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THE DEFICIENCY INDEX OF A
THIRD ORDER OPERATOR

RicHARD C. GILBERT

Let L be a formally selfadjoint third order linear ordinary
differential operator defined on [r,©). Using a method of
Fedorjuk, asymptotic formulas are found for the solutions of
Ly = ioy, 0#0. These formulas are used to determine the
deficiency index of L when L has polynomial coefficients. As a
consequence, the deficiency index is determined for values of the
parameters involved for which it has not previously been de-
termined.

1. Introduction. The general form of a third order formally
selfadjoint linear ordinary differential operator L can be written

(1) Ly = (iby"y +[@27"ibs + ay)y'}) + ibyy' + 27'ib1 + ay)y,

where a,, a,, by, b, are real functions of x and b,(x) #0. (See [4, Ch. 1,
§1.5]. We have assumed sufficient differentiability on the coefficients so
that the Dunford and Schwartz form can be written in the form
(1).) Unsworth [12] considered the case that b,(x)=2, b(x)=2ax",
a(x)=bx® alx)=cx”, 1=x <. Using the asymptotic methods of
Devinatz [3], Unsworth deduced the deficiency index of L for various
values of the parameters a, b, ¢, a, B, y. Pfeiffer [10] considered the case
bi(x)=1, bi(x)=ax*, a,(x)=0, ay(x)=cx”. The purpose of the pres-
ent article is to obtain by the method of Fedorjuk [6] asymptotic formulas
for the solutions of Ly = iogy, o#0, and to apply these formulas to
finding the deficiency index of L for the case b)(x)=1, b(x)=ax",
a,(x)=bx® aix)=cx”. Although Fedorjuk applied his method only to
even order operators, it can be used for odd order operators as
well. Shirikyan [11] applied the Fedorjuk method to a certain class of
odd order operators. It turns out that the Fedorjuk method applied to
the above case yields the deficiency index for values of the parameters
different from Unsworth and Pfeiffer.

It is known that, except for a first order operator, a differential
operator of order n cannot have deficiency index (n, p) or (p, n), where
p <n. (See Atkinson [1] or Kogan and Rofe-Beketov [7], [8].) Further,
for an operator of order n =2v —1 it is known that the deficiency
numbers n, and n_ satisfy the inequalities v =n,. =2v -1, v-1=n_=
2v—1, or the same inequalities with n, and n_ interchanged. (See
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Everitt [5] or Kogan and Rofe-Beketov [8].) It follows that the defi-
ciency indices (2, 1), (1,2), (2,2) and (3, 3), obtained in this paper and by
Unsworth and Pfeiffer, are the only possible deficiency indices for a third
order operator.

2. Asymptotic formulas for the solutions of Ly =
ioy. We shall make the following assumptions on the coefficients a,, a,,
b,, b, of L. The need for the various assumptions will be seen as we go
along.

In all that follows in this article, it will be necessary in various places
to require that x is sufficiently large. We shall therefore assume once
and for all that x, is chosen so large that if x = x,, then x is sufficiently
large in all places where this is needed. We shall also often omit the
stipulation x = x, when it is clear from the context that this is needed.

ASSUMPTION 1. bi(x), by(x) € C[r,»). ay(x), a;(x) € C*[r, ).
by(x)#0 for x=r, by(x)=1+0(1) as x = +o. ayx)#0 for x =
r. Either ay(x)— + o and aq(x) >0 for x = x,, or else a,(x)— —» and
an(x)<0 for x = x,.

AssumpTiON II.  lim,_.a,/ai® = d#3/2°?, b/ai’=0(), bilay=
0(1), bj/ai®=o0(1).

AssumpTioN III.  b5/ai’=0(1), ai/ai’=0(), bilai’=0(1),
aiai’=o0(1).

AssumpTION IV. bjand bi/aj” are absolutely integrable on [r, ®).

Let

2) f(Ax)= =X +im(x)b7'(x)A* = by(x)b3'(x)A + in(x)b5'(x),

where
3) m(x)=27"iby(x)+ a,(x),
) n(x)=27""ibi(x) + ao(x) — io.

Here o is a real constant, o # 0.
Let

©) 7(x) = [ao(x)by"(x)]"[1 + (bi(x) = 207) (2as(x))"i]"",

where if z =pe”, — 7 <@ =m then we take z"’=p"e*? Then,
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= nb;', and 7(x)#0 for x = r.

Putting
(6) A = in7(x),
then
™ fx)=0
becomes
® h(n,x)=0,
where

©) h(n,x)=mn"=m(x)[b(x)7(x)]"'n* = bi(x) [box)7*(x)] "7 + 1.

An essential part of the Fedorjuk method is that we should have

(10) lim m (x)[b:()7(x)] " = d + ie,

(11) lim by(x)[ba(x)7*(x)] ' = d, + ie,,

where d +ie, and d,+ ie, are complex constants. Then, as x — o,
h(n, x) approaches a polynomial h(n) with constant coefficients. We
also want hy(n) = 0 to have distinct roots. For reasons that will appear
later we further want as x — « that | a,(x)|— ® and that

(12) 7(x)=aP(x)[1+0(1)].
In I and II we have assumed a,(x)— *x, b,=1+ 0(1), bi/a,= 0(1)
in order that (12) and | a¢(x )| — « might be true. In order to explain the

remaining assumptions in I and II, let us note that if (10) and (11) are to
be true, we must have

(13) lim (b3/ai®) =2e,,
(14) lim (ai/ai”®) = d,

(15) !(i_fz.}(bl/agla) =d,,
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and e,=0. But then (13) and our assumptions that |a,/— and
b,=1+ o(1) imply that e, = 0. Further, (15) and the assumptions on a,
in I and the assumption that b{/a;"” is absolutely integrable on [r, ®) in IV
imply that d, = 0. Thus, we have explained the reasons for all the limit
assumptions in I and II.

From Assumptions I and II we have that

(16) m(x)[b(x)7(x)] " = d + fi(x),
(17) bi(x)[bo(x)7*(x)] " = folx),

where fi(x)=o0(1), fo(x)=0(1), and fi(x) and f,(x) are continuously
differentiable on [r,). It follows that

(18) h(n,x)= ho(n)— n’fi(x)— nfax),
where
(19) ho(n)=n’—dn’+1.

Since we have assumed in II that d# 3/2°”, hy(n)=0 has three distinct
nonzero roots. If d <3/2°” then h(n)=0 has one real negative root
and two complex conjugate nonreal roots. If d >3/2°" then hy(n)=0
has three distinct real roots, one of which is negative and the other two
positive. We denote the roots by ng;, Ne, Mo, Where ng < 1 < 7¢ in
the case of three real roots, and 7, is real and Im 74, >0, Im 15 <0 in the
case of one real root. In the case of three real roots, h'(ny)>0,
h'(nyn) <0, h'(ny)>0. In the case of one real root, h'(n,)>0. In
every case, h'(ny)#0, k =1,2,3.

According to Bellman [2, p. 26], for x = x,, (8) has three distinct
roots 7, (x), k =1,2,3 which are given by the formula

(20) e (x) = Qi) f nh, (n, x) [ (0, 1)) d,

where C, is a small circle around 7ng. m(x) is continuously differenti-
able, and

1) M (x) = na[1+ 0 (1)].

We have that &, (n.(x), x) # 0, and that n,(x)# 0, for x = x,. From (6)
one sees that (7) has for x = x,, three distinct continuously differentiable
nonzero roots A (x) given by

(22) Ak (x) = ink(x)T(x)’ k = 1’2a3,
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and
(23) A(x)=ia*(x)nu 1+ 0(1)].
We have that f, (A, (x),x)#0.

AssumpTiON V. (by)/al?, (b5 a,, (ai)la,, (b})/ai’, (b})/al’,
(ao)/ad’, b3ay”®, b/ai’, at/ai’, b'la,, b"/ai’, at/ai” are all absolutely
integrable on [r, ®).

AssumpTION VI. For each pair j, k, one of the following is true:

(a) Re(A(x)— A(x))=0 for x = x,;
(b) Re(X(x)— A(x))=0 for x = x,, and

r Re (A (x)— A (x)) dx = —

(c) J Re (A, (x) = Ac(x)) dx is convergent.

Using Assumptions I-VI, it is now possible to obtain asymptotic
formulas for the solutions of the equation

(24) Ly = iay.

Let w be the column vector with components w, =y, w,=y', w;=
ib,y"+ my'. (24) is then equivalent to the system

(25) w'=A(x)w,
where
0 1 0
(26) Ax)= ( 0 imb;' -—ib;' )

The eigenvalues of A (x) are the roots of (7), i.e., A(x), k =1,2,3.
Let us now make the transformation

(27) w = TW(E + T))z,
where z is a column vector with components z,, z,, z;, and T; and T, are

matrices to be determined, and E is the identity matrix. Then, (25)
becomes
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(28) ZI = Aoz + (AOT2 - T2A0 - ]1(;l Té)z + B(x)Z,
where
B(x)=(E + To) '[(T3Ac+ T.T5' To) (E + T2) — T3}

(29) CTAT,— T T3,

and

A= Ti'AT,.
We shall show that we can choose T, and T, such that for x = x,, T;' and
(E + T,) " exist, and T;'AT, and AyT, — ToA,— T,'T; are diagonal. To
that end, we choose Tj to be a matrix whose columns are eigenvectors for
A, namely,

1 1 1
(30) T, = < Ay A; A ),
[ib:Ai+ m]A, [ibyA,+ m)A,  [ibAs+ m]A,

n/AF, (Al,x) — iAb,/F, (Al’x) —1/F, ()‘I,x)
(31) T;'= ( n/A,F, (Az, x) — iAb,/F, (Az,x) - 1/F, (Az,x) ),
n/A;F, (/\3, x) — iA3b,/F, ()\3, x) - 1/F, ()\3, x)
where
32) F(\ x) = ib,f(A, x).

Then, for x = x,,
(33) T;'AT, = A, = diagonal [A;].
We note that

(34) lim a**(x)F, (A,(x), x) = iha(no;) = po; exp[ifs,],

where — 7 <8, =, p; >0. Let

(35) ag(X)F, (A (x), x) = p (x) exp[i6; (x)],

where p;(x) and 6,(x) are chosen so that lim,_.p;(x)=p,, and
lim,_... 6,(x)= 6, We choose that branch of log such that for x = x,,

(36) log F, (A;(x), x) = (2/3) Log| as(x) |+ Log p;(x) + i6; (x).

Then, for ¢, x = x,,
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37) (d/dx)log F, (A, (x),x)

= [Fu (), A0+ Fuh, (), )1 TE 4, (1), 201,
68) [ ((@rds)log Fi (4, (5), )| ds = log Fu(4, (), %)~ log (4, (1), ).
(39) exp[(1/2)log F (A (x), x)] = [1+ o ()] | ai’(x)| pif exp(i6y;/2).

Now we note that the elements (7;'T;), of the matrix T;'T; are
given for x = x,, by

(T5'T3); = (2)[Fu (A, (x), x)A ((x) + Fi (A, (x), x)
(40) +iby(x)AH(x) + ibi(x)] [Fi (A (x), x)] 7,

or,

(To'Teo); = (1/2)(d/dx)log F (;(x), x)
(41) + 27N [by(x)A2(x) + B [Fa (A (x), X))

and

(’Iﬂa1 T(’))jk = [/\k (lbé/\kA] + lb () +m ,/\k/\’ + n']

(42) X[(A = MFL(x), )], k#j.
Let

@) AP = = (Ty'T),,

(44) A, = diagonal [A{"].

We note that the A(’(x) are continuous for x = x,. Let the matrix
T, be defined by the equations

(45) (To); =0,
(46) (T = —(To' To)a (A = A7, k# j.

T, has been defined so that A\T,— T,A,— T;'T, is a diagonal matrix;
indeed,

47) AT, — ToAo— T3' Ty = A,.

Thus, T; and T, in the transformation (27) have been chosen so that
for x = x,, equation (28) is
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(48) z'=(A¢+A))z + Bz.
We shall now show that for x = x,, B(x) exists and is continuous,
and || B(x)| is integrable on [x,,%). To do this will require a series of

lemmas whose proofs are mostly straightforward or else contained in
Fedorjuk [6] and are therefore omitted. For x = x,, let

(49) A(x) = max |4, (x)].
Then,
A(x) = |7(x)] max| 7, (x)] = | ai(x) | [1 + o(1)] max |, | > 0.

In the following, the capital letters C and D denote suitably chosen
positive constants.

LEmMMA 1. Dy|a®(x)|= A (x)= D,|al’*(x)|.
LEMMA 2. CA(X)= X)) - A= CA(x), j# k.
Let

(50) a(x) = max{| bj|,|m'|/A,| bi|/A% |n'|/A%},

(1) B(x)=max{|b[,[m"|/A(x),| bT/A*(x),|n"|/A*(x)},
(52)  8(x)=max{|bi|,|m'[/|ai®|,|bil/| ai®|, | n'l/| aol},
(63)  y(x)=max{|b3],[m"|/|as®|,|b1I/| ai’, | n"|/] as]}.

LEMMA 3. a(x)= C58(x).
LemMa 4. B(x)= Cy(x).

LEmMa 5. CA*(x)=|F (A (x), x)| = C:AY(x).
LEMMA 6. |F,(A(x), x)| = CA3(x)a(x).

LemMa 7. [[A(x) = A (0)]F (A (x), )| = CA(x).
LemMa 8. |[Ac(x) = A (0)FF. (A (x), )| = CA(x).

LeEMMA 9. |F, (A (x),x)|= CA(x).
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LEMMA 10. [F,.(A;(x),x)|= CA*(x)a(x).
LEMMA 11. |Aj(x)|= Ca(x)A(x).

If A =(A;)k4- is an n X n matrix, we define the norm ||A || by
[A | = nmax, Al

LemMa 12. [A,(x)]|= Ca(x).

Lemma 13, || T5'(x)Ti(x)|| = Ca(x).

LEmMa 14. | Ty(x)||= Ca(x)/A(x).

LemMa 15. || T5(x)]|= C{a?(x)+ B(x)]/A(x).

LEMMA 16. [E + Ty(x)]"' exists and is continuous for x Z x,, and
IE + T:(x)) | = C.

LeEmMA 17. B(x) exists and is continuous for x Z x,, and | B(x)| =

Cla’(x)+ B(x)/A (x).

We note that Lemmas 16 and 17 depend on the fact that
lim,_.a(x)/A(x) =0, which follows from Assumptions II and III.

LemMA 18. ||B(x)|| is integrable on [xo,).

We note that Lemma 18 follows from Lemma 17, and Assumption V.

It is now possible to show that (48) has three linearly independent
solutions which satisfy certain specified boundary conditions at
infinity. To that end, we observe that a fundamental matrix Zy(x,, x) for
the homogeneous equation

(54) z'= A+ A)z, X = X,

is given by

(55) Zy(xy, x) = diagonal [exp f: (A ()+A200) dt}.
Putting

(56) Z(x)=U(x)Zx0,x),

we find that Z(x) is a matrix solution of (48) for x = x, if U(x) satisfies
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(57) U(x)=C+ (KU)(x), X = X,

where C is an arbitrary constant matrix, and K is a linear operator on
matrices U(x) such that

68 KU = [ (@0BOUOZE )L

Xjk

X, being an arbitrary number in the interval [x,, %].

Let M be the Banach space of continuous matrices V(x) on [x,, ),
with || Vv = sup,z,| V(x)| <. For reasons that will appear in Lem-
mas 19 and 20 below, if Assumption VI (a) or (c) holds, we take x; = o; if
Assumption VI (b) holds, we take x, = x,. Also, we take C = E.

LemMa 19.  If x, is sufficiently large, then K: M — M, and | K ||y =
1/2.

Proof. From (58) it follows that if V€ M and if x = x,, then

[(KV) (X)) | =
(59)

f’xk [expf Re(A,(s) — A(s)) ds]

x[exp [ Re )~ AN ds | IBO e || V

By (41), (43) and (38),

[ e - avenas

= (1/2)[log F, (A;(x), x) — log F (A, (1), 1)]
(60)  —(1/2)[log Fi(Ac(x), x) — log Fi (A (1), 1)]

#62) | B NO R A6, )1 = AR (), )] ds
#G2) [ " BOUR W), = [ 6), 9] ' ds.

It now follows from (36), (49), Lemma 1, Lemma 5, and Assumption IV

that f (AP(s)— A{(s)) ds| is bounded for t, x = x,. Hence, if VE M,

then
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[(KV) ()i |
(61) ; .
[ [exe [ Re )= nsnas i@ VI x2 5,
By our choice of x;, if Assumption VI (a) or (b) holds, exp fx Re(A;(s)—
| Reu(9)-

A(s))ds| = C, for t, x = x,, and therefore expfx Re(A;(s)— A(s))ds =
exp C,. It follows from (61) that

=C

A(s))ds=1. If Assumption VI (c) holds, then

@ V)RS C[ IBOIEI V. xzx.
Hence,

63) 1KV)@)]=3max [(KV)@) | =3C [ 1BV

If we now choose x, so large that f |B(¢)||dt =1/6C, then |K |y =
1/2. This proves Lemma 19.

Lemma 20. If x, is sufficiently large, equation (57) has a unique
solution U(x)E M. It is true that ||(KU)(x)||=0(1) as x > ». U(x)
can be written in the form

(64) Ux)=E+o0(1), X = Xx.

Proof. The existence and uniqueness of U(x) follows from Lemma
18 and Banach’s contraction mapping theorem or successive
approximations. To prove that |[(KU)(x)| = o(1), we observe that if
Assumption VI (a) or (c) holds (so that we take x, = ), then from (61),

|(KU) () |= C f “IB@)]| dt | Ul = o(1). Tt Assumption VI (b) holds

(so that we take x; = x,), then from (61),
(&= c{ [ [exp [ ReOy) - M) ds | IB@ar

+ [ 1BoIafivi,

where x = x, = x,. From this inequality it is seen that [((KU)(x))y|=
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o(1) also when Assumption VI (b) holds. (64) follows from (57) and the
fact that [(KU)(x)[| = 0(1). This completes the proof of Lemma 20.

THEOREM 1. Under Assumptions 1-V1, the equation Ly = ioy, x
r, o0 # 0, has three linearly independent solutions y,, k = 1,2,3, of the form

(65) v =[1+o0(1)]a;"(x)exp JT Ac(2) dt, X = X,

where the A (t) are given by equation (22).

Proof. By (56) and (64), there is a solution matrix Z(x) for (48) of
the form

(66) Z(x)=[E + o(1)]Zy(x,, x), X Z Xx,.

If x, is sufficiently large, det[E + o(1)] # 0 for x = x, and therefore Z(x)
is a fundamental matrix for (48). By (66) and (27) a solution matrix for
(25) is given by

(67) W(x)= Ty(x)[E + T:(x)][E + 0(1)] Zo(x0, x), X Z Xx,.

Since [E + Ty(x)] ' exists by Lemma 16 and T'5'(x) exists by (31), W(x) is
a fundamental matrix. By Lemma 14 and the fact that
lim,_..a(x)/A(x)=0, we see that

(68) W(x)= To(x)[E + 0(1)] Zs(x0, x), X = x,.

Let yo(x)=wi(x), k =1,2,3, where w, (x) is the element in the first
row and kth column of W(x). Then, by the equivalence of (24) and
(25), y« is a solution of (24), and by (68) and (30),

(69) Yo =[1+o(1)]exp f A+ AL((D)dr,  x=a

From the equations y, = wyy, y' = wis, yi = — (iby) 'mwi, + (ib)) 'ws, we
see that W(y,, y,, y5)(x) = det W(x) # 0, x = x,, where W(y,, y,, y;) is the
Wronskian of y,, y,, y;. Hence, y,, y,, y; are linearly independent for
x = x,. By (43), (41), (38), (39), (49), Lemma 5, Lemma 1 and Assump-
tion IV we see that

(70) eprx AP dt = G |ag(x)|[1+o(D)], x=x, GH#O0.
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(65) now follows from (69), (70) and the fact that |a,|— %, so that
a)(x)>0orayx)<O0forx = x, Thisfinishes the proof of Theorem 1.

3. Asymptotic formulas for the A, (x). In thissection we
take the coefficients of the operator L of equation (1) to be the following
on the interval [1,):

(1) by(x)=1,

(72) bi(x)=ax",  a<2y/3,
(73) a(x)=bx",

(74) a)(x)=cx?, y >0, c#0.

LeEmMmA 21. If b/c'® #3/2°", then the coefficients of L given by
(71)~(74) satisfy Assumptions 1-V with

(75) d=blc".

The proof is straightforward. We note that it is required in (74) that
y >0 and ¢ # 0 in order that a)(x)— +® or a,(x)— —® (Assumption
I[). The exponent y/3 occurs in (73) in order that lim,..a/a" = d
(Assumption II) with the possibility that d# 0. The inequality & <2y/3
is required in (72) in order that b,/ai” = o(1) (Assumption II).

Lemma 22, If b/c'” <3/2%°, the coefficients of L given by (71)-(74)
satisfy Assumptions 1-V1.

Proof. Since d = b/c'? <3/2°", ho(n) = 0 has one real negative root
and two complex conjugate nonreal roots. Suppose My =p +iq, Ny =
p —iq, ¢ >0. Then from (23) one sees that Assumption VI is satisfied;
in fact, (a) or (b) is true for each pair j, k. This proves the lemma.

If d>3/2*", then h)(n)=0 has three real roots. In this case in
order to check Assumption VI it is necessary to have asymptotic formulas
for the A, (x) which are more precise than (23). We obtain these by use
of (20).

LEMMA 23.  Suppose the coefficients of L are given by (71)~(74) and
that b/c'” # 3/2*".  Then the roots A, (x) of (7) are given by
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A (x) = ial? {mk + [Mox — vud] (6¢)'(iD)
+ acPvx ™"+ [— (Mo — vud) + v,d*](6¢)*(iDY
—ac v+ vud](6¢)'(iD)x ™"
+ (ac Y vpx
+{(5/3)(Mox — v1:d) — 3v,,d* — v5,d°](6¢)*(iD )
(76) + O(D*x™")+ O(Dx™)+ (ac ") vyx ™

+$ ﬁ‘, O(D*x ) + O(Dx ")

j=4 s=
+ Z vo(ac Pyx™"
+ w,.ﬂo(x)(ac 2/3)n+1 —(n+1)w

+ w,,m](x)(ac —2/3)n+2 —(n+2)v }’

where n is an integer, n = 4, the v, are constants which depend on 71, and
are real when 7, is real, w,.,o(x) and w,.,o(x) are complex functions
which are bounded as x — «,

(77) v=2y3—a>0,
D = aax P - 2gx 7"
(78) =0o(l) as x— oo

If mox is real,

ReA(x) = aé”{[v“d - N ] (6¢)'D
+ ac™[vy + dvy](6¢)'Dx
—[(5/3) (v11d = Mox) + d*(Bvss + dvs)] (6¢)°D*
(79) + O(Dx*)+ O(Dx ™)

n+2
+S 2 O(D*x ") + O(Dx ")

1=4 s=

+ O(x—(n+1)v)+ O(x—(n+2)v)}.
It is true that

(80) v = nadho(Mo)]
(81) vnd — Mok = 3[h6(7]0k )]-1,
(82) V10 = Nox[ho(Mox )]s
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83) vx = nal3hi(Mo) — Mok o(Mox )] [Ao(M0x)]7>,
(84) Uy = 2_17] 3k[4h 6(710k ) - 7]0kh g(nﬂk )] [h (’)(7701: )]_3,
(85) v =2""n5d[3Rs(Mo) — Moxh s(ax ) + [Ro(mo )[R o(max )]

Proof. From (5) and (71)—(74) we see that

(86) 7(x) = as’(x)t(x),
(87) t(x)=[1+@c)'GD)]".
As x > o,

(88) t(x)=1+(6¢)'(iD)— (6¢)*(iD) + (5/3)(6¢)*(iD)’+ O(D*).
The functions f;(x) and f,(x) of (16)—(18) are given for x — » by
(89) fi(x)=d[—(6¢)'(iD)+2(6¢c)*(iD) — (14/3)(6¢)(iD)*+ O(D*)],

f:(x)=ac™x~"[1-2(6¢c)"'(iD)

(90) +5(6¢)(iD )~ (40/3)(6¢)*(iD Y + O(D")].

Now, h™'= hi'[1 = (n/ho)(nfi + f)]'. Let n be a positive integer. For
n € C, and for x = x,,

h=hit {1+ 3 (nfhaY (ofi + £ + (n/hoy (nfi+ £
X [1- (/o) (ofi + £]
91) n i
=hi'+ 3 (3 anrnift)

j=1 \s=0

+ 38 G (L= (/o) afi+ £

Hence,

n+tl _j
whih = mhihi'+ 5 3 b ()fifs”

2) + [2‘; Curs (0, X)FIf371 704 2: Curas (1, x)f;f;”"]
X [1=(n/ho)(nfi+ f)I"".
Substituting (92) into (20),
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n+l

M (X) = Mo + 2 20 vfifs

,\
* —

(93) + 2, Waa(X)fif3

It
N o

3 “
+

+ ‘ wn+2,s (x )fff;+2_sy

“
]

where the v, are constants which are real if 7, is real, and the functions
Waiis(x) and w,.,,(x) are bounded as x — + . If we substitute (93)
into (22), we obtain for x = x,,

3 )
/\k (X) = ia(l)B {t"]ok + 2 4 vjstf?fé—s

j=1 s=

n+1 . i )
+ [v,otf’2+ 2 ijtfisz_s]

j=4 =1
(94) "
+ M’n«f'l,Otfg+l + wn+1,stfif;+]_s

“©
|

+

“©
I

=
+
[N

+ wn+2,0tf;+2 + wn+2,stf§f;+2—s} .

“»
—

We now use (88), (89), (90) to calculate asymptotic expansions for each of
the terms tny, tfif5°. We obtain

Mo = Nox + Mo (6¢)7'(iD) — Mo (6¢)*(iD )’ + (5/3)noi (6¢)°(iD )’
+ O(D?),

tf;=d[~ (6¢)'(iD)+ (6¢)*(iD ) — (5/3)(6¢)*(iD )y + O (D%,
tf,= acx[1 - (6¢)'(iD)+-O(D?)], etc.

Substituting into (94), we obtain (76). (79) follows immediately from
(76). From the way in which (93) was derived, we see that v, =

(Zm')“f [n7°ho—27m7ho}h;* dn. Hence,
Ck
ou= Qi)' [ [n*ha' = (d/dn)(nhih) dn
= @iy [ kit dn = nulhitr]

This proves (80). (82)—(85) are proved similarly. (81) follows from (80)
and the fact that d = (93, + 1)noi. This proves Lemma 23.



THE DEFICIENCY INDEX OF A THIRD ORDER OPERATOR 385

Let
w=min{r+1+vy/3,y} if aa#0
©3) —y if aa=0.
Then, as x — x,
(96) D=0(").

In the following we shall consider three cases. Case 1 is the case
that v = 2u, which occurs if @« = —4y/3. Case 2 is the case v >2u,
which occurs if a < —4vy/3. Case 3 is the case v <2u, which occurs if
—4dy3<a<2y/3.

LEmMMA 24.  Suppose the coefficients of L are given by (71)-(74) and
that b/c'” # 3/2°". If n is real, Re A (x) has the following asymptotic
expansions:

Case 1. v=2u (i.e.,, a = —4y/3). Then,
Re A (x) = ai*{[hi(mu)]'2c)'D
+ ac [vy+ dv,](6¢) ' Dx

—[5(ho(no )" + d*(Bvs + dvss)](6¢) D’
+ O(x*)}.

©7)

Case 2. v>2u (ie, a < —4vy/3). Then,

ReAc(x) = ai’{[Ai(no)]'(2c)'D
) = [5(hi(mu)) " + d*Boyn + dvyy)] (6¢)°D3 + O (x )}

where € > 0.
Case 3. v<2u (ie, —4y/3<a <2y/3). Then,
ReAi(x) = ai"{[hi(no)]'(2c)'D

(99) + ac v+ dvy](6¢) 'Dx "
+ O,

where € > (.
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Proof. (97) and (98) follow directly from (79). If we choose n so
large that nv > u, then we also see that (99) follows from (79). This
proves Lemma 24.

LEMMA 25. If b/c'>3/2°", b/c'? # 3/2'°, and o # aa/[2, then the
coefficients of L given by (71)-(74) satisfy Assumptions 1-VI.

Proof. Since d=b/c"”>3/2"", hy(n)=0 has three real
roots. Because d# 3/2', hi(no), hi(ne), ho(ne) are all distinct.  From
(78) and (95) we see that D = C,x *[1+ o(1)], where C,# 0 because
o# aa/2. By Lemma 24,

Re[A;(x)— Ac(x)] = Ci(2c) " ad™{[hi(no)]™" = [ho(max)] '}
(100) < x*[1+0(1)].

From (100) and (74) it follows that Assumption VI is satisfied. This
proves Lemma 25.

LEMMA 26. Suppose the coefficients of L are given by (71)-(74) and
that b/c'®=3/2"%. Then the roots of ho(n)=0 are n, =2""(1-3"),
Nor = 2—1/3, Nos = 2—1/3(1 + 31/2)’ and

(101) ho(no) = hi(Mos) # ho(N0),

(102) V(o) + dvn(ne) = 37272P(= 2+ 3",

(103) V1(Me3) + dvn(ne) = 37272°(—2 - 3",

(104) 30(n) + dvs(ne) = 37'272°[250 — (143)3'7],
(105) 30u(Nne) + dvss(mes) = 37272°[250 + (143)3'].

The proof follows immediately from (80)-(85) and the fact that
ho(n)=n"=(3/2")n*+ 1.

LemMMA 27. Suppose that b/c'?=32"%, a < —4y/3. Then, the
coefficients of L given by (71)-(74) satisfy Assumptions 1-VI.

Proof. Since a < —4y/3, v+1+vy/3>y. By (95), pn=7v. By
(78), D= —20x"(1+0(1)). From (101) and (98) it follows that
Re[A;(x)— Ay(x)] and Re[A,(x) — A5(x)] satisfy (a), (b) or (c) of Assump-
tion VI. From (98), (101), (104), (105),

Re[A;(x)— A (x)] = Cix*"P(1 + 0(1)),
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where C,#0. Thus, Re[As(x)— A,(x)] also satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 27.

LEmMMA 28. Suppose that b/c'=3/2"%, —4y[3<a<2y/3, o#
aal2, a#0. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions 1-VI.

Proof. 1t follows from (78) that D = C;x™*(1+ o(1)), where C, #0
because o # aa/2. By (101) and (99), Re[A,(x)— A(x)] and Re[A,(x) —
As(x)] satisfy (a), (b) or (c) of Assumption VI. From (99) and
(101)-(103), Re[As(x)— A(x)] = Cox#*"*(1+ 0(1)), where C,# 0 be-
cause a# 0. Hence, Re[A;(x)— A (x)] satisfies (a), (b) or (c) of Assump-
tion VI. This proves Lemma 28.

LEMMA 29. Suppose that b/c'?=3]2", a=—-4y/3, o*#
—2"ac*?[143. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions I-VI.

Proof. Since a = —4vy/3, u=vy. Hence, D= —20x77(1+0(1))
by (78). From (101) and (97) it follows that Re[A,(x)— A,(x)] and
Re[A,(x)— As(x)] satisfy (a), (b) or (c) of Assumption VI. From (97) and
(101)—(105), Re[As(x) — Ai(x)] = Cix®"(1 + 0(1)), where C, # 0 because
o’ # —2%ac*’/143. Hence, Re[A;(x)— A (x)] satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 29.

LEMMA 30. Suppose the coefficients of L are given by (71)~(74) and
that b/c'” # 3/2*°.  If ny is real, Re A, (x) has the following asymptotic

expansions:

Case A. Suppose a =0. Then,

(106) ReA(x)= —o[hi(nu)] 'c Px 21+ 0(1)).

Case B. Suppose a# 0.
(i) Suppose 1<2y/3.
() If 1<a<2y/3, then

(107) ReAy(x) = aac™[2hi(no)] ' x> + 0(1)).

) Ifa=1and c# a/2,

(108) ReA(x)=(a—20)2ho(nu)] ¢ x 21+ 0(1)).
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(c) If a <1, (106) is valid.
() If a<2y/3=1, (106) is valid.

The proof follows directly from Lemma 24 with calculation of u and
D in the various cases.

4. The deficiency index of the operator L. In the
following, L, will denote the space L,[1,x), i.e., the space of complex-
valued functions on [1,) which have Lebesgue square integrable
absolute values.

LEmMA 31. Suppose the coefficients of L are given by (71)-(74) and
that b/c'® < 3/2*?, so that no. = u, + iv,, where v,>0 and v;<0. Then

the function f, (x) = a(;”'“‘(x)expfx A (t)dt, x = x,, has the following prop -
erties: 0

i) Ifk=2andc>0orifk =3 and c <0, then fy €L, forad >0
and for o <0.

(i) Ifk=2andc<0orifk=3andc>0,thenf, &L, foro >0
and for o <0.

Proof. We shall give an intuitive proof which can be made precise
as in Naimark [9, §23]. We have by (23) that

x

lfk(x)lz]c,—usx—y/sexp[ _ Ukcl/af tmdt]

= lc [—1/3x-mexp[_ vec Py /3 + 1)-1(xy/3+1 — x7™)

— 4+ if pc”<0.

This proves (ii). Also,

fx)P=]c lp[ C2pet j :

X0

13 dt]

x
=|c |‘2’3x”3exp[ - 20kc"3j

X0

"3 dt]

x

=(- ZUkc)“(d/dx)exp[ - 21)kc”3J' 1" dt].

This proves (i).

LEMMA 32. Suppose the coefficients of L are given by (71)—(74) and
that b/c'P#3/2°°. If me is real, the function f(x)= a;"(x)
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exp ' A (2) dt, x = x,, has the following properties:

) If2y/3>1ando# a2, thenf € L, foro >0 and for o <0.
(II) If 2y/3=1, then fE L, for alhy(nw)>0, and fEL, for

Proof. Case A. Suppose a =0. By (106),

x

|f(x)[~ 6’2’3x‘2*’3exp{ —20¢ 7 [hi(no)] J’ 177" dt }

X0

=(- 20')"h{)(n0k)(d/dx)exp{ =20¢P[ho(na)]™ fx B dt}.

From this last expression we see that (I) and (II) are true for Case A.

Case B. Suppose a#0. If 1<a <2y/3, then by (107),

X

[f()FF =~ ™ x 7" exp { acc ™ [hi(no)]” f gemioas dt}

X0

é C—2/3xa—1—27/3exp{aac—2/3[h6(n0k)]—lf ta-l—21/3 dt}

— (aa) hiCmu) (d/dx)exp { aac Thima [ o0 drf.

Since J’ t*7 """ dt converges, we see that (I) is true if 1 <a <2y/3. If

X0

a =1<2y/3 and o# a/2, then by (108),

lf(x)lz =~ ¢ Wy exp { (a — 20)0_2/3[h6(n0k )]—1 J: 2B dt}

=(a—=20)"hi(no) .
X (d/dx)exp { (a —20)cP[hi(na)]™ j P dt}.

X

Since f t™? dt converges, we see that (I) is true for « = 1<2vy/3 and

o#af2. fa<1<2y/3orif @ <2y/3=1, then by Lemma 30, (106) is
valid and therefore (I) and (II) follow as in Case A. This proves Lemma
32.

Let n, denote the dimension of the space of solutions of Ly = ioy,
x 2 r, which are in L,[r,©) for ¢ >0. It is known that n, is independent
of . Let n_ denote the same number for ¢ <0. We shall call n, and
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n_ the deficiency numbers of L, and we shall call the pair (n.,n_) the
deficiency index.

THEOREM 2. Suppose that the coefficients of L are given by (71)—(74)
and that b/c'?<3/2*°. If 2y/3>1, n,=n_=2. If 2y/3=1, n, =2,
n_=1.

Proof. By Lemma 22, the coefficients of L satisfy Assumptions
I-VIL. By Theorem 1, Ly = ioy, x = 1, o# 0, has three linearly indepen-
dent solutions y, given by (65). By Lemma 31, for ¢ >0, y,E€ L, and
ys & L, for o >0 and for o <0; for ¢ <0, y, € L, and y,E L, for ¢ >0
and for 0 <0. By Lemma 32, if 2y/3>1, y,€ L, for 0 >0 and for
0<0, o#al2; if 2y/3=1, y,€L, for ¢ >0, and y, € L, for o <0,
because ho(no)>0. It follows that if 2/3>1, then n, = n_= 2, and if
2y/3=1, then n,=2. It also follows that if 2y/3=1, then n_.=1,
provided we can show that for ¢ >0 and o <0 no nontrivial linear
combination of y, and y; is in L,, and for ¢ <0 and ¢ <0 no nontrivial
linear combination of y, and y, is in L,. We deal with the case ¢ >0,
o <0; the case ¢ <0 and o <0 is similar. It is sufficient to show that
yi+ By; €L, if B#0. By Theorem 1, (23), and Lemma 30,

|yi/ys|=[1+ o(1)]exp f: [ReA(t) — ReAs(2)] at

=[1+0(1)] expc”3v3f t"*[1+0(1)]dt—>0 as x— +x.

0

Hence, for x = x,, |y,/y;+ B?= K, where K is a constant. Thus

f ly1+By3de=f !yslzlyllyﬁBlzdxéKf |yl* dx.

It follows that y, + By, & L,. This completes the proof of Theorem 2.

THEOREM 3. Suppose that the coefficients of L are given by (71)—(74)
and that b/c'®>3/2%".

Case A. Suppose b/c'#312". If 2y/3>1, n,=n_=3. If
2y3=1,n.=2, n=1.

Case B. Supposeb/c'” =32 anda = —4y/3. If2y/3>1,n,=
n.=3. If 2y/3=1/4, n,=2, n_=1.

Case C. Suppose b/c'?=32"°, —4y/3<a<2y/3, a#0. If
2y3>1, n.=n_=3. Ifdy3-1=a<2y/3<1, thenn,=2, n_=1.
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Proof. By Lemmas 25-29, the coeflicients of L satisfy Assumptions
I-VI in all three cases, provided o# aa/2 and o’# —2"ac*/143.
Hence, if we avoid these values of o, Ly = ioy, x =1, o# 0, has three
linearly independent solutions y, given by (65). By Lemma 32 we have
the following: (I) If 2y/3>1 and o # a/2, then y,,y,, ;€ L, for 0 >0
and for o <0; (II) if 2y/3=1, then for 0 >0, y,,y:E€ L, and y, € L,,
while for 0 <0, y,€ L, and y,, y; € L,. By (I) we see that if 2y/3>1,
then n, = n_ =3 in all three cases. If2y/3=1,then n,=2andn_=1,
provided we can show that no non-trivial linear cembination of y, and y,
isin L,. Using (106), this can be proved for Case A as in the proof of
Theorem 2. In Cases B and C it is necessary to use (97)—(99). The
assumptions in Cases B and C enable one to do this as in the proof of
Theorem 2. This completes the proof of Theorem 3.

THEOREM 4. Suppose that the coefficients of L are given by (71-74)
(without the requirements that o <2y/3, y>0). Then the deficiency
index of L is as follows for the indicated values of the parameters y, a:

L y>3/2, a<2y/3: (2,2) if blc'® <3/2%% (3,3) if b/c"">3/2%",
blc'’ # 3/21/3.

O 0<y=3/2,a<2y/3:2,1)ifb/c'”#3/2°" and b/c'” # 3/2'".

. y=0, a=0: (2,1).

IV. 0<a=1, a>2y/3: (2,1).

V. 1<a a>2v/3: (3,3) ifa>0; (2,2) if a <0.

Proof. The statements for regions I and II follow from Theorems 2
and 3. III follows from the fact that n,+n_=3 by Dunford and
Schwartz [4, XIII. 10. E.II(5)] and from the fact that 2=n, and1=n_by
Everitt [5] or Kogan and Rofe-Beketov [8]. IV and V follow from
Unsworth [12]. This proves Theorem 4.

ReEMARK 1. Note that @ =2vy/3, vy >0, is the only portion of the
(v, @)-plane not included in Theorem 4.

REMARK 2. The results of §7 of Pfeiffer [5] are included in
Theorem 4 except for the case ¢ =0.
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