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ON EQUIVALENCES OF BRANCHED COVERINGS
AND THEIR ACTION ON HOMOLOGY

WILLIAM KAZEZ

This paper studies equivalences of stable simple branched coverings
of surfaces. We give necessary and sufficient conditions for a pair of
homeomorphisms / and g of surfaces M and N respectively to be
homologous to homeomorphisms / and g which form an equivalence of
two prespecified stable simple branched covers ψx and ψ2. That is,
homeomorphisms/and g such that

M -»

Ψll

N i

M

iψ2

commutes are shown to exist if and only if ψ 2 * / * = g*Ψi* from

The proof relies on a uniqueness theorem of Hamilton and Berstein,
Edmonds to restate the problem in terms of self equivalences of certain
simple branched covers. Many equivalences of branched covers are
constructed, and it is shown that the action on homology of these
equivalences generates an appropriate subgroup of the symplectic group.

CHAPTER 1

Preliminaries. All spaces and maps will be piecewise linear. M and N
will denote orientable surfaces while M9 and ΛΓ will denote closed
orientable surfaces of genus g. Maps will be orientation preserving unless
otherwise specified.

A branched cover is a finite to one open map φ: M -> N. In addition,
we shall assume that branched covers are primitive, that is induce surjec-
tions on the fundamental group. The degree of φ is maxJceΛr#{φ~1(jc)}.
The singular set of φ is the (finite) set of points in M near which φ fails to
be a local homeomorphism. The branch set B of φ is the image under φ of
the singular set. A branched cover is simple if for all x e N, #{φ~\x)}
e {d, d — 1}. Equivalently, a branched cover is simple if each branch
point is covered by exactly one singular point, and near this point the map
is of degree 2.
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DIAGRAM 1.1

Two branched covers φ and \p from M to N are equivalent if there

exist homeomorphisms/of M and g of N such that

M

N

M

| ψ

N

commutes, <p is determined up to equivalence by the associated unbranched

cover φ|: M — ψ~ι{B) -^ N — B.

From ordinary covering space theory the associated unbranched cover

may be studied by picking a base point * e N — B, labeling φ ' ^ * ) ,

1,2,... ,ί/? and then looking at the representation p(φ): ^(N — B, *) —>

S(<i) where p(φ) is the action of the fundamental group on a fibre and

S(d) is the symmetric group on d letters. To study p(φ) we first choose

generators of πλ(N — B, *) as follows. Let aι7 bt be embedded Sι's

representing the standard generators of Hτ(N) such that at Π a3 = bt Π bj

= at (^ bj = 0 for all i Φ j and at Cλ bt = pt. Choose small ^ ' s cι about

each branch pt. Next choose arcs η from * to a point on each ct and

choose more arcs η from * to each ai Π br Different arcs η should meet

only at * and they should meet a small circle about * in the order shown

in Diagram 1.1.

These arcs rt together with the curves cv c29 - - al9 bl9 a2, b2,... form

an ordered set of generators for πλ(N — B, * ) . Applying p(φ) to these

generators gives an ordered set called a Hurwitz system [Hu] of the

branched cover φ.

It is shown in [BE2] that if φ is a simple stable branched cover (that is

genus M > d genus N) there then exists a different choice of arcs rz and
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curves at and bi together with a relabeling of φ~1(*) which yield a
particularly simple Hurwitz system. That is they prove

(1.1) STABLE CANONICAL FORM THEOREM: Every stable simple branched
covering φ: M —> N of degree d has Hurwitz system (12),... ,(12), (12), (13),
(13),... 9(ld), (Id); (1),... ,(1). From this follows

(1.2) STABLE UNIQUENESS THEOREM: Simple branched covers φτ and φ2

from M to N both with the same degree d in the stable range are equivalent.

This theorem was proved by Hamilton in [Ha] and in greater general-
ity than stated above by Berstein and Edmonds in [BE2].

If φ: M -> N is a simple branched cover of degree d we say an arc
β c N is of type (ij), (ij) if * e $, β n B = 0 , #{β Π B) = 2, and
ψ~\β) consists of d — 2 arcs together with one loop a such that a Π
φ~\*) = {/, y}. The inverse image of a small regular neighborhood of β
consists of d — 2 disks mapped homeomorphically by φ and one annulus
mapped with degree 2 by φ. It follows from [Hil; §2], [BE 1] that T(β),
the arc twist about β, is covered by Γ(α), the loop twist about a (see [Lil],
[Li2], [Bir; p. 166]), together with d — 2 arc twists. We now have the
commutative diagram

M Λ M

7X0)

(1.3) LEMMA. Lei φ: M -+ N be a simple branched cover with degree in
the stable range. Then for all i, j with 1 < i < j < d there exist homeomor-
phism h, Ti each isotopic to the identity such that

M Λ M

Φ I I Φ

N Λ JV

commutes, h(*) = *, α«<iΛ|φ-1( *) w /Aepermutation (ij).

Proof. We may assume that φ has the Hurwitz system (12),...,(12),
(13), (13),... ,(W), (1*0; (1),.. ,(1). Let βx be an arc in N of type (ij),
(ij). Then Γ ^ ) lifts to a homeomorphism ^ inducing the desired
permutation (ij) on φ - 1(*). Choose another arc β2 not containing * but
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differing from βλ only in a small neighborhood of *. Then T(β2) lifts to a
homeomorphism h2 isotopic to hλ which is the identity map on φ~1(*). It
follows that h = h~2hx and h = T(β2)'1T(βι) have the desired properties.

We shall use the following definitions in the next chapter.
Let φ and φ' be simple branched covers of degree d from M to N and

M' to N' respectively. Choose disks D, D' with * G 3 D C J 3 C J V - J B

and * ' ^ 3Z>' c Z>' c TV' — 5'. We may then form a new branched cover

φ # φ ' : (M - φ-ι(b))#(λf' - φ ' " 1 ^ ' ) ) "* ( # ~ D)#(Nf - /)'),

where in the first connected sum we identify for each i, 1 < i < d, the
component of φ"1(3D) containing / G φ " 1 ( * ) with the component of
φ'~ι(dD') containing i e φ'~1(*')? a n d in the second connected sum we
identify dD with 3D'. This is the fibre connected sum of φ and φ'.

If in the above definition D and Ώf are instead chosen to contain
exactly one branch point and p(φ)[3Z>] = ρ(φ')[dD'] e S(d) we may
repeat the construction (though in this case there are now only d — 1
components of φ~\dD) and φ'"1(3D')). This final branched cover is
called the connected sum along a singular fibre of φ and φ'.

CHAPTER 2

Examples of Branched Covers and their Equivalences. In this chapter,
we shall construct examples of simple branched covers and examples of
equivalences of these branched covers, i.e. homeomorphisms Λ, Ti such
that

M -+

Ψi
h

N ->

M

N

commutes. In (2.1), (2.2) and (2.3) all equivalences constructed will satisfy
h = id^.

(2.1) Let N = S1 X S\ let Md be a surface of genus d with d > 3, and
let φ be a simple branched cover of degree d. By (1.2) we may assume that
φ is the connected sum along a fibre of a degree d simple branched cover
φλ: S2 -> S2 with the trivial cover φ2 from d copies of S1 X S1 to S1 X S1.
See Diagram 2.1.

Choose loops a\ bι and a, b which represent generators of HX{M) and
Hλ(N) respectively such that φ(<z') = α, φ(όθ = b for i = 1,...,d.

We now give three types of equivalences of this branched cover.
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-> S 1 X S 1

DIAGRAM 2.1

(2.1.1) By Lemma (1.3) there is an equivalence of φx which permutes
the i and y elements of φ\\ * 1). We may assume that this equivalence fixes
a disk D2 c S2 with * x e 3D2. Let P'7: Md be the homeomor-
phism obtained by taking the connected sum along the fibre of the above
equivalence of φλ and the equivalence of φ2 which permutes the /th and
y th copies of Sι X S1.

(2.1.2) As in Lemma (1.3), we may choose an arc β of type ((/), (y) in
S2 — D2. The inverse image by φ in Md of the connected sum of β and the
loop a is the disjoint union of d — 2 arcs and 1 loop which is homologous
to [a f] - [aj] e Hx(Md). Denote by Γ([a'] - [aJ]) the equivalence which
covers the arc twist T(β#a).

We shall be studying the effect on Hλ{Md) of these equivalences. It
should be noted that if c is a curve representing a homology class in
Hτ(Md) then the twist homeomorphism T([c]) is not well defined, only its
action on HX(M) is well defined. Details are contained in Chapter 3.
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S 2 - D 2

DIAGRAM 2.2

(2.1.3) If α, α7, α' are replaced by 6, 61', bJ in (2.1.2), it follows that

— [bJ]) is also an equivalence of φ.

(2.2) Let φ be a simple branched cover of degree d > 3 from Mkd -> Λ^

where k > 1. By (1.2) we may assume that φ is the fibre connected sum of

a degree d simple branched cover <px: S
2 -> S 2 with the trivial cover φ 2

from k disjoint copies of Nk to iV̂ . See Diagram 2.2. Choose loops aι

s, b
ι

s

and as, bs (i = 1,2,.. .,d and s = 1,2,...,/:) representing the standard

generators of Hι(Mkd) and Hλ{Nk) respectively which satisfy φ(tf^) = as,

We have the following examples of equivalences of φ: Mkd -» Nk
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(2.2.1) Regard Nk as S2#(SX X Sι)# #(Sι X S1) and apply the

construction of (2.1.1) to the ith Sι X S1. This gives an equivalence Pt

ij

which permutes the i andy tori in Mkd above the /th copy of Sι X Sι.

(2.2.2) Similarly (2.1.2) applied to the n h torus in JV* shows that the

twists T([a\] - [a{]) and T([bj] - [b/]) are equivalences.

(2.2.3) Regard φ as ψι#φ2 and Nk as S2#Nk. Choose an arc β in

S2 — b2 of type (//), (//) and a loop c in Nk — D2 homologous to

[as] + [a J (Λ # /)• The connected sum of these is an arc in S2#Nk of type

((/)> ((/) covered by a loop homologous to [a*s] — [a{] + [aι

t] — [a{]. This

shows that T^a^] — [a{] + [έjj] — [tf/]) is an equivalence of φ.

(2.2.4) Repeating (2.2.3) but choosing the loop c to be homologous to

[as] + [bt] shows that Γ([α^] - [a{] + [bι

t] - [b/]) is an equivalence.

(2.3) The only remaining examples of simple branched covers in the

stable range are of the following form, φ has degree d, and maps Mdk+I to

Nk where d > 3 and / > 0. We may assume that φ is the connected sum

along a singular fibre of a branched cover φλ from the disjoint union of

d — 2 S2 's, and one surface Mι to S2 (where φ x has degree one on each S2

and degree 2 on Mt) and a branched cover φ 2 : Mdk -> JVΛ of degree d. φ2

is chosen as in (2.2). See Diagram 2.3. Choose a\, b\ and as, bs with

<P2(a's) = α ^ Vi(bl

s) = ^ as in (2.2). Let sn9 tn,n = 1,...,/be the standard

generators for Mι as shown in Diagram 2.3. We have the following

examples of equivalences of φ.

(2.3.1) Regard φ as φΊ#φ'2 where φ{: Mt-* S2 and φ'2: (d copies of

Nk) -> Nk. By the Realization Theorem of Berstein and Edmonds [BE 1;

§4] any homeomorphism of Mt may be realized as an equivalence of φ^. In

particular, T([sJ)9 Γ([/J), T([sn] - [sj)9 T([tn) - [tm]) are all equiva-

lences of φ[ and by using Lemma (1.4) they may be extended by the

identity to equivalences of φ.

(2.3.2) When φ is regarded as φ ! # φ 2 9 all of the equivalences of (2.2)

extend to equivalences of φ. (The only change is in constructing an arc β

of type (12), (12) in Nk — D2 where D2 contains a branch point of type

(12).)

(2.3.3) Again regard φ as φί#<P2. In the proof of Theorem (1.3),

Berstein and Edmonds [BE1; §4] produce an arc β in S2 containing *

such that β is covered by a loop homotopic to any chosen sn. Using

Lemma (1.3) we may force β to be of type (ij), (ij). If we then consider

the connected sum of β with the loop as in Nk9 we see that a disk twist

about this arc lifts to the equivalence T([sn] + [a's] — [a{]). Replacing as

by bs shows that T([sn] + [b's] — [bj]) is an equivalence. Finally if we
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s2-

replace sn by /„
are equivalences

• f>2

we see

φ : M 3 . 2 + 2 -> N

DIAGRAM

that T([tn] + [aί

N 2-δ 2

2

2.3

] - M- [a{]) and Γ([ίJ + [Z>j] - [bj])

(2.4) The most general simple branched cover was given in (2.3)
(though possibly with / = 0). Using the notation of (2.3), we have φ:
Mdk+ι -> Nk where φ may be regarded as φΊ#φ'2-

(2.4.1) In [BE 1; §4], Berstein and Edmonds give an example of an
equivalence of φ^ which reverses orientation. We may assume such an
equivalence fixes a basepoint. Clearly there are basepoint fixing, orienta-
tion reversing equivalences of φ^ Together these give an orientation
reversing equivalence of φ.
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(2.4.2) In the decomposition of φ as φΊ#φ'2 Nk is regarded as S2#Nk

(see Diagram 2.3). Any homeomorphism of Nk is homotopic to one fixing
a neighborhood of a base point. This homeomorphism clearly lifts to an
equivalence of φ^. Taking the fibre connected sum of this equivalence with
the trivial equivalence of φ[ shows that every homeotopy class of Nk

contains a homeomorphism lifting to an equivalence of φ.

CHAPTER 3

Action of equivalences on homology and a technical lemma. In this

chapter, we study the action on HX{M) of the equivalences of φ: M -» N
given in (2.1), (2.2) and (2.3). We also interpret right multiplication by
these matrices on an arbitrary matrix X as "modified column operations".
Specializing to X a matrix with one row we prove a technical lemma (3.8)
for use in Chapter 4 that describes certain one row matrices Xf to which X
may always be reduced.

Consider a Z-module V with ordered basis av...9an, bv...,bn and
innerproduct defined by at αy = bi Z>y = 0 V/, j9 at bj = b} aι; = 0
Vi Φj, and at bt = -b, at = 1 Vi. If X e G1(2«,Z), i.e. X: F ^ Fwe
have 4 equivalent definitions for X to be symplectic.

(1) X preserves the innerproduct on V.
(2) The identification of V with Z 2 " induces a pairing on Z2n.

Under this identification

(ί th column of X) (n + yth column of X) = α, bj

for all i, j < n.

(3)

-/\ χ = = /0 -/\
0/ U 0/

where / denotes transpose and / is the n X n identity matrix.
(4) Replace V with ^ ( M J , let [a1],...,[an], [bj,...9[bn] be the

standard generators of Hx{Mn), and let be the intersection pairing. The
equivalent condition is X = /*, where/is a homeomorphism of Mn.

1,2,3 are easily seen to be equivalent, 4 is well known. The collection
of all such X is the symplectic group Sp(«,Z). It is easy to see that
X e Sp(«, Z) implies X transpose = Γ G Sp(«, Z).

If c and d are loops in Mn then so is T{c)(d), and in Hλ(Mn)
[T{c)(d)\ = [</] + ([</] [cj)[c]. In particular, if [c] = ΣαJαJ + jβ̂ AJ then
^(c)^: Hλ{Mn) -* Hx{Mn) is defined by

Γ(cUα,l = k . l + j 8 , M and

, ( 0
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This shows that Γ ^ ) * = T(c2)* if [cj = [c2]. We shall only be studying
the effect of these twist homemorphisms on Hx{Mn) so we shall replace
the notation T([c]) of Chapter 2 by T(c) and denote the homology classes
[αj and [bt] by at and &,.. (See also [Li 1], [Li 2].)

With c as above, the matrix of Γ(c)# with respect to the basis
al9...,an,bl9...9bnis

where xtj = = -atap ztj
and wtj = -

For use in Chapter 4, we now list the matrices obtained from the
equivalences constructed in Chapter 2.

(3.1) As in (2.1), let φ: Md -> Sι X S1 with φ of degree d. With
respect to the basis a\... 9a

d, b\... 9 i^ of Hλ{Md)

[0
0

0
0

0
0

0
0

6'
-1
1

0
0

bJ

1 \
-1

0
0

- bJ)* =

0
0

1

\ ~±

0
0

_J
1

0
0

0
0

0\
0

0

o
-1

1

0
0

1
-1

0
0

0
0

-1
1

0
0

1

In each of the above / is the Id X 2d identity matrix and the second
matrix has entries equal to 0 outside the 4 X 4 block corresponding to the
basis elements a\ aJ, b\ bJ.

If X is an arbitrary Id X Id matrix, then X- T{al - aj)* is the
matrix X after the following modified column operation is applied. The
difference of the jth and ith columns of X are added to and subtracted
from the d 4- /th and d + j th columns of X respectively. Right multiplica-
tion by T(b* — bj)* performs the same modified column operation on X
though with the roles of i, j and d + /, d -f j reversed. Right multiplica-
tion by PU permutes the ί andy columns and the d + i and d 4- j columns.
Left multiplication by these matrices performs analogous row operations.
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(3.2) As in (2.2), let φ: Mkd -> Nk be of degree d. With respect to the

basis a{,... 9a(9... 9a\9... 9a{9 6J,... 9b(9... ,δ£, . . . ,/>£ of Hx{Mkd) we have

a's aJ

s a' a{

0

0

K
_1

1
0
0

bJ

s

1
-1

0
0

0

b't

0
0
0
0

b]

t

0
0
0
0

T(b't - b/)* = I +

These matrices will be called type I.

0
0
0
0

0
0
0
0

0

0
0
1

-1

0
0

-1
1

oi

o

1

- a{

This matrix will be called type II.

Tiai-aί + bί-b/^Tiai

a's ai a\ a{

0

0

0
0

1

bί
0
0
1

0

b\
-1

1
0
0

*/
1

-1
0
0

a's

0
0
0
0

a ί
0
0
0
0

a1,
1

-1
0
0

π

aί
-1

1
0
0

b's

0
0
1

-1

bJ

s

0
0

_1
1

b't

Λ

U

0
0
0
0

b}

t

0
0
0
O j
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This matrix will be called type III. Finally

0
0
0
0

0
0
0
0

0
0

-1
1

o

0
0
1

- 1

0
0
0
0

0
0
0
0

π

0
0

- 1
1

0
0
1

-1)

Let X be an arbitrary 2kd X 2kd matrix and consider the effect on X
of right multiplication by matrices of types I, II and III.

Multiplication on the right of X by a type I matrix produces the same
modified column operation as in the first two examples of (3.1). The only
difference is that the /th and y th columns that are chosen in (3.1) are
arbitrary while here they must correspond to basis elements with the same
subscript. See Diagram 3.1.

Multiplication on the right of X by a type II matrix produces a pair of
the same modified column operations. That is, the difference of the a\ and
a{ columns is added to and subtracted from the bι

s and bj columns while
the difference of the a\ and a{ columns is added to and subtracted from
the b\ and b/ columns. We can also construct, by interchanging the roles
of a and b, a matrix which allows the differences of various bί columns to

X = (

• type III

DIAGRAM 3.1
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be added and subtracted from the appropriate a\ columns. These will also
be called type II matrices.

Multiplication on the right of X by a type III matrix again produces a
pair of modified column operations, though this time the difference of the
a[ and a{ columns is added to and subtracted from the a\ and a{ columns
while the difference of the b\ and b{ columns is added to and subtracted
from the b\ and bj columns.

Right multiplication by Pt% permutes two pairs of corresponding
columns just as P'j did in (3.1), though in this case the permuted columns
must have the same subscript.

Diagram 3.1 summarizes which columns the various types of matrices
act on. Each long arrow represents a modified column operation as
described in (3.1). The three types of operations constructed in (3.2) are
combinations of modified column operations restricted to various groups
of d columns of X.

(3.3) As in (2.3), let φ: Mkd+ι -> Nk be of degree d. With respect to

the basis s
l9. . 9sl9 a \9. 9a(9. . . 9a\9. . . 9a(9 tl9. . . 9tl9 b\9. . . ,

b(,... 9b\9... 9b% we have the same equivalences with the same matrices as
in example 2 and

(0
0

0
10

0
0

0
0

-1
0

0
0

0\
0

0
0/

- / +

0̂
0

1

lo

0
0

0
0

0
0

0
0

0)
0

0
0)

which we call type I. Also

0
0

0
0

0
0

0
0

0
1

0
0

1\
0

0
0

0
0
0

\1

0
0
1
0

0
0
0
0

0
0
0
0/
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which we call type II. It follows that

T(sn a\ -

= 1 +

s* a's aί

0

0

*«
0

-1
1

b's

-1
0
0

0

bJ

s

w
0
0

T(

Ό
0
0

1
0
0

0

-1
0
0

0
-1

1

0

0
0
0

0
0
0

These matrices are called types A and B respectively.
(3.4) We now study the effect of the modified column operations of

(3.1) on a 1 X 2d matrix X = ( α \ . . . ,ad\βι,... ,βd) with entries in Z.
Define Δ: Zd -»• Q by Δ(α) = Σf= 1 |α' - a\ where a = (a\...,ad)

and a = (\/d)Σi=ιa\ Also denote by Δ the function Zdl X •• XZ' / i->
Q by Δ(α|;8| |δ) = Δ(α) + Δ(/?) + + Δ(δ). Define Γ: Z d l X
• • X Zd* -+ Z by

U

Denote by ~ the equivalence relation on Td X ϊd generated by the
following operations:

(1) (a\β) ~ StJ(a\β) = (α|. . . , β' + \a' - a%... ,βJ - \a' - a\

(2) - TtJ(a\β) = a1 \β' - - \β' - βj\,

(3) (a\β) = (• • a* • - α> - - I - β* • βJ ) ~ ( a^Γ a1

. . . i . . . βj'... βι'• ... ) Notice that the first operation of (3.1) (or its
inverse, depending on the sign of a1 — aj) is Stj. The second and third
operations of (3.1) also have the same effect as the second and third
operations here. Also notice that if (a\β) - (α'|/Π then T(a\β) =

We state without proof the following lemma which will be used
extensively in Chapter 4.
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(3.5). LEMMA. IfΔ takes on its minimum value at (a\β) when restricted

to the equivalence class of (a\β) then (α|j8) must be one of the following

types:

0. a1 = aj,βι = βjViJ.

1. (a) a1 = aJViJ and #{β\.. .,βd) = 2.

(b) βι = βJViJand#{a\...,ad} = 2.

II. (a) a1 = <xJ V/, j\ #{β 1 , . . .,βd} = 3 and there exist exactly two

extreme values while the third value is the average of the extreme values.
(b) This is the same as (a) with the roles of a, β reversed.

III. # { α \ . . . , α ' } = #{β\...,βd} = 2andT(a) = Γ(β).

(3.6) COROLLARY. Any pair (a\β) e Zd X Zd with d > 3 is equivalent

to apair(a'\β') with \a1' - alf\ = T(a') = T(a'\β').

Proof. We may assume (ct\β) minimizes Δ. In cases 0, IB, lib, III of

Lemma (3.5) permutations may be used to obtain the desired result. In

cases la, Ha, 3i9j with \βi - βj\ = T(a\β). The operation Ttj followed by

a permutation taking i to 1 and j to 3 gives the desired (a'\β').

CHAPTER 4

Proof of the Main Theorem and some open questions. Most of the

chapter will be devoted to the proof of the following main result.

(4.1). THEOREM. Let ψ1? ψ2 t>
e stable simple branched covers from M to

N, and let /, g be homeomorphisms of M and N respectively such that

g*Ψi* = Ψ2*/* from H*(M) to H*(N), then 3 homeomorphisms/, g of

M and N such that f\ = /*, g — g, and

M 4 M

Ψi i i Ψ2

N Λ N

commutes.

Proof. By the Stable Uniqueness Theorem (1.2) we may assume

Ψi = Ψ2 = Φ where φ is any simple branched cover of the same degree as

\pλ and ψ2. The proof will split into three parts depending on the genus of

M and Λf and the choice of φ. These parts are

(4.2) φ: Md -» N = Sι X Sι as constructed in (2.1).

(4.3) φ: Mkd -> Nk as constructed in (2.2).

(4.4) φ: Mkd+ι -> Nk as constructed in (2.3).
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The proof in each of these cases follows the same outline.
By (2.4.1) we may assume/and g preserve orientation, and by (2.4.2)

we may assume g = id. The hypothesis that g*ψx* = ψ 2 */* from H*(M)
to H*(N) is then equivalent to φ* = φ * / * from HX{M) to Hλ(N).

We then study the following two groups associated with φ: M -> N.
Let E# consist of all matrices/* where/*: Hλ(M) -> HX(M) and/, g is
an equivalence of φ with g = id^. Let L be those symplectic matrices A:
Hλ{M) -» HX(M) that are lifts of id: HX(N) -> H^N) with respect to φ*,
i.e., φ* = φ*A. From the hypothesis of the theorem and from the fourth
definition of symplectic given in Chapter 3, we see that E* c L. To prove
the theorem, we shall show L c E*. In (3.1), (3.2), and (3.3.), we gave
examples of elements of E*. (4.2), (4.3), and (4.4) show that these
elements generate L and hence L c E*.

In (4.2), we denote L = L(d,Z) c Sp(2d,Z), in (4.3) we denote
L = L(έ/, fc, Z) c Sp(2J/c, Z), and in (4.4) we denote L = L(d, k9 /, Z) c
Sp(2dk + 2/,Z).

Let ^Γ= (CD) G L(d,Z). Referring to (2.1), (3.1), and the specified
bases of HΎ{Md) and Hx(Sι X S1) we see that with respect to these bases

ϊ (Γ

where ϊ = (1, . . . ,1), 0 = (0,... ,0) e Zd. Since

ϊ θ\(A B\ = ll 0
0 ϊ / l c D) \0 1

we see that the sum of the elements of any column of A or D is 1, while
the sum of the elements of any column of B or C is 0. Call this the
constant column sum property. X'1 also has the constant column sum
property. Since

0 -1
χt\i o)~ \i o

we see that

0/ \I 0) \-I OJ\Dt -BΊ {-C A1

and the constant column sum property for X~ι implies the constant row

sum property for X.

(4.2). THEOREM. L(d, Z) is generated by T(al - aJ)*, Γ(iz - bj)*9 and
ιi o/(3.1) where 1 < i < d, 1 < j < d and i Φ j .
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Proof. We first assume d > 2. Given I e L ( d , Z ) w e shall reduce it
to / by multiplying it on the right and the left by T{al - aj)*, T{bl - bJ)*,
P% and their inverses. The first step will be to use right multiplication, i.e.
the modified column operations described in (3.1) to reduce the first row

1

Let (a\β) be the first row of X. By using the first two types of column
operations we may assume Δ(α|β) is minimized. We now use the results
of Lemma (3.5) to see what (a\β) can be.

(3.5) 0, la, Ha, and lib can't occur because Σf=1α
z = 1.

(3.5) Ib. Let δ = Γ(α). Then for some x, (a\β) = a\ϊ\0) + δx. Letyλ

and y2 be the d + 1 and d + 2 rows of X. Definition 2 of symplectic holds
with rows replacing columns since I G Sp(</, Z) implies X* ^ Sp(J, Z).
(ά\β) yx = 1 implies a1 + δx yx = 1 (this uses the constant row sum
property) therefore δjα1 - 1. (a\β) j?2 = 0 implies α1 4- δx y2 = 0,
therefore δ\a\ Together these show that 1 = δ = Γ(α). Since Σf^α'' = 1
it follows that for some / a = e\ the /th standard basis vector of Zd. Pιl
then forces (α|iβ) = (?1 |δ).

(3.5) III. Let δ = T{a\β). Then
(α|j8) = aι(ϊ\0) ± δ(x\0) + ^(011) ± δ(O|j)

where x and j? consist of only 0's and l's. Suppose x has k l's and y has /
l's with 1 < / < d - 1. Since Σfβlα'" = 1, ί/α1 ± δA: = 1, hence gα/( J, δ)
= 1. Since Σf^β* = 0, dβ1 ± δl = 0, hence d|δ/, a contradiction since
1 < / < r f - 1.

This exhausts the possibilities of (3.5) and we may assume the first
row of Xis (eΓ^O). Since X is symplectic, it follows from the row version of
Definition 2 of symplectic that the d + 1st column of X is (δl?1).

The next step is to reduce the first column of X to (ex 10) without
affecting the first row. By using row operations which don't effect the first
row we may assume Δ(α 2,... ,ad\β2,... ,βd) is minimized where (oί\β) is
the first column of X (hence a1 = 1). Again we appeal to (3.5) and look at
the possible vectors (α 2 , . . . ,ad\β2,.., ,βd).

(3.5) la. Since Σ?=2α' = 0, a2 = ad = 0 and (S\β) = (eλ\β). This
can easily be reduced to (eι\0) without affecting the first row.

(3.5) Ib. Let Γ(α) = δ. Then (α|j8) = (ϊ|0) + δ(3c|0) + (0\-dβ2,0) +
β 2 (0 | ϊ) . If y2 is the d + 2nd column of X then (a\β) y2 = 0 implies
1 4- δ(x|δ) 7 2 + 0 + 0 = 0 (the first 0 uses the fact that the first entry of
y2 is 0, the second 0 follows from the constant column sum property). It
follows that δ = 1. Since 1 = δ = Γ(α) = gcd^α1 — α*} we can use row
operations T(aι — a1)* to force βι to be any number, in particular
βι = - 1 . But now Σf=2

α' = 0> Σf=2β* = 1 and this is the same as the first



150 WILLIAM KAZEZ

column case except that the roles of a and β are interchanged, d is
replaced by d — 1, and the vector (α 2 , . . . ,αή/?2,... ,βd) does not lie in a
symplectic matrix. The symplectic matrix was used only in the case (3.5)
Ib, and in this case (note the reversal of the roles of a and β) a2 = =
ad = 0. It follows that we can always reduce (α 2,. ..,αή/?2,.. .9β

d) to
(0|/?2,. ..,βd), hence (a\β) = (eλ\β) which was handled above in case
(3.5) la.

(3.5) Ha. This is similar to la.
(3.5) lib. In Ib, we only used β2 = = βd. This is true in this case,

and the same proof may be used.
(3.5) III. As in Ib, it will be enough to show that Γ(α) = 1. Let

8 = Γ(α)andletγ = Γ(α2,...,α^) = T(β2,...,βd). Then

(S\β) = (ϊ |0) + δ(0,Jc|6) + β 2 (0 | ϊ) + ( 0 | β 1 - β2,θ) + γ(0|0,.y)

If y2 is the d + 2 column of X then (a\β) y2 = 0 implies 1 + δ(0,3c|6)
y2 + 0 + γ(δ|0, j ) y2 = 0 which implies gcd(γ, δ) = 1. Since 3/ > 2 and
j > 2 with a1 = aj + γ, and since δ | l — αz and 8\1 — aj it follows that
δ|γ. / . δ = 1.

This shows that the first column of X may be reduced to (^(O). Since
X is symplectic the d + 1 row is (0\eι). If we delete the first and d + 1
rows and columns of X we have a matrix in L(d — 1,Z). Induction
coupled with the observation that L(l, Z) has only one element completes
the proof of Theorem (4.2). D

Referring to (2.2), (3.2), and the specified bases of H1(Mkd) and

Hi(Nk) we see
sι ••• S k h ••• ^

aJϊ

φ* =
1

where as denotes the basis elements a],... ,ad, ί = (1, . . . ,1) e Zd and all
other entries are 0. If X e L(d, k,Z) then φ* = φ*X from which it
follows that X has the following constant column sum property. The sum
of the elements of any column in any as X as or T)s X $s block is 1, while
the sum of elements of any column lying in a block not on the diagonal is
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0. As before, the constant column sum property for X~λ implies the
constant row sum property for X.

(4.3) THEOREM. L(d, k, Z) is generated by matrices of types I, II, and
III of (3.2) together with Pt% where d > 3, k < 1, 1 < i < d9 1 < j < d,
1 < t < k and i Φ j .

Proof. The case k = 1 was proved in (4.2). We assume k > 2 and
show how to reduce k to k — 1, i.e., we show how to reduce the first d
rows and columns of I G L(d, k9 Z) to the first d rows and columns of
the identity matrix. We assume that rows and columns l , . . . j and
dk -f 1,... ,dk 4- j of X are in the desired form with 0 < j < d — 1. We
first shall show how to reduce they + 1 row of X to (? 7 + 1 |0) without
affecting the first j columns of X. We may assume j < d — 2 for if
j — d — 1 the result is immediate from the constant column sum property.

Let (α x | \ak\\0x\ \βk) be they + 1 row of X. It follows from
the inductive hypothesis that a[ = β[ = 0 for / < j . Let

δ = Γ{a{+\...,al\όi2\---\ak\\β{+\...,β?\β2\- -\βk).

Then

# + 1 ( δ | ||ϊ|0|

Dotting this with the dk + j + 1 row of X shows δ|α/+ 1 - 1. Dotting with
the dk + j + 2 row shows δ\a{+1, therefore 8 = 1.

By using type I column operations, we may assume
A(a{+1,...,af\β{+1,...,βf) is minimized. Since Σd

i=j+1a[ = 1 and
Σf=v+iβί — 0 either case Ib or III of Lemma (3.5) applies, and in either
case
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By Corollary (3.6), we may modify (as\βs)9 s > 1, with type I operations
so that T(as) = T(ois\βs). We now have Γ(α/ + 1 , . . . ,αf |δ 2 | \ak) = 1
and this will not change under subsequent operations.

Minimize Δ(α2 | ••• \ak) with type III operations. It follows that
Δ(«,!«,) is also minimized (with respect to type III operations involving z,
/ > 2). By Lemma (3.8) Γ(α,) = Γ(α,) or one of the two is 0. It follows
that a* (2 < i < k) such that Γ(α/+ 1,.. .,α^|αz) = 1. W.l.o.g. say i = 2.
This will not change under subsequent operations.

Now vary (0,...,0, α/+1,. . .,αf |α 2,. . . ,α 2 ) with type III operations
on (a{+\... 9a(\aJ

2

+ι

9... ,α2) and permutations P/'* (i, / >j + 1) and Pf*
(/, / arbitrary) so that

is minimized. By (3.5), cases la and Ha can't apply and we may assume
(after a permutation P% /, / > ; + l) that |α}+ 1 - a)+2\ = δ. If δ Φ 1, use
Γ ( α / + 1 , . . . χ | α 2 ) = 1 to find 1 <y + 1 such that δ I <^+1 - αz

2. The
permutation P{j^2 then forces

thereby contradicting the minimality of δ. Therefore, we may force
Γ(α/+ 1,.. .,αf|α^+ 1,. . . ,α 2 ) = 1. This will not change under subsequent
operations.

If we minimize Δ(α/ + 1 , . . . ,αf |α^ + 1 , . . . ,α 2 ) with type III operations
then cases la, Πa of (3.5) can't apply and a permutation P{£11 forces
a = eJ+ι.

Since αx = eJ+1 we can use type III operations to force a[ = 0 for
i > 1, / > j = 1 without disturbing the first j columns of X. To change a[
with / < j 9 use the permutation P/* and then use type III operations as
before. This forces a2 = = ak = 6. Type I operations force β{ + 1 =
. . . = βJ = o hence βλ = 0. Finally type II operations together with
permutations P/* are used to force β. = 0 for / > 2.

The y + 1 row is now in the desired form. Since X is symplectic the
dk + j + 1 column is also in the desired form.

Let they + 1 column be (αj K H ^ I \βk). If j + 2 = d then
by the constant column sum property ax = eJ+ι. We then proceed as
before with type III and II operations together with permutations to put
the entire j + 1 column in the desired form.

Lety + 2 < d and let

..,filM-- \βk)
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Then

(*il ll&l )

+ βl(0\ •••$]•••$) +δyk.

Since the first j + 1 rows and the first j columns (and hence the rows
dk + 1,... ydk + j) are already in the desired form, it follows by dotting
the above equation with the dk + j' + 1 and dk + j + 2 columns that
δ\a{+ι - 1 andδ|α/ + 1 hence δ = 1.

As in the case of they 4- 1 row, it will be enough to force αx = eJ+1.
Towards this end minimize Δ(α/+ 2,...,af\β{+ 2

9...,β() = 8 with type I
operations. If δ = 1 it follows easily from the various caess of Lemma
(3.5) (and using Σf= 7 + 2

αi = 0) that aλ can be reduced to ej+1. We now
assume δ > 1 and show how to reduce it in each of the cases of Lemma
(3.5).

(3.5) la. This case forces α{+2 = = α( = 0, hence already αλ =

(3.5) Ib. We know α/+ 1 = 1. We first suppose α/+ 1 Φ max/>y+2α:{.
Pick i > j + 2 such that α{ < 0. Then α{+1 - α[ < δ, hence (i8/+ 1

5... 9β()
can be adjusted by α/+ 1 — α{ and therefore

τ{α{+\...tαi\βΓ2>->βί) * T{β{+2, ,β?) * «ί+1 - «ί < δ

Now suppose α/+ 1 = max/>y+2

αί We've seen

By Corollary (3.6), we may force T(αs) = Γ(αs\βs) for 5 > 2. Using (3.6)
with induction, we may force \α{+1 - α{+2\ = Γ(α2) = Γ(α2 | \αd).
Therefore
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Now adjust (β{ + 1,... 9βι) with a type II operation by aJ

2

+ι — aJ

2

+2 and

we have

Since α/ + 1 = max /> y + 2 a[ it follows that

T(a{+2,...,ad

1\β{+2,...,β1

d) = l.

(3.5) lib. In this case 3/ >j: + 2 with a[ = 0. Adjusting (β{ + \... ,βf)
by a{ + 1 - a[ = 1 forces T(β{+2,... ,β() = 1, hence

(3.5) III. The proof given in (3.5) Ib works in this case also.

In all cases the j + 1 column and hence the dk + j + 1 row may be

reduced to the desired form. This completes the proof of Theorem (4.3). D

Referring to (2.3), (3.3), and the specified bases of H1(Mkd+ί) and

Hλ(Nk) we see

aι

ak

b*

bk

s

0

0

0

a 1 ••

ϊ

ϊ

t b x ••• b k

δ

δ
δ

δ ϊ

φ* =

where I denotes the basis elements sl9...,sι and as denotes the basis

elements a),... ,ad

s. If X G L(d, k, /, Z) then φ * = φ*X from which it

follows that X must have the following constant column sum property.

The sum of the elements of any column in any as X as or bs X bs block is

1. The sum of the elements of any column in any as X at(s Φ t),~BsX~bt

(s Φ t), as X \ (any s, t), or Ί?s X at (any s, t) block is 0. Also, the sum of

the elements of any column of the I X anϊ X Ί)vt X as, and t xϊs blocks

is 0. As before, the constant column sum property for X~ι implies a

constant row sum property for X. The row sum agrees with the column

sum in the ( ί or 6) X(α or 6) blocks, but it applies only to the at X s,

as XΪ,bsX Γ, and bt X s blocks.

(4.4). THEOREM. L{d, k, /, Z) is generated by matrices of types I, II, A

and B o/(3.3) together with the matrices listed in (4.3). Here d > 3, k > 1,

/ > 0.
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Proof. The proof will be by induction on /. The case / = 0 is Theorem

(4.3). Let X e L(d, k, /, Z), and let the first row of X b e

v = ( σ 1 , . . . , σ / | α 1 | ••• \Sk\\τl9...9τl\βι\ ••• | / i Λ ) .

We first show how to reduce v to (eljβ\ ••• | |0| ). Let δ =

gcd{ σl9... ,σl9 a] - < , τl9... 9τl9 β} - βt

j)iJ%s%n i.e.

δ = Γ ( σ 1 ) σ | α 1 | . . K | | τ 1 , f | i β 1 | . . \βk).

It follows that

v = δx + α}(δ|ϊ|0| ||0| ) + δxx

+ a\(0\ ••• |ϊ | |0| •••) + «**

Let z, be the / + die + / + (t - l)d + 1 row ofX.ΰ-zt = 0 implies

/ k k \

8\χ + Σ χ s +)? + Σ y s ^ + «} = o.
\ 5=1 5=1 /

Therefore δ|αj and hence δ\a] for all / and t. By dotting v with rows in the

upper half of X, we see 8\β} and hence δ|β/ for all i and /. It follows that

δ\v, since Xis invertible δ = 1.

Notice that if σ = ί = 0 there must exist i9 j 9 s such that either

aι

s Φ a{ or β\ Φ βj. A type A or B column operation forces τ Φ 0.

We now use type I operations (this includes their inverses) to simplify

(σ | f ) . With these operations it is easy to see that each pair (σn\τn) may be

reduced to (δJO) with δn = gcd(σπ, τn) (see [BE 1; (5.4)]), and hence (σ|f)

may be reduce to (δ 1,.. .,δ / |O,...,O). (δ 1 ? δ2 |0,0) may be changed to

(δ 1 ? δ 2 | δ 2 , δ x) by a type II operation, and this may be changed to

( δ 1 2 , 0 | 0 , δ 1 2 ) (where δ 1 2 = gcd(δ1? δ2)) by type I operations. A type II

operation changes this to (δ 1 2 ,0 |0,0) . Continuing with ( δ 1 2 , δ3 |0,0) we

eventually reduce (σv... .σ^... ,τ7) to (δ σ τ , 0 , . . . ,0 |0, . . . ,0) where δσ τ

= gcd{al9...9ai9Tl9...9Tf}.

We next show that we may assume δσ τ = 1. Consider all possible first

rows obtainable from v using operations of types I, II, A, and B. Choose
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such a row in which (σ 1 , . . . ,σ / |τ 1 , . . .,77) = (δ,0, . . . ,0|0,...,0) and δ > 0

is the minimum possible. (The last paragraph shows that there are

such rows.) We now show δ = 1. If we let δa = Γ(α x | \ak) and δ^

= T(βτ\ - - \βk) then it is enough to show δ\8a and δ\δβ9 for we've

seen gcd{δ, δα, δ^} = 1. By using operations of type A we can force

(δ,0, *•• |0, ••• ) to become (δ,0 ••• |δα,0, ). By the last para-

graph and minimality of δ we see that δ |δ α . Similarly δ|δ^, therefore

δ = l a n d ( σ | f ) = (e 1 |0).

Operations of type A and the fact that Σf=1/% = 0 may be used to

force βs = 0 for all s. Similarly, operations of type B force as = 5 for all s.

Operations of type A and B do effect f, but f may be restored to 0 as

above with type I and II operations. The first row is now in the desired

formal ... | |6 | . . .) _̂
Let (σ\ax\ ••• lαjf l/ ϊ j ••• \βk) be the first column of X. We've

already forced σx = 1. By using type I row operations, we may assume

(σ | f ) = (1, σ 2,... ,σ7|0, τ 2 , . . . ,77). With type I and II row operations not

changing the first row of X, this may be reduced to (1,0,... ,0|0, δ, 0,... ,0).

Type II operations reduce this to (eλ\0).

Exactly as for the first row, type A and B operations allow us to

reduce the entire column to (eι\0\ ||0| ). Since X is symplectic the

/ + dk + 1 row and column are also in the desired form. This reduces us

from l G L ( r f , k, /,Z) to X G L(d, kj - 1,Z) thereby completing the

inductive step and the proof of Theorem (4.4). D

(4.5) We now mention two open questions along the lines of Theorem

(4.1).

(1) Is Theorem (4.1) true if the simple branched covers ψx and ψ 2

 a r e

assumed to be metastable but not stable?

The uniqueness theorem (1.1) applies to the metastable range so one

may construct self equivalences of some fixed metastable branched cover

φ: M -> N and then ask if applying H* to these equivalences generates

L = {/ + | / is a homeomorphism of M and φ * / * = φ*}. The problem is

the complexity of these groups L. For example if φ: M2 -> S1 X S1 is of

degree 3 then L is isomorphic to the kernel G3 of the map induced by

projection Z -> Z/3Z in the sequence 1 -> G3 -> Sl(2, Z) -» Sl(2, Z/3Z)

-• 1.

(2) Is Theorem (4.1) true if homology is replaced by homotopy. That

is, if ψx and ψ 2 are stable simple branched covers from M to N, and /, g

are homeomorphisms of M, N respectively such that gψx =* ψ 2 / d o there
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exists homeomorphisms/, g with/ — f,g — g such that

M •£ M

TV Λ ΛΓ

commutes?

By work of Edmonds [Ed; Cor. 4.2], the homotopy h: M X I -> N X I

between gψ x and ψ 2 / may be replaced (rel M X {0} U M X {1}) by a

simple branched cover (though no longer a level preserving homotopy) H:

M X I ~> N X I. To prove (2) it is enough to either modify H so that it

becomes a level preserving simple branched cover, or equivalently to

modify H so that its branch set is a braid in N X I, i.e. a disjoint

collection of arcs in N X I monotone with respect to the coordinate /.
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