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NORM-ATTAINMENT OF LINEAR FUNCTIONALS
ON SUBSPACES AND CHARACTERIZATIONS

OF TAUBERIAN OPERATORS

RICHARD NEIDINGER AND HASKELL P. ROSENTHAL

It is proved that for every non-zero continuous linear functional /on
a non-reflexive Banach space X, there is a closed linear subspace Y so
that / I γ does not attain its norm. In fact, Y may be chosen with || / | Y ||
arbitrarily close to || /1|. It is also shown that every continuous linear
functional on an infinite-dimensional normed linear space fails to attain
its norm on some linear subspace. The class of non-zero Banach space
operators which map closed bounded convex sets to closed sets is
identified as the class of Tauberian operators. (A bounded linear opera-
tor T: X -> 7 is defined to be Tauberian provided T**x** e Y implies
x** e X.) Other closed image characterizations are obtained. In particu-
lar, using the very first result stated above, a non-zero operator is found
to be Tauberian if and only if the image of the ball of any closed
subspace is closed. The new characterizations show that the "hereditary
versions" of semi-embeddings and Fσ-embeddings are precisely the
one-to-one Tauberian operators.

Introduction. Let X and Y be Banach spaces and T: X -> 7 a given

non-zero operator. (Throughout, "operator" means "bounded linear

map".) Under what circumstances is it true that TK is closed for every

closed bounded convex subset K of XΊ Evidently this is trivially true if X

is reflexive, so suppose this is not the case. Here are some of the

equivalences obtained in our main result of §2, Theorem 2.3. (For any

Banach space Z, let Bz = {z e Z: | |z| | < 1}.)

THEOREM. Assume T: X —> Y is non-zero with X non-reflexive. The

following are equivalent:

(a) T is Tauberian.

(b) TK is closed for all closed bounded convex K.

(c) TBZ is closed for all closed linear subspaces Z.

(d) TX is infinite-dimensional and TZ is an Fσ for all closed linear

subspaces Z.

We recall the definition that T: X -> Y is Tauberian provided whenever

G e X** and T**G e 7, then G e X (where we regard X as canonically

embedded in X**). Results of Kalton and Wilansky concerning Tauberian
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operators [KW] are reviewed at the beginning of §2. (Also, our results hold

for either real or complex Banach spaces; for the sake of convenience, we

treat the real case only.)

Recall that T: X -> Y is a semi-embedding provided T is one-to-one

and TBX is closed. It is a result of Saint-Raymond (see [BR]) that T is a

semi-embedding under an equivalent norm on X if (and only if) T is

one-to-one and TX is an Fσ. The above result yields immediately that

one-to-one operators are hereditarily semi-embeddings (under equivalent

norms) if and only if they are Tauberian. That is, we have the

COROLLARY. Let T: X -> Y be a one-to-one operator. The following are

equivalent:

(a) T is Tauberian.

(b) T\zis a semi-embedding for all closed linear subspaces Z of X.

(c) TZ is an Fσ for all closed linear subspaces Z of X.

Thus the class of Tauberian semi-embeddings is much smaller than

that of semi-embeddings. It seems worth pointing out also that a semi-em-

bedding Γis Tauberian if and only if Γ** is one-to-one.

Actually, Tauberian semi-embeddings (i.e., one-to-one Tauberian op-

erators) arise rather naturally in the study of Tauberian operators them-

selves. Indeed, let T: X -> Y be a non-zero operator and Z = { x e X:

Tx = 0}, the null space of T. Let Π: X —> X/Z be the quotient map and

f: X/Z -» Y the natural map so that T = 7ΊI . Then it is easily seen that

T is Tauberian if and only if Z is reflexive and T is a Tauberian

semi-embedding. (We don't use this result in the sequel.) the role of

Tauberian semi-embeddings in the factorization results in [DFJP] is

discussed in §2.

Evidently the above Theorem yields that non-zero finite rank opera-

tors on a non-reflexive Banach space are never Tauberian. In particular,

condition (c) of the Theorem yields that non-zero linear functionals on a

non-reflexive space always have a non-norm-attaining restriction. The first

section is essentially devoted to this result. Thus, we establish in Theorem

1.1 that if Xis nonreflexive and/ G X* is non-zero, there is a closed linear

subspace Z of X so that / | z does not attain its norm and moreover / | z

has norm arbitrarily close to that of / itself. Of course this result is related

to the discovery of James that there is a non-norm-attaining linear

functional on every non-reflexive space. In fact, our argument for Theo-

rem 1.1 uses the theorem of James [Jl] that every weakly closed bounded

set which is not weakly compact admits a functional whose sup on the set
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is not attained. Our original proof of Theorem 1.1 was significantly

simplified by N. Kalton who also observed that the non-norm-attaining

restriction may always be chosen to be a restriction to a co-dimension one

subspace. We thank Professor Kalton for his permission to include these

improvements in this paper.

We also obtain that if Xis non-reflexive, then if / e X* with || / || = 1,

there is a closed linear subspace Z of X with || / | z | | = 1 and || / | z | | not

attained if (and only if) there i s a G e X**\X with ||GΊ| = 1 = (?(/).

(Again, Kalton's argument yields that Z may be chosen of co-dimension

one.) Evidently Theorem 1.1 yields a characterization of non-reflexive

Banach spaces. If we drop the condition that Z be closed, we simply

obtain a characterization of infinite-dimensional spaces. That is, we obtain

in Theorem 1.2 that for any infinite-dimensional normed linear space and

any non-zero linear functional on it, the restriction to some linear sub-

space has norm equal to the norm on the entire space and the norm is not

attained.

A somewhat weaker result than Theorem 2.3 (the first Theorem

presented in this introduction) is presented in [NR]. There we obtained the

equivalence of conditions (a), (b), and (d) but lacked the full strength of

condition (c). In order to obtain (c), the results in §1 of this paper were

formulated and their proofs discovered.

1. The non-norm-attainment of linear functionals on subspaces. This

section contains the results about restricting linear functionals so that the

norm of the restriction is not attained, as outlined in the introduction.

Throughout this paper, the word "subspace" will refer to a closed linear

subspace except (as noted) in the proof and discussion of Theorem 1.2.

Also any functional is understood to be continuous and linear. We let (/)

denote the linear span of {/}.

We now present the main result of this section. The proof employs

mostly standard functional analysis. Part of this argument requires the

fundamental theorem of James (in [Jl]) which states: if W is a bounded

weakly closed subset of a Banach space and W is not weakly compact,

then there is a continuous linear functional that does not attain its

supremum on W.

THEOREM 1.1. Let B be a non-reflexive Banach space, / £ ί * with

fΦ09 andO < λ < || / ||. Suppose either

(a) λ < || / ||

or

(b) λ = || /1 | and there exists a G G B**\B with \\G\\ = 1 and G(f)
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Then there exists a closed linear subspace Y of co-dimension 1 in B so
that || / |y|| = λ andf \γdoes not attain its norm.

REMARK. Evidently the final assertion of the Theorem means that
f(BY)={a^R:\a\<\}.

Proof. We assume without loss of generality that || / 1 | = 1. Let
W = { J C G 5 : ||JC|| < 1 and/(x) = λ}, a closed bounded convex subset of
B. We make the following claim: there exist g e 5* \ (/) and G <E #**
such that \\G\\ < 1, G(f) = λ, and G(g) > g(w)forallw e W.

Before we prove this claim, let us assume it and complete the proof.
Let h = g - (G(g)/λ)/, then G(h) = 0. Let Y = N(h), the null space or
pre-annihilator of h. Since g £ (/), h Φ 0 and Y is clearly a subspace of
co-dimension 1 in B. Now Y1-± = (λ) ~L and hence G E Y±J-. Identifying
Γ** with Y1-± , it follows that || / | y | | > G(f) = λ. Suppose there exists a
y <Ξ Y such that | | j | | < 1 and f(y) > λ. Let w = (λ/f(y))y, then w (= W
Π Γ. Since Λ(w) = 0, g(w) = (G(g)/λ)/(>v) = G(g), but this con-
tradicts the claim. Thus/(j>) < λ for all j> e Bγ meaning that || / | F | | = λ
and this norm is not attained.

We now prove the claim. First suppose W is empty. By the
Hahn-Banach Theorem, there is a G e B** such that ||G|| < 1 and
G(f) = λ. Let g be any element of 5 * \ ( / ) and the claim holds.
(Actually, W = 0 implies λ = 1 and / does not attain its norm on B
itself.) Now assume W is non-empty. Note that the condition g ί (/) is
superfluous. Indeed, if g = α/for some a and w e Wthen G(g) = aλ =
g(w), contradicting the condition G(g) > g(w) for all w ^ W. We now
consider two cases depending on whether or not W is weakly compact.

Case (a). Assume Wis weakly compact. We first establish that there is
a G e f i * * \ ί such that \\G\\ < 1 and G(f) = λ. If λ = 1, the hypothesis
explicitly assumes that such a G exists. If λ < 1, choose δ > 0 sufficiently
small depending on λ. Let H e B**\B with | |i/| | < δ. Let x0 e 5 such
that | |* 0 | | = 1 and /(* 0 ) > 1 - δ. Let G = λ(x0 + H)/(f(x0) + H{f)).
Clearly G <£ B and G(/) = λ. Also,

Thus if δ is chosen so that (1 + δ)/(l - 2δ) < 1/λ, then ||G|| < 1.
Consider W as a subset of 5**. By the case (a) assumption, W is a

weak*-compact, convex subset of J9** and G £ W (since JF c B). By a
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Hahn-Banach separation in the locally convex topological linear space
B** endowed with the weak* topology, there exists a weak*-continuous
linear functional g on 2?** such that g(G) > g(w) for all w e W. Since g
is weak*-continuous, g e J5* and the claim is established in case (a).

Case (b). Assume W is not weakly compact. By the fundamental
theorem of James [Jl], we may choose a g ^ B* so that M = sup g(W) is
not attained on W. Now there exists &G & W, the weak*-closure of W in
#**, with G(g) = M. Thus G(g) > g(w) for all w e W. Also G e f
implies ||G|| < 1 and G(f) = λ. This completes the entire proof.

Theorem 1.1 also characterizes those linear functionals which have a
non-norm-attaining restriction with norm equal to the norm on the entire
space.

COROLLARY. Let f be a non-zero linear functional on B. There exists a
closed linear subspace Y of B such that f \γ does not attain its norm and
II / Ml = 11/11 if and only if there is a G e B**\B with \\G\\ = 1 and

Proof. One direction is proved in Theorem 1.1. Suppose conversely
that 7 is a subspace, | | / | y | | = | | / | | and / | y does not attain its norm. By
the Hahn-Banach Theorem, there exists a G e Γ** with ||G|| = 1 and
G(f) = II / ll Since/ | y does not attain its norm, G <£ Y. Identifying 7**
with a subspace of 5**, G G B** \ B.

There are linear functionals where such a G (equivalently, such a
restriction) does not exist. Indeed, consider B = I1 and let / be the first
coordinate functional, i.e., f(x) = x(l), for all x e I1. If 7 is a subspace
with || / | y | | = 1, then there exists a sequence {yt) in Y where | |^ | | -> 1 and
f(yt) -> 1. This means that | j ; (l) | -> 1 and Σ ^ b Ί ίΌI -^0 so that
yi -> e1? the first unit vector. Hence | | / | y | | is attained at eλ e 7. In
general, a linear functional is strongly exposing on the unit ball (cf. [B], p.
269) if and only if ||j>.|| -> 1 and f(yt) -> || / 1 | imply {yt) converges in
norm. Therefore any strongly exposing linear functional attains its norm
on any subspace 7 with || / | y | | = || / ||.

Theorem 1.1 states that, for any 0 < λ < || /1 | , a subspace 7 always
exists where || / Ml = λ a n d this norm is not attained (assume B is
non-reflexive). Examples such as the one above show that this is the best
possible in the sense that a non-norm-attaining restriction with λ = || / ||
may not exist.
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On the other hand, an example of an / which does have a non-norm-
attaining restriction with norm equal to || / || is the limit functional on the
space of convergent sequences. Let B = c = C(N U {oo}) and use the
notation x(oo) = l i m ^ ^ φ') for all x e c. Let/be the norm-one func-
tional f(x) = x(oo) for all x e c. Then c* = l\N U {oo}) and c** =
/°°(N U {oo}). Let G e c** be defined by G(oo) = 1 and G(i) = 0 for all
i. Clearly G ί c and G(f) = 1 = ||G||. Thus by Theorem 1.1, there is a
subspace y where || / | y | | = 1 and this norm is not attained; this subspace
is not explicitly obvious.

In Theorem 1.1, it is crucial that the constructed linear subspace be
closed. In fact, the following theorem shows that if X is a normed linear
space and/ e X*, then there exists a linear subspace Y such that || / | y | | is
not achieved if and only if X is infinite-dimensional. Moreover, one can
choose y so that || / | y | | = || /1 | . James also considered a normed linear
space version of his fundamental theorem that in any non-reflexive
Banach space, there exists a linear functional not attaining its norm. One
might ask if such a functional exists on any incomplete normed linear
space. A counterexample is given in [J2], i.e., an incomplete normed linear
space where every linear functional attains its norm. However in our
setting, given any linear functional, it is always possible to find a restric-
tion to a (not necessarily closed!) linear subspace on which the norm is
not attained.

THEOREM 1.2. Let X be an infinite-dimensional normed linear space and
f ^ X* with 11/11 = 1. Then there exists a linear subspace Y such that
|| / |y|| = 1 andf \γdoes not attain its norm.

It is clear that Theorem 1.2 follows from inductive application of the
following lemma. X and/remain as in Theorem 1.2.

LEMMA 1.3. // E is a finite-dimensional subspace of X such that

II / IEII < 1> then for any ε > 0, there is a y in X such that f(y) = 1,

\\y\\<l + e9and\\f\E+<y>\\<l.

It will be shown that this lemma, in turn, follows from the following
finite-dimensional lemma. Int denotes the topological interior.

LEMMA 1.4. Let n > 2 and K be a non-empty, compact, convex subset of
Rn such that 0 £ K. Let C = {ak: a > 0, k e K). Then there is a ko<Ξ K
with k0 <£ Int C. Then necessarily k0 £ Int(R K).
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Proof of Lemma 1.4. By a separation argument, we see that k0 £

Int(R K) necessarily follows and that C ^ R ^ N ^ O } . Indeed, choose

/ e (R r t)* and λ such that/(/c) > λ > 0 for all k e K. Then/(w) > 0 for

all u e C and clearly C Φ R"\ {0}, since / assumes negative values on

R"\{0} . Also {x: f(x) > λ/2} is an open set not intersecting {ak:

a < 0, k G K). Hence if kQ& KΠ Int(R K\ then k0 e Int C. Of

course, pictures of the cone C generated by K make these observations

obvious.

Now C is closed in R" \ {0}. (Let (kn) be in K, (an) in R+, x Φ 0 and

suppose «„&„ -> x. Then by compactness we may assume kn -» & for

some k G AT. Hence απ -> α = ||JC||/||A:|| and x = αfc G C.) We will show

that if K c Int C, then C is open. But this would contradict the fact that

R" \ {0} is connected, resulting in the conclusion K <t Int C. To show that

C would be open, let ak e C where A: e ^ and a e R+ . If ϋ: c Int C,

there is an open set U with k e ί/ c C. Then α/: G αί/ c C and at/ is

open, completing the proof. (Actually, we only use the case n = 2; also

one could deduce the lemma from this case alone.)

Proof of Lemma 1.3. We have || / 1 | = 1, E is a finite-dimensional

subspace with || / | E | | < 1, and ε > 0. Let y1 e ΛΓ\ E with /(j^) = 1 and

\\yx\\ < l + £ . (Such a yx exists because | | / | | = 1 and \\f \E\\ < 1.) Let

y2t=LX\{E + (yx)). Set 7 = E -h ( j ^ j^2) so that dim Y = dim £ 4 - 2

("dim" denotes "dimension o f ) . If || f \γ\\ < 1, we are done; so we now

suppose that || / | y | | = 1. Since Bγ is compact, W = {y e 7: /(j^) = 1 ==

IIJII) is non-empty. L e t F = { α w + e : α E R , w e ( f , e e £ ) , We claim

that there exists a κ>0 G W with w0 ί Int V with respect to the space Y.

Assuming this claim, choose δ > 0 depending on ε and choose y e Y with

\\y - wo\\ < 8 and y £ F. Thus ||>>|| < 1 + δ and /(j>) > 1 - δ. Let j> =

y/f(y); thus /(>>) = 1 and ||j)|| < (1 + δ)/( l - δ) < 1 + ε if δ is so

chosen. To argue that || / | £ + / v ) | | < 1, we suppose this is false. Then (E

4- (y)) Π W Φ 0 , i.e., there exist e G E, a G R, and w <Ξ W such that

e + ay ~ w. Since £ Π W/= 0 , α ^ 0 and j^ = (w — e)/α which con-

tradicts the fact that j> tf F.

It remains only to prove the claim. Let Π: Y -» Y/JB be the quotient

map. Note that Y/E is isomorphic to R2. Let K = ΐlW, a non-empty,

compact, convex set such that 0 £ K. By Lemma 1.4, there is a &0 G K

with &0 £ Int(R K). Note that Rw K = Π F a n d since Π is an open map,

Π(Int V) c Int(ΠF). Therefore Λo £ Π(Int F). However ^ 0 = Πw0 for

some vv0 e W9 and we conclude that w0 ί Int F.



222 RICHARD NEIDINGER AND HASKELL P. ROSENTHAL

2. Closed image characterizations of Tauberian operators. We be-

gin this section by reviewing the definition and discussion of Tauberian

operators which are found in [KW]. A remark is also made about the

occurrence of a Tauberian operator in the construction of [DFJP] for

factoring weakly compact operators. The remainder of the paper will

establish new characterizations such as those mentioned in the introduc-

tion.

An operator T will always refer to a bounded linear operator from a

Banach space X to a Banach space Y. We denote the range of T by RT

and the null space or kernel of T by NT. A bar over a set will always

denote its norm closure. For W e X, Wis defined to be the weak*-closure

of W in X**. A space is freely identified with its canonical embedding

into its double dual. Once again, the term subspace refers to a closed

linear subspace.

DEFINITION. An operator T is Tauberian provided (T**)~ι(Y) = X,

i.e., T**x** <Ξ Yimplies JC** G X.

The name Tauberian originates from the fact that a matrix map A:

c —> c has this property as an operator if and only if whenever x is a

bounded sequence such that Ax converges, then x converges [GW].

Compare this definition with the fact that T is weakly compact if and only

if (T**y\Y) = X** ([DS], p. 482). Clearly if JΠs reflexive, Γis Tauberian

in a trivial way and if X is not reflexive, a Tauberian operator is not

weakly compact.

We now summarize the main results from [KW]. Characterization (2)

as modified by the final statement, is used in proving our new characteri-

zations.

THEOREM 2.1. Let T: X -> Y be an operator. The following are equiv-

alent:

(1) Tis Tauberian.

(2) NT is reflexive, RT* is weak*-closed, and TBX is closed.

(3) For all bounded subsets K of X, TK relatively weakly compact

implies K is relatively weakly compact.

Moreover, the condition TBX is closed may be replaced by the condition

~TB~χa RT.

COROLLARY 2.2. Let T: X -> Ybean operator.

(A) If RT is closed, then T is Tauberian if and only if NT is reflexive.

(B) // T is one-to-one, then T is Tauberian if and only if RT* is

norm-dense in X* and TBX is closed.
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Note that the condition RT* is norm-dense is equivalent to the
condition JΓ** is one-to-one.

An operator property stronger than Tauberian (and previously studied)
is now defined.

DEFINITION. An operator T is semi-Fredholm means RT is closed and
NT is finite-dimensional.

Kalton and Wilansky also show that if the domain space has no
infinite-dimensional reflexive subspace, then T is Tauberian if and only if
T is semi-Fredholm. In particular a one-to-one Tauberian operator on
such a space (e.g., lλ) is an isomorphism. Therefore a truly interesting
Tauberian operator must have a non-reflexive domain X (e.g., Lλ) with an
infinite-dimensional reflexive subspace Z. In this case, the quotient map
Π: X -» X/Z is Tauberian by Corollary 2.2(A).

One source of Tauberian operators (which first aroused the authors'
interest in them) is the construction for factoring weakly compact opera-
tors in [DFJP]. Given any operator which is not weakly compact and
whose range is not closed, this construction produces a non-trivial one-to-
one Tauberian operator. We now show that the operator so produced has
non-reflexive domain. This will elucidate the role Tauberian operators
play in this construction.

Given any operator S: X -» Y9 the construction in [DFJP] yields a
Banach space Z and a one-to-one Tauberian operator T: Z -» Y such that

00

(*) SBX c Γ ΰ 2 c Π (2nSBx + 2~nBγ).
n = l

Using the first containment, one can define an operator from X to Z
showing that S factors through Z using T. It follows from (*) that S is
weakly compact if and only if T is weakly compact. To see this, note that
any operator U: X -> Y is weakly compact if and only if UBX c Y. Thus
if S is weakly compact, then

2~nBγ**) = 7,

and we conclude T is weakly compact. However, since T is Tauberian, T is
weakly compact if and only if Z is reflexive. This was mentioned before
and can alternatively be seen by Theorem 2.1(3). In other words, the set
approximation in (*) preserves weakly compact sets and the Tauberian
operator preserves weakly compact sets. This establishes the theorem



224 RICHARD NEIDINGER AND HASKELL P. ROSENTHAL

about factoring weakly compact operators through reflexive spaces (mod-
ulo the proof of the existence of the Tauberian T, of course). Other results
can be obtained by using other set properties which are preserved by both
the approximation and by Tauberian operators.

The main theorem of this section is now presented; detailing the new
characterizations of Tauberian operators in terms of closed images. This
leads to a characterization of "hereditary" semi-embeddings and Fσ-
embeddings in Corollary 2.4.

THEOREM 2.3. Let T: X -> Y be a non-zero operator. The following are

equivalent:

(1) T is Tauberian.

(2) For all weakly closed bounded subsets K of X, TK is weakly closed.

(3) For all closed bounded convex subsets K of X, TK is closed.

(4) For all closed linear subspaces E of X, TBE is closed.

(5) NT is reflexive and for all closed linear subspaces E ofX, TBE c TE.

IfXis not reflexive, the following is also equivalent:

(6) RT is infinite-dimensional and for all closed linear subspaces E of X,

TB~Ea TE.

REMARK. It follows from the Baire Category Theorem that the condi-
tion TBE c TE, in (5) and (6), is equivalent to the condition TE is an Fσ.

We delay the proof in order to put the theorem in context.
This characterization of the operators which preserve closed bounded

convex sets complements previous characterizations of the operators which
preserve closed sets and those which preserve closed bounded sets. These
older results are as follows.

THEOREM. Let T: X -* Y be a non-zero operator.

(A)Γ is an isomorphism if and only if for all closed subsets K of X, TK

is closed.

(B) T is semi-Fredholm if and only if for all closed bounded subsets K of

X, TK is closed.

(C)T is semi-Fredhold or finite rank if and only if for all closed linear

subspaces E of X, TE is closed.

In order to prove statement (A), note that if a non-zero T is not
one-to-one, by letting z e NT\ {0} and letting JC e X\ NT, one obtains
that T({tz + (arctanί)x: t e R}) is not closed. Statements (B) and (C)
are proved in [W]. The characterization of semi-Fredhold operators in (B)
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differs from Theorem 2.3(2) in changing the norm topology to the weak
topology. The theory of Tauberian operators seems to parallel the theory
of semi-Fredholm operators in this way.

We now turn to the case of one-to-one operators.

DEFINITION. An operator T is a semi-embedding means T is one-to-one
and TBX is closed. T is an Fσ-injection means T is one-to-one and
ΊΊΓX C RT.

As noted above, by the Baire Category Theorem, TBX c RT if and
only if RT is Fa, hence the name. This agreees with the definition of
i^-embedding in [BR] in the case that X is separable. By an argument of
Saint-Raymond (cf. Prop. 1.6 of [BR]), T is an Fσ-injection if and only if
T is a semi-embedding under an equivalent norm on the domain space. In
this way, jFσ-injections "remedy" a deficit in semi-embeddings since Fσ-
injections are isomorphically invariant and semi-embeddings are not.
However both operator properties are not hereditary in the sense that a
restriction to a subspace retains the property. For example, T: 1^ -» l2

given by Tx = (i'ιx(i))fLι *s a semi-embedding but T\c is not an
Fσ-injection. In the one-to-one case, Theorem 2.3 (1) <=> (4) <=> (5) char-
acterizes operators which have these properties hereditarily.

COROLLARY 2.4. The following are equivalent for an operator T:

(1) T is one-to-one Tauberian.

(2) T restricted to any closed linear subspace is a semi-embedding.

(3) T restricted to any closed linear subspace is in F0-injection.

We now proceed to the proof of Theorem 2.3. Assertion (1) => (2) is
straight-forward and (4) => (5) amounts to the main result of §1. The
heart of the proof is contained in (5) => (1) which is proved by functional
analysis techniques. The proof of (6) => (5) is also non-trivial. Here we use
the result of Kadec and Pelczyήski that a bounded set which is not
relatively weakly compact contains a basic sequence (cf., [S], p. 53). It is
phrased for our purpose as follows: In a Banach space a bounded
sequence with no weakly convergent subsequence has a basic subsequence.
Throughout the proof, [JCJ denotes the closed linear span of {JC,} where i
runs over the entire index set.

Proof of Theorem 2.3.

(1) ==> (2). Assume T is Tauberian, K is a weakly closed bounded
subset of X, and y e weak-closure (TK) in order to showy e TK. Since
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K is relatively weak*-compact by Alaoglu's Theorem, T**(K) D TK.
Hence, y = τ**k** for some k** ^ K and by definition of Tauberian,
k** e X Since K is weakly closed, k** e Kandy e TK.

(2) => (3) => (4) are trivial.
(4) => (5). We must show (4) implies NT is reflexive. We suppose NT

is not reflexive and construct a subspace E of X such that TBE is not
closed. Let xoe X with ||7xo|| = 1 and define the subspace Z = [*0] θ
NT. Let j : [Tx0] -» R be the isometryy(α7x0) = a and define / e Z* by
f = j °T. Since Z is not reflexive, by Theorem 1.1, there exists a subspace
E of Z where/ | E does not attain its norm, i.e., f(BE) is not closed. Since
f{BE) = j{TBE) andy is an isometry, TBE is not closed.

In proving (5) => (1), we use the following standard functional analy-
sis lemma. For S c X*, we use the notation S ^ f F e X**: F(f) = 0
for a l l / e S} and ±S f = [x e * : / ( * ) = Oforall/e S}.

LEMMA 2.5. Suppose X is a Banach space, G e X**, J^/s α finite-di-
mensional subspace of X*, α«J ε > 0. 77*e« Λ̂erβ w α net (xλ) in X over a
directed set D such that xλ converges weak* to G, and for all λ e ΰ ,

ε)andxλ\^= G^(Le.J(xλ)

To prove Lemma 2.5, let D be the set of finite-dimensional subspaces
of X* containing J*\ Direct D by inclusion. For ^ e ΰ , define x<# as
follows. Note that ^* is isometric to X/1- <S. (Indeed, since ^ is weak*-
closed, ^can be identified with (X/± &)* and since ^is reflexive, ^ * is
identified with X/-*-&.) Consider G\#. The identification provides an
x e X (which we label x9) such that G\# = x\«? and ||JC|| < ||G|^||(1 + ε).
A straightforward check shows that this net satisfies the conclusion.

(5) => (1). By Theorem 2.1, we need only show that RT* is weak*-
closed. We assume RT* is not weak*-closed and construct a subspace E of
X with TB~E <£ TE. Note that weak*-closure (RT*) = NT1-.

Let / e NTL \ RT* with || / || = 1. By the Hahn-Banach Theorem,
there exists a ( ? E F with ||G|| < 1, G(RT*) = {0}, and G(f) = 8 > 0.
Also, let h e RT* with \\h\\ = 3/2; then there exists an x0 e 5^ with
Λ(x0) = 1. Let *F= [/, Λ] and let ε > 0 so that ||G||(1 + ε) < 1 and
ε < δ/5. By Lemma 2.5, we may choose a directed set D and a net
(χx)λ<=D i n &x s u c h that xλ-+ G weak* and X\\&= G|^for all λ e ΰ .
Thus/(xλ) = 8 and h(xλ) = 0 for all λ e ΰ .

Let E = [xλ + xo]λez) W e c l a i m t h a t 2^0 G ^ ^ b u t T^o * 3 Έ

Txλ -> Γ**G weak bui^**G = G o Γ* = 0. Therefore T(xλ + JC0) -> 7JC0

weakly and iTx 0 e ΓB£. Now suppose ΓJC0 = Te for some e ^ E. Since
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e - x0
NT and /, h e NTX , f(e) = f(x0) and Λ(β) = h(x0) = 1. Let

ε > 0. Because e e [jcλ + x0], there exist « e N, scalars cv...,cn, and
λ l 5 . . . ,λn in Z> such that ||z|| < ε, where z = e - Σ"=1c,(xλ + x0). Observ-
ing that f ε > |Λ(*)| = |1 - Σ;=1c,| and

«>!/(*)!- fM~ Σ *,(*+/(*<>))

i - l

> δ Σc, i - Σc,.

< 5ε/2δ while |1 — ΣJL^I < fε which is impossibleTherefore lE".
since ε < δ/5.

(5) => (6). Assume X is not reflexive. Then since NT is reflexive, i?Γis
infinite-dimensional (otherwise X/NT would be finite-dimensional and
thus X would be reflexive).

(6) => (5). We must show that if i?Γis infinite-dimensional and for all
subspaces E of X, TB^ c TE, then NT is reflexive. We assume NT is not
reflexive and iϊΓis infinite-dimensional in order to construct a subspace E
with ΎWE <£ TE.

Since NT is not reflexive, there is a sequence (zn) in JS^ with no
weakly convergent subsequence. Consider the quotient map Π: X->
X/NT. Since RT and hence X/NT are infinite-dimensional, X/NT con-
tains a basic sequence. In particular, choose (JCΛ)JL0 a sequence in Bx with
( Π J C X _ 0 in Z/iVΓ and (/X_o in (^/WΓ)* forming a biorthogonal
system. For n = 1,2,..., define £„ = zπ 4- (1/Λ)JCΛ + JC0. Now (en) has
no weakly convergent subsequence so, by the theorem of Kadec and
Peίczyήski, there exists a subsequence (en) which is basic.

Let E = [en]. We claim that {\)Tx0 e TBE but Tx0 € 3Έ. Since
Γew = (l/ft-)7χ + Γ ; co -* Tx0 and ||^nJ| < 3 for all /, it is clear that
(^)Tx0 e Γi?£. Now suppose Tx0 = Γe for some e
so that e = ΣjlxC,^. Since ̂  - x0 e iV̂ Γ = iVΠ,

E; choose c1? c2,.

0 - Πx 0 - 0.

Applying /0 to this equation yields (ΣjlxC,-) — 1 = 0 . For ι = 1,2,...,
applying fn yields cyn,. = 0. This contradiction completes the entire
proof.
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