ^ m ^ O ) where i = (iu •••, ίn) is an w-tuple
of nonnegative integers, | i \ = ix + + in9 and gt e AD. We
abbreviate by writing / = pjx) + Σ χi9i{%)- % assumption each
φxz is infinitesmal or 0.

We claim that lMt e R so that | φgi \ < Mt. This is because gi

being analytic at P is bounded near P so there exists Mt a positive
real number and δ > 0 so that \\x\\ < δ implies | gt{x) \ < Mt. But
then there exists an integer j0 > 0 so that Mi - g\x) + Σ?=i (χβ)2j >
0 for all x in D, and all j ^ j 0 . But then Mt ^ \φg\ as in the
argument of Lemma 4.4. So we see that | φf — φpm \ < εmMm <
εm/2, ε infinitesrnal and > 0 in L. So l im^^ φpm = φf in L.
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Next note that f(φx) = pm(φx) + Σuι=« (φxYΰiiφx) so \f(φx) ~
VΛΦX) I < ε W 2 also and l i m ^ pm(φx) = /(<?#)• But pm(^x) = φpm and
so our result follows.

LEMMA 4.6. If f(φx) = 9?/, /or αίί fe AD, then I(VE(^)) = ^.

Proof. Note that flfe/(FB(^)) if and only if (*): For all a in
A /<(α) = 0, i = 1, , u implies g(a) = 0. By Theorem 2.2, there
are polynomial relations Afi and ̂  so that (*) is equivalent to (**):
For all a in D, Af.(0, al9 , αΛ), i = 1, , u implies -4̂ (0, alt , αΛ).
Now apply Theorem 1.8 and we have (***): For all a in DLf

^/ί(0, a>u - - , an) i = 1, , u implies Ag(0, a19 , αΛ). But by hypo-
thesis φft = fXφx) = 0 so by (***) g(φx) = 0. But φg = g{φx) and
so ge^.

LEMMA 4.7. If & has the zeros property, I(VB(&*)) = ^
is rank one orderahle.

Proof. As in the proof of Lemma 4.6, it follows that if & has
the zeros property, then X = V{0?) contains a real nonsingular point
P. Then the completion of the local ring of X at P is isomorphic
to R[[tu , ί j], cZ = dimension X. Thus .4^/^ Q i2[[ί, , td]] and
so we are reduced to the following lemma.

LEMMA 4.8. B[[tlt •••, td]] can be rank one ordered.

Proof. Choose al9 , ad positive real numbers linearly in-
dependent over Q the rational numbers. Then order ώ-tuples
(mu , md) of nonnegative integers by <mx, , md) > (m[, , mi>
if and only if ^J=1 m^ > 2f=i w&ία̂ . This is clearly a well ordering.
Now order power series Σ αtί* for i = <ΐ1? - , ίd} by taking Σ <M* >
0 if the least ί (with the described well ordering) with at Φ 0 has
α, > 0. This gives the required ordering.

THEOREM 4.9. Let D(zR2 he defined by strict polynomial in-
equalities. Then an ideal J a AD is real (Definition 0.3) if and
only if I(VR(J)) = J.

Proof. First note that if J = & is prime, then AΏ\3/J will
have transcendence degree ^ 2 over JB. If the transcendence
degree is 0, then & is a maximal ideal in AD and by Lemma 3.1
corresponds to a point of Zλ So & has the zeros property trivially.

If the transcendence degree is 2, then clearly & — (0) and
= D and again no problem.
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If the transcendence degree is 1, then the quotient field of
A.Ό\& if real can only be rank one orderable and so Theorem 4.3
applies and & is real if and only if I(VR(&*)) = <&*.

To finish, note that for any radical ideal JczAD; J = ^ ί ΓΊ Γ)^ 8

an intersection of prime ideals, since AD is Noetherian. But as in
[4] Lemma 2.2, J is real if and only if each ^ is real. So J
real implies I{VB(J))aI(VR{^)) Π Π I(VS(&.)) = &Π---Π&. = J.

Since I(VR(J)) Z)J always, J = I(VR(J)).

The converse is easy.
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