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A NULLSTELLENSATZ FOR NASH RINGS

GUSTAVE A. EFROYMSON

Let D be a domain in R" defined by a finite number of
strict polynomial inequalities. Then the Nash ring A, is
the ring of real valued algebraic analytic functions defined
on D. In this paper, it is shown that A, is Noetherian and
has a nullstellensatz. For & a prime ideal of A,, Ap/< is said
to be rank one orderable if its quotient field can be ordered
over R so that it has essentially one infinitesimal. Then
Ap/<” is rank one orderable if and enly if & equals the set of
functions in A, which vanish on the zero set of & in D.

DEFINITION 0.1. Let R denote the real numbers. Let D be a
domain in R", defined by a finite number of polynomial inequalities
p:(x) > 0. A function f: D— R is said to be algebraic analytic if there
exists a non-trivial polynomial p.(z, z,, -+, %,) in R[z, 2, -+, 2,] so
that p,(f(®), ®) =0 for all # in D, and if f is analytic (expandable
in convergent power series) at every point of D.

DEFINITION 0.2. The ring of all such algebraic analytic functions
f: D— R is called the Nash ring A,; see [7] for this notation.

DEFINITION 0.3. (1) Anideal J of A, is real if >\, A} € J implies
all \;ed.

(2) For JC Ap, Vi(J) ={ac R"|f(a) =0 for all f in J}.

(3) For ScD, I(S)={feA,|f(s) =0 for all s in S}.

In §1 and §2 we develop some of the preliminaries for the
study of the Nash ring. Most of § 1 comes form Cohen’s paper [3].
In §2 we prove the finiteness of the number of components of an
algebraic set using Cohen’s theory. In §8 it is shown that A4, is
Noetherian. Mike Artin made several valuable suggestions which
were very helpful in proving this theorem.

Finally in §4 we get to the nullstellensatz. Originally it was
intended to prove the following conjecture.

CONJECTURE 0.4.' An ideal JC A is real if and only if I(Vy(J))=/.

Instead of this we are only able to show that: If & C A4, is
prime, then A,/ is rank one orderable (Definition 4.2) if and only
if (Va(&?)) = . This is sufficient to prove the conjecture in the
case Dc R®. This is because the only nontrivial case is for & a
prime of dimension 1 in which case 4,/<” real implies A,/ rank
one orderable.

1 Added in proof, this conjecture is now a theorem proved by T. Mostowski, pre-
print 1974.
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1. Cohen’s effective functions. In his paper, [3], Paul Cohen
introduces the concept of an effective function. Since this concept
is very useful here and is used in [3] to prove the Tarski principle,
which we also find very useful, we will reproduce with some slight
modifications the discussion in [3]. The main change here is to drop
the term “primitive recursive” which is, I believe, not necessary for
our needs.

DEFINITION 1.1. Let % be a field. A polynomial relation
A(xy, ---, x,) is a statement involving a finite number of polynomials
in kfx., +--, x,] plus the terms: and, or, not, equals, greater than,
and also parentheses.

DerFiniTION 1.2. Let & be a real closed field. A function f
defined on a subset D of k" is effective if for every polynomial re-
lation A(x, t,, ---, t,), there exists a polynomial relation B{x,, ---, =,
ty, +-+, t,) sothat A(f(z, ---, ®,), L, ---, t,) if and only if B(z,, - -, x,,
by e e, ).

0Oif x=0
DEFINITION 1.3. Let sgnux = 1if > 0.
—1if 2 <0

LEMMA 1.4. The function [ is effective if and only if there
exists for each positite integer d a polymomial relation A;(c, - -, ¢4
Xy o, Ty M) SO that Agle, x, V) of and only if

A= sgn (6 f (@) + -+ + Ca) -

Proof. All polynomial relations can be constructed from in-
equalities p(x) > 0.

DEFINITION 1.5. Let p(z) = a@x™ + --- + @, be 2 polynomial. By
a graph for p(x) we mean a k-tuple ¢, <t¢, < --- <%, so that in
each interval (—ce, t), (¢, L), - -+, (tr, =), p(x) is monotonic. By the
date for the graph we mean sgn (a,), all i; (¢, ---, >, and, sgn p(t,)
all 7.

It is clear that from the data for its graph we can determine in
which (¢,_,, ¢,) the polynomial has roots.

TBEOREM A,. There are effective functions of a,, -+, &, which
give the data for the graph of p(x) = a@x™ + +-+ + a,. Namely, we
have effective functions: t,(a), sgn (p(t,(a)) and of course sgn (a;) so
that t,(a) < -+ < t,_.(a) forms a gravh for p(x).

THEOREM B,. Let p@) =ax™+ -+« + a,. There are m + 1
effective fumctions: k(a) and &f(a) < &(a) < --- < &,(a) (possibly not
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everywhere defined) so that &(a), -+, &.w(a) are the roots of p(x).

Proof. The proof is by induction. The theorems are trivial for
m = 0. We now assume that we have proven both A, and B, for
all integers » < m. First we prove A,. The polynomial p'(x) has
lower degree # than m and so by the corresponding B,, its roots
are effective functions of the coefficients of p'(x) and the coefficients
of »(x).

Next we prove B,. First choose a graph ¢(a) < --- <t,_(a)
for p(z) using A,. From the data we can determine the number of
roots %(a) effectively. We have to show that roots are effective. In
each interval (—co,t)), «-+, (¢, tiz1), =+, (tmy, =), there is at most
one root of p(x). Some of the ¢, could be roots, but since we know
sgn t,, this is no problem. Moreover, we can tell from (sgn¢;, sgn ¢,.,)
whether or not p(x) has a root in (¢, ¢;.,). Suppose ¢ is such a
root. Then, by Lemma 1.4, we have to show that if ¢(x) =
cx® + ++- + ¢, is another polynomial, sgn ¢(¢) is an effective function
of the ¢’s and a,’s. First divide q(x) by »(x) and if »(z) is the
remainder we can replace ¢(x) by #(x) since the coefficients of 7(x)
are effective functions of the ¢,’s and a,’s, and ¢(&§) = p(§)b(&) + r(S) =
r(6). So we can assume s < m. By induction, we know the roots
u, < - < u, of q(x) effectively in terms of the ¢,’s. Thus sgn (u, — ¢;)
is effective for all ¢ and j, meaning that we know effectively which
of the u; are between ¢, and ¢,... By checking sgn (p(u;)) for all j, we
can determine effectively where ¢ is relative to the u;’s. Then from
the data for ¢{(z) we know sgn ¢(¢) also.

THEOREM 1.6. (Tarski and [3]). Let k be a real closed field
and let A(x,, ---, x,) be a polynomial relation in klx, ---, x,] with
n > 1. Then there exvists a polynomial relation B(x, ---,,) SO
that {3x,€k so that A(x,, ---,x,) if and only if B(xy, -+, x,)}.

Proof. Regard the polynomials p,(x), ---, »:(x) which appear in
A, + -+, x,) as polynomials in 2, with their coefficients in k[x,, ---, x,].
Then one notes that the truth of 3Ix,A(x, ---, z,) depends only on
the relative positions of the roots of the p,(x) and the sign of the
2.(x) in between these roots. By Theorems A, and B, this data is
effectively determined from the coefficients of the p, which are just
polynomials in k[, ---, x,].

THEOREM 1.7. The function f(x,, «--, x,) is effective if and only
if there exists a polynomial relation ALz, x, ---,2,) so that {z =
f(xly ttty xn) ?:f and O%ly 7/.7(‘ Af(z’ Lyy =0y xn)}‘
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Proof. If f is effective, consider the polynomial relation ¢ = z.
By the definition of effective function, there exists a polynomial

relation A, x,, ---,x,) so that At z, ---,2,) if and only if
f@y, ---, @) =t

Now suppose A((t, x, ---, x,) exists so that {z = flz,, - -, x,) iff
Aq2, %, -+, x,)}. Given any polynomial relation A(z,t, ---,t,), con-

sider the relation (4; and A). Then by Theorem 1.6, there exists
B(xy, ++-, ,, t, +++, t;)sothat (3z: A, and A)iff B(x,, -, %,, b, =<+, Ls).

Theorem 1.7 is the only result in this section which does not
appear in [3]. The reason for adding it is to give a possibly simpler
description of the concept “effective function”.

THEOREM 1.8. (Tarski’s principle as proved by Cohen [3]). Let
k be a real field with only one ordering and let A(x, -+, x,) be a
polynomial relation kl[x, ---, x,]. Then if Q, is either V or 13, the
statement () {Qx. € L, Qu,€ L, -+, Qx,€ L, A(x,, -+, x,)} 18 true for
one real closed field LDk iff it is true for every real closed L D K.

Proof. First note that va is just ~ 3x ~. Then use induction
and Theorem 1.6 to find a polynomial relation B involving only the
coefficients of the polynomials in A(x,, ---, x,) so that(*) iff B. Since
any real closed field induces the unique ordering on k, B is true or
false independent of L.

2. Algebraic analytic functions.

THEOREM 2.1. Let A, ---,,) be a polynomial relation. Let
D={a, +--,a,) in R" such that A(a, ---,a,}. Then each con-
nected component of D is also defined by a polynomial relation.
Moreover, there is a finite number of such components.

Proof. We use induction on n. For n =1, since D is a union
of points and intervals, the result is obvious. For n>1, A(x,, ---, x,)
involves a finite number of polynomials »,(x, ---, %,) fori =1, --., s.
Consider each p; as a polynomial in x, with coefficients in k[x,, ---,
%,-.]. Then there exist functions ®,;(x, +--, z,_,) as in Theorem B,
giving the roots of p,(x). So our region D will be a union of inter-
sections of sets of the form @,;(x, -, T,_) < X, < Puil®y, =+, Tpu_y)
(where < could be =), where (%, ---, %,_,) is such that (1) both
Py, -+, ¢,,) and P.; (X, -+, %,_,) are defined, (2) (x, +--, T, s
Pui(@y, v, Tu)) €D, (B) @y o+, Tuoyy Pug(®y, -+, 2,))€D, and (4)
g)ii(xl’ %y xn—l) < ¢i’i’(x1y ) wn—l)'

It will be enough to show that the domain EcD of ¢,; =
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can be split up as a union of E, where each E, is connected and
defined by a polynomial relation and ® is continuous on FE,. This
is because we can further divide the E, into connected components
where other @,; are defined, continuous and > ®,; by the same
process. Let po(x,, -+, ,_,, 2) = the irreducible polynomial for # and
let g(x, ---, ®,_,) = the discriminant of p, with respect to z. By
further subdividing and using Theorem B, we can also assume @ =
1™ root of p,. So the subset of E where g(x, ---,x,,) = 0 can be
written as E, U --- U E, where each E, is connected and by our
induction hypothesis each E, can be defined by a polynomial relation.
So fix E, say. Then let ayx, -+, 2,_,), ---, ay(x, ---, z,,) be the
roots (real and complex) of p.(x, ---, z,_,, 2). The a, are continuous
functions and if some «,(P) is not real, then there exists j = i with
a(P) = a;(P). Since the «, are continuous, no complex root can
become real without p, getting a double root so this cannot happen
in K, since g # 0 there. So let a, «,, -+, @, be the real roots of
p, and suppose Pe E, that a(P) < --- <a,(P) and «a,(P) = P(P).
For @ near enough to P, a,(Q) < --- < a,(Q) and so P(Q) = a,(Q)
which shows that ¢ is continuous at P (since «, is) and so @ is
continuous on FE,. The other FE; are handled just the same way.

On the rest of E, we have g(x, ---,2,.,) =0 and so we can
solve for «,_, = ¥(x, ---, x,_,), for possibly more than one + but
only a finite number. Now let

h(xl) Tty xn—?) = Q(xly Ty x’n—-?: q)"f(xly ) xn——Z)) .

Then, by induction, we can split up the domain F of + into sets
F'; which are connected and on which both ¢ and + are continuous.
Then EH—J' = {(xh crty Ly q}'f(xly Tt xn—-Z)) ] (xly ) xn—l) € FJ} is con-

nected and ® is continuous on K, ;.

THEOREM 2.2. Let D be a domain of R" defined by a finite
number of polynomial inequalities. Then, if f: D— R is algebraic
analytic, f 1s effective.

Proof. There is a polynomial p.(z, x,, ---, 2,) so that p(f(z), ) =
0 for all « in D. Let g(x, ---,x,) be the discriminant of p; con-
sidered as a polynomial in z. Then in any connected subset of D
where g(x) = 0, f will equal a fixed root of ps(z, 2). So f(x) is
effective there. When g(z) = 0, we can solve for x, in terms of the
other variables and in polynomially defined regions D, of R*, x,
will be an algebraic analytic function of x, ---, 2, ,. There is a
finite number s of the D, so that D= D, U --- UD,. On each D, f
also will be an algebraic analytic function and so by induction on n
we are done.
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DErFINITION 2.3. Let D be the subset of R" defined by D = {a ¢ R"
such that p,(a) > 0, -+, p,(a) > 0}, where all p,(a) arein R[x,, +--, x,].
Let f: D— R be an algebraic analytic function. By Theorem 2.1,
there is a polynomial relation Az, x, ---,x,) in Rz, @, -+, x,] so
that Ax(z, ) iff z = f(x). Finally let L be a real closed field con-
taining B. Now A,(z, ) makes sense for z,x, --- and 2z, in L. If
we let D, = {a € L™ such that all p,(a) > 0}, we can define f,: D, —
L by setting z = fu(z, +--, x,) iff Az, x, ---, 2,).

LeEMMA 2.4. For f, defined as above, we have (f+ g),=
S+ 9. and (f9)r = f19:.

Proof. We have f(x) =z iff 4,7, 2); g(x) = w iff A,(w,x) and
(f+ 9)x) =u iff A ,(u,x). But Vz,z, w, uin R we have: p,(x) > 0,
Asz, x), A,(w, z) and A, ,(u, x) implies v = z + w. So by Theorem
1.8, the same holds for L.

One handles (fg). similarly.

3. The Nash ring is Noetherian. We retain the notation of
§2 so that D is a domain in R" defined by a finite number of
polynomial inequalities and A, is the ring of algebraic analytic
functions f: D— R.

LeMMA 3.1. Ewvery maximal tdeal of A, corresponds to a point
of D and wvice versa.

Proof. Let _# be a maximal ideal of A, and suppose that for
every Pe D there exists fp, € . # with fp(P) = 0. Then choose f 0,
fe. . Let Vi(f) denote the zero set of f in D. There exists a
polynomial p.(z, ) so that p.(f(x), x) =0 for all # in D. Then if
DAz, ) = ay(x)2* + -+ + a,(x), we have a,(x)(f(@))? + -+ + ax) =0
for all « in D. Then it follows that a, vanishes on Vi(f), and so
Va(f) © Vi(a,). The singular points of V(a,) will have dimension =<
n — 2 and if we let W be the singular set of Vj(a,), then Vi(a,) —
W will be a union of a finite number of topological components;
C, ---, C, by Theorem 2.1 or ([8], p. 547). For each C; choose P, € C;
and f, €. .#Z so that fi;(P,) = 0. Then f, will vanish only on W, cC,
which is of dimension < n — 2. Then replacing Vi(a,) by WU
W,UJ---UW,, we go through the same process of removing the
singular points and finding new f, which vanish only on a lower
dimensional piece of WUW,U.-- UW, Eventually we obtain
fiy oo+, fi€ # so that for all P in D, there exist some f; with
fi(P)=#0. Let f=3,f% Then f is in .# and also a unit in A4,,
which is a contradiction.



A NULLSTELLENSATZ FOR NASH RINGS 107

LEMMA 3.2. For every maximal ideal #Z < A, = A, the local
ring A , ts Noetherian.

Proof. (As in [1], p. 87). Every maximal ideal .# corre-
sponds to a point of D, so we may as well assume that this
point is 0= (0,0, ---,0). The completion of A at .# is then
isomorphic to R[[z,, ---, z,]] aA,nd thus Noetherian. We have R[z,, ---,
v, A TR[[, -, 2]l = Ay,

Let I, =I,C --- be an increasing sequence of finitely generated
ideals of 4,. We will show that this sequence is eventually con-
stant. Since {I;A,} is eventually constant, it is sufficient to show
that I finitely generated implies IA,, N A, = I. Solet I = (ay, ---, @)
and let beIﬁw) N Aw. Then there exists a finite etale extension B
of R[x», ---,z,] which contains a,, ---, @,, and b. This follows from
the definition of A. Now B=A,,. So (a,---,a)Bn B=(as,--+,a,)B
(by [9], p. 269, Theorem 12). Thus be(a,, ---, a,) A4, since BT A,

LEMMA 3.3. Let q be a prime ideal of Rlx, ---,x,] C4p = A.
Then qA», = . 2.0 -+ NP where the 2 are prime in A.

Prosr. Let C = the complex numbers. Let V = the variety of
q in C*. Let W be a normalization of V. Then we can consider
W< so that 7: C*™™ — C” induces w: W—V. If (z, ---, 2,) are
coordinates for C", letting z; = x; + 1y;, we get C* = R*™ and similarly
we get C* " = R¥ ™, If

D:{‘:f’fl, cee, Xy Yy ...’yn)eR“Ipi(x’ ...,xn)>0,i:1’ ...,t},

then = (D) = {(xy, ***, Tusmy Vs, ** %5 Yuim) € BT [ Dy(@yy + -+, 2,) >0, 0=
1,.--,¢tand y; =0 for =1, ---, n}. As usual p,2)e R[z, ---, z,].
So 77D) is defined by a polynomial relation. Also since W is the
zero set of some polynomials ¢.(z,, « <+, Zuim), ***, 9s(Ry =+ ) Zuuw) 1IN
Clz, -+, 2,oml, W considered in R***™™ is the zero set of

Re (gl(xly oty Lptmy Y1y "0 ynfm)) ’
Im (91(931; crty Xotmy Y1y 000y yn+m))r Tt

Then, by Theorem 2.1, #7(D) N W has a finite number of components
E, -, E.

For each E,, we define a prime .7 in A, by letting &% =
{feAp|f>x vanishes on an open neighborhood of E, in W}. Since
any fin A, can be extended to an open neighborhood U of D in
C", 1 will be defined on z7(U) and so on z 3 (U) N W.

Since W is normal, about every point Re& W, there exists a
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neighborhood U, cW so that Up — (UzN W,.,,) is connected. Here
Wiy = singular points in W. The above statement follows from
Zariski’s Main Theorem [9], p. 320, Theorem 32, and [5] p. 115,
Theorem 16. So if fowr vanishes over some neighborhood U c W of
some Q¢ E,, it follows that fowr vanishes over some neighborhood of
E,. So if (fg)er vanishes on a neighborhood of E;, then either
form or gomw will vanish on a neighborhood of some point of E, and
so over a neighborhood of E,;. Thus &7 is prime.

It also follows that q4, =N ---N <. If feq, then f
vanishes on W and so (fom) will vanish on a neighborhood of each
E; and so fe AN - NP

If feANn---N.2, then for vanishes on a neighborhood in
W of E,, for all ©. So, if Pe D, for vanishes on a neighborhood
of 77'(P) on W so f vanishes on V near P. By the local nullstel-
lensatz [5], p. 92, Theorem 20, &~ N -+ N fiP = qffp where ﬁp =
the completion of the local ring A,. But, as in the proof of Lemma
3.2, this implies that & N --- N F A, = qAp. By Theorem 3.1, all
maximal ideals of A come from some P in D and so q4 =

FiN NG

THEOREM 3.4. A, s Noetherian.?

Proof. It is enough to show that & prime in A, implies &
is finitely generated, [6], p. 8, Theorem 3.4. Let A = A, = lim 4;
where A, = R[x,, ---, z,] and A; is finitely generated over A, and
A; is etale over A, in a neighborhood of D. Let & N A4; = q;.
Then g4 = Z#,.N +++ N F, all & prime, by Lemma 3.3. If 4,D 4;,
then q;4, = q: N gz N -+ N q: Where ¢ depends on j and %k, and
all q;,; are prime and of the same dimension. Also q;4=q,AN---N
a;uA. But q;4D>q,4 and so is the intersection of a finite number
of the &. Since limq;4 = &7, q; eventually stops splitting and
;A = &, for j large.

4. The Nullstellensatz. We retain the notation of the previous
sections so that D is defined by a finite number of polynomial
inequalities. A, is still the Nash ring.

LEemMMA 4.1. If fe Ap and f(a) > 0 for all a€D, then, there
exists he Ap so that f = h®. Moreover, f and h are units in A = Ap.

Proof. Define h(a) = f(a)'® for all ¢ in D. Then note that &
is in A. The fact that f and % are units is clear.

2 This theorem has been proved independently by different methods by J. J. Risler,
[10].
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DEFINITION 4.2. Consider L an ordered field containing R, the
reals. Then ¢ in L is infinitesmal if 0 <|e] <A for all » in R.

We say L is rank one ordered if there exists ¢ infinitesmal in
L and if for any other infinitesmal « in L there exist positive
integers m and m so that |e|™ < |a| and |a|* < |e].

THEOREM 4.3. Let & be a prime ideal in Ap,. Then the
quotient field of A,l” 1s rank one orderable if and only if
I(Vy(F)) = &

Proof. The proof will occupy the rest of the section. We first
assume A,/.Z” rank one orderable and note that there are two cases
which will be handled separately. Let p,(x) >0, p,(x) >0, ---, pi(x) >0
be the polynomial inequalities defining D and let p(z) = IT p./(1+ > %)’
where 7 > > deg p,. Then there exists a real number M > 0 so that
[p(x)| < M for all x in R and so by Tarski’s principle (Theorem 1.8)
[p(x)| < M for all x in L" for L any real closed field containing R.

Now let L be a real closure of the quotient field of A,/ &
which by hypothesis will be rank one ordered. We let ¢ be the
total map A, — A4,/.” — L. Then since R[x,, ---, x,] € Ap, we have
x=(x, -, x,)€L" So p(®x) makes sense and (considering R L)
we have two cases (1) p(®x) is infinitesmal and (2) p(Px) — « is
infinitesmal for some « € R, @ %= 0. By Theorem 3.4, Aj is Noetherian
and so & =(f, -+, f.) for some f, - -, fuc P We let X =
V(igy={(x, «--,2,)eC"|flxy, -+, 2,) 2=1 ---,u} and let q=
G N Rlx, -+, x,] and W = V(q).

LEMMA 4.4. In Case (1), p(®x) = ¢ infinitesmal in L, X =
V(&?) contains a real momsingular wvoint of W = V(q) and so

I(Va(7)) = &

Proof. If X, the set of real points of X, is such that X, is
contained in the singular set of W, then there exists gq(z)e
Rlz, ---,2,] so that ¢(Xz) =0 but o¢g=+0. This is because
Rlz,, -, x,]/a is orderable and so q = I(Vx(q)) by the Dubois-Risler
Nullstellensatz ([4], Theorem 2.1). Let /= 3 f2, (recall & = (f,, «- -,
fu). Then for any ac R", f(a) = 0 if and only if a€ X,.

Now let () =TTt 3¢/ + S, )™ where m = >, degp, +
deg ¢. Then h(x) is bounded on R" and so in particular on D. We
now define a new function g(r) = inf {f(z)|2 in D and () = r}.
For » small and positive, {x|h(x) = r} is a compact set in D and so
g(r) is defined and positive. Also g(0) = 0. By Theorem 1.8, Tarski’s
principle, g(r) is defined by a polynomial relation. This means that
g(r) is “piecewise algebraic” and each of the pieces can be expanded
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in Puisseaux series. Then it follows easily that there exists an
integer A so that g(r) = »* for all » in the domain of g. Then
f@) = h(z)* for all x in D. Since p(x) >0 on D, we have f(x) —
h(x) + p(x)™ >0 for all x in D, and for any positive integer m.
Applying Lemma 4.1, we see @f — h(px) + ¢™ > 0 for all positive
integers m. But since ¢ is infinitesmal in L and L is rank one
ordered, we see ®f = h(px) > 0. But this contradicts fe.&” = ker o.
So X contains a nonsingular real point P of W.

That I(Vx(Z°)) = .&” will now be shown. First, by the implicit
function theorem, we know that there exists a neighborhood U of
P in R” so that UN W, = UN X, is isomorphic to a ballin R? d =
dimension of W. That is we have an analytic algebraic map of a

ball BC RY, B—LXR which induces a homomorphism A,/F — A,,
g—9goj. Now if ¢g vanishes on X,, g¢goj vanishes on B and since
goj is analytic, it is zero. But then ¢ itself will vanish on a com-
plex neighborhcod of P in X and so ¢ = 0 on X and is in 22

LemmA 4.5. In Case (2), p(px) — «a infinitesmal, & =0 and
ae R, we have f(px) makes sense and = @f.

Proof. For each », we have p,(a) >0 for all ¢ in D so by
Lemma 4.1, p, = k* for some unit h in A,. But then @p, = (Dh)* >
0. But op, = p,(px) and so p.(px) > 0 for all 4 which implies px e
D,. This shows f(ex) is defined by Definition 2.3.

If any oz, were infinite (larger in absolute value than all real
numbers), then we would be in Case (1), so we can assume that for
each 7 there exists «,€¢ R with a, — @z, infinitesmal or 0. Now

P=(a, ---,a,) is not on the boundary of D for if it were then
o(ay, +--, a,) would = 0. This would imply p(px,, ---, Pz,) infinitesmal
and put us in Case (1).

For notational simplicity, we assume P = (0, ---,0) and by the

above, we can assume that P is in the interior of D. For any
fe Ap, we can expand f in finite Taylor series about P so f(x) =
Siiizm Of 02 (Pt + X m ¢ig.(x) where © = (3, ---, 4,) is an n-tuple
of nonnegative integers, |i¢|=14+ --- + 4, and g,€4p. We
abbreviate by writing f = p,(x) + > 2'g,(x). By assumption each
@x, is infinitesmal or 0.

We claim that 3IM,e R so that |pg,| < M,. This is because g,
being analytic at P is bounded near P so there exists M, a positive
real number and 6 > 0 so that ||z|] <0 implies |g.(x)| < M,. But
then there exists an integer 7, > 0 so that M? — g*(x) + D5 (x,/0)¥ >
0 for all « in D, and all j = j,. But then M, = |pg| as in the
argument of Lemma 4.4. So we see that |¢f — op,.| < "M, <
¢™?, ¢ infinitesmal and > 0 in L. So lim,.. ®p, = @f in L.
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Next note that f(Px) = p.(Pr) + Xien (Pr)ig(Px) 80 |flPX) —

Pu(px) | < e™* also and lim,,_.. p.(Px) = f(px). But p.(pr) = Pp,. and
so our result follows.

LemMMmA 4.6, If f(px) = @f, for all fe Ap, then I(Vi(F)) = .Z.

Proof. Note that ge I(Vyx(<?)) if and only if (*): For all ¢ in

D, f(@) =0, i=1, .-+, u implies g(a) = 0. By Theorem 2.2, there
are polynomial relations A, and A, so that (*) is equivalent to (**):
Foralla in D, A;(0, a,, --+, @,), © = 1, - -+, u implies 4,(0, a,, -+, @,).

Now apply Theorem 1.8 and we have (***): For all ¢ in D,
A;(0,a, -+, a,) =1, ---, u implies 4,0, a, ---, a,). But by hypo-
thesis @f; = fi(px) = 0 so by (***) g(px) = 0. But @g = g(px) and
80 g€ A

LEMMA 4.7. If & has the zeros property, I(Vu(F)) = &, then
Ap/ P s rank one orderable.

Proof. As in the proof of Lemma 4.6, it follows that if < has
the zeros property, then X = V(<?) contains a real nonsingular point
P. Then the completion of the local ring of X at P is isomorphic
to R[[t,, -+, t;]], d = dimension X. Thus A,/ G RI[t, ---, t,]] and
so we are reduced to the following lemma.

LemmA 4.8. R[[t, - -+, t]] can be rank one ordered.

Proof. Choose «,, ---, &, positive real numbers linearly in-
dependent over @ the rational numbers. Then order d-tuples

{my, ++-, myy of nonnegative integers by <{m,, ---, my> > {ml, +--, m})>
if and only if i, ma, > 3 mla,. This is clearly a well ordering.
Now order power series >, at’ for © = (4, - -+, 1,> by taking 3 a.t° >

0 if the least ¢ (with the deseribed well ordering) with a, == 0 has
a, > 0. This gives the required ordering.

THEOREM 4.9. Let DC R? be defined by strict polynomial in-
equalities.  Then an ideal JC A, is real (Definition 0.3) if and
only of H(Vi(J)) = J.

Proof. First note that if J=.77 is prime, then A4,.7 wil
have transcendence degree =<2 over R. If the transcendence
degree is 0, then .7 is a maximal ideal in 4, and by Lemma 3.1
corresponds to a point of D. So & has the zeros property trivially.

If the transcendence degree is 2, then clearly & = (0) and
Va(Z?) = D and again no problem.
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If the transcendence degree is 1, then the quotient field of
Ap/? if real can only be rank one orderable and so Theorem 4.3
applies and & is real if and only if I(Vx(Z)) = Z.

To finish, note that for any radical ideal JC A,; J = AN -+ N F,
an intersection of prime ideals, since A, is Noetherian. But as in
[4] Lemma 2.2, J is real if and only if each & is real. So J
real implies I(V(J)CI(Va(Z)N - N I(V(F)=FA N+ N F=d.
Since I(Vr(J)) o J always, J = I(Vz(J)).

The converse is easy.
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