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REMARKS ON THE DEDEKIND COMPLETION
OF A NONSTANDARD MODEL OF THE REALS

HARRY GONSHOR

In 1980 Wattenberg constructed the Dedekind completion of a
nonstandard model of the real numbers and applied the construction to
obtain certain kinds of special measures on the set of integers. We feel
that the Dedekind completion is a structure of interest for its own sake
and we establish further properties here. Of particular interest is the
connection with [1]. Specifically, the main concept we introduce is that of
the absorption number of an element a which, roughly speaking, mea-
sures the degree to which the cancellation law ¢ + b=a+c—>b=c
fails for a. The absorption number may be regarded as an element in the
Dedekind completion of the value group of the valuation ring of finite
numbers as discussed in [1].

Preliminaries. Let R be the set of real numbers and R* a nonstan-
dard model of R. Also let R* be the class of all lower subsets a of R*
which are non-empty, with non-empty complement and with no greatest
element. R¥ is the Dedekind completion of R* according to [2, page 227].
We identify a € R* witha = {x: x < a}.

DEFINITION. ¢ + 8 =[a+ b:acs a AN b E ]
Addition is commutative and associative. Furthermore, a + 0 = a.
Also, the embedding R* — R preserves sums.

DEFINITION. —a = (@ € R*: 3b[b > a A -b & a])™.
As we already noted the embedding R* — R¥ preserves negation.
DEFINITION. a < Biff a C S.

ThenclearlyB <y —>a+ B <a+y.

!Note that the definition in [2] is technically incorrect. The latter defines —a as (a € R*:
-a & a). If a & R* i.e. o’ has no mininum, then the definitions are equivalent. However if
a € R* ie. a = (x: x<a) for some a € R* then according to the latter definition
—a = (x: x < —a) whereas the definition of R¥ requires that —a = (x: x < —a). In the
usual treatment of Dedekind cuts for the ordinary real numbers both of the latter sets are
regarded as equivalent so that no serious problem arises.
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Furthermore (-a) + a < 0 and (-a) + (-8) < —(a + B) with equal-
ity if either « or B is in R*. a« < 8 —» —f < —a. Counterexamples show
that the inequalities cannot be replaced by equalities. In fact, an element
which is especially useful in obtaining many counterexamples is u which is
the union of the set of non-positive numbers and positive infinitesimals.
Then p # 0 but p + p = p. Furthermore (—p) + p = —u. Thus R* is
certainly not a group.

A product can also be defined. This is first done for positive numbers.
Suppose a, B € R* and a, 8 > 0. Then

a-B=[(a-b):0<aca0<beB]U(a:a<0).

If either a or B is 0 the product is defined to be 0 and the usual rule of
signs is used if either a or B is negative.

Multiplication is commutative and associative. The distributivity with
respect to addition holds for non-negative numbers.

We conclude this section by mentioning two other minor errors in [2].
The formula for inf 4 given on the top of page 229 is not quite correct; in
fact the problem is similar to the one for negation. The formula says
inf, ., A =N, ,a This should read

inf 4 = [a: (3d > O)(a +de N a)J.
«ed dacA

For example let A = {a + d} where d runs through the set of all positive
numbers in R*. Then infA4 =a = {x: x <a}. However, N, ,a=
(x: x < a).

Finally, another problem arises on page 236 because of this “patho-
logical” nature of pu. The statement a € [x — u, x + p] is not equivalent
tox €la —u,a + pul

In fact, if &« = —p then the interval [@ — p, a + p] reduces to the
single point —u! Hence O & [a@ — u, a + u] but —-p € [0 — p,0 + p].

Absorption Numbers. One way of defining the completion of R*
involves restricting oneself to subsets a which have the following property
(Ve > 0)[(3x € @),(Fy € a)(y — x < ¢)]. It is known that in this case we
obtain a field. In fact the proof is essentially the same as the one used in
the case of ordinary Dedekind cuts in the development of the standard
real numbers. u, of course, does not have the above property; no infinites-
imal works.

This suggests the introduction of the concept of absorption number
for an element a of R¥ which, roughly speaking, measures how much «
departs from having the above property.
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DEFINITION. ab(a) = (d = 0: (Vx € a)[x + d € a)).

EXAMPLES. ab(a) = {0} iff a has the above property. ab(p) = p. If
a € R* then ab(a + p) = p.

LeMMA 1. (a) ¢ < ab(a) and 0 < d < ¢ — d € ab(a).
(b) ¢c € ab(a) and d € ab(a) — ¢ + d € ab(a).

Proof. This is immediate from the definition.

By Lemma 1 ab(«) may be regarded as an element of R¥ by adding
on all negative elements of R* to ab(a). Of course if the condition d > 0
in the definition of ab(a) is deleted we automatically get all the negative
elements to be in ab(a) since x < y € a = x € a. The reason for our
definition is that the real interest lies in the non-negative numbers. A
technicality occurs if ab(a) = {0}. We then identify ab(a) with 0. [ab(«)
becomes { x: x < 0} which by our early convention is not in R*].

By Lemma 1(b), ab(a) is idempotent.

LEMMA 2. (a) ab(a) is the maximum element B € R* such that
a+ B =a.

(b) ab(a) < a for a > 0.

(c) If a is positive and idempotent then ab(a) = a.

Proof. All parts are immediate from the definition.

It follows from Lemma 2 that the elements of the form ab(«) are
precisely the non-negative idempotents.

Idempotents may be characterized in various ways. For convenience
we state the following elementary result.

LEMMA 3. Let a € R* satsify a > 0. Then the following are equivalent.
[In what follows assume a, b > Q]

(a) a is idempotent,

(bya,bea—->a+be€a,

(c)a€a—2aca,

(d) a € a = na € a for all standard integers n,

() a € a = ra € a for all finite r € R*.

Proof. All parts are immediate.

Condition (e) is of special importance since this makes the connection
with [1] apparent.
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Connection with the value group. We define an equivalence relation
on the positive elements of R* as follows
a~b iff a/b and b/a are finite.

Then the equivalence classes from a linear ordered set. We denote the
order relation by << . The classes may be regarded as orders of infinity.
According to [1] the subring of R* consisting of the finite elements is a
valuation ring, and the equivalence classes may also be regarded as
elements of the value group.

Condition (e) in Lemma 3 essentially says thata € a and b ~ a > b
€ a, i.e. « may be regarded as a Dedekind cut in the value group.

Properties of the Absorption Function.
THEOREM 1. (—a) + a = —ab(a).

Proof. This is clear if @« € R* since in that case both sides are 0. If
a & R* then the definition in [2] is valid.

(~a) +a=[(-b+a):a€ aAb¢aq]
=[-(b—a):bEana€c€a|l=(-d:d¢& abla)).

The last equality is essentially a restatement of the definition of ab(a).
This in turn is —ab(a).
Note that ab(a) is not a monotonic function of «. In fact since
o € R* - ab(a) = 0 there are arbitrarily high « such that ab(a) = 0.
However, we have the following

THEOREM 2. ab(a + B) > ab(a).

Proof. This is immediate.

THEOREM 3. a + B < a + v = [-ab(a)] + B < y.

Proof.a + B<a+7y—>(-a)+(a+ B)<(-a)+ (a+7).

Hence

[(-a) + a] + B < [(-a) +a] +7,
[-ab(a)] + B < [-ab(a)] +v < 7.

COROLLARY. & + B8 = a + v = [-ab(a)] + B = [-ab(a)] + v.
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The above results illustrate, heuristically speaking, that ab(«) mea-
sures to what extent a spoils the system from being a group.

Note. Theorem 3 cannot be replaced by the following
a+B<a+y— B<y+ abla).

In fact (—p) + p < (—p) + (—p) since both sides are —p. However, p £
(=) + p since the right-hand side is —p.

THEOREM 4. (1) ab(—a) = ab(a). (2) ab(a + B) = max[ab(a), ab( B)].

Proof. (1) This is easy and left to the reader.
(2) By Theorem 2 ab(a + B) > max[ab(«), ab( 8)]. Suppose

ab(a + B) > max[ab(a),ab(B)].

Then [3d € ab(a + B)] [d € ab(a) A d € ab(B)]. Then id & ab(a) and
1d & ab(B). Choose a € a, b€ B so that a + 3d & a and b + 3d & B.
Then (a + 3d)+(b+ 3d) & a + B.i.e.a + b+ d & a + B which con-
tradicts the fact that d € ab(a + B).

We now classify the elements B such that « + 8 = a. For positive 8
we know by Lemma 2(a) that a + 8 = a iff 8 < ab(a).

THEOREM 5. Assume 8 > 0. If a absorbs —B then a abosrbs .

Proof. Suppose a + (-8) = a. Then a + 8 = a + (-B) + 8. Hence
a<a+fB<a+[(-B)+B]l<a+0=a Thusa =a + B.

This shows that if « absorbs —f then B < ab(a). On the other hand
suppose 8 < ab(a). Then (3d,d’ € R*) (B < d < d’ < ab(a)). Hence
d’ € ab(a) ie. a€ a— a+d € a. Consider a + (-d). Clearly a +
(-d) < a. Suppose a € . Then a + d’ € a. Hence a = (a + d’) + (-d’)
€ a + (-d) since —d’ < -d. Therefore a = a + (~d). However a + (-d)
< a+ (-B) < a.Hencea + (-B) = a.

We now know that for 8 < ab(a), @ + (-8) = «a and for 8 > ab(a),
a + (=B) # a. For B = ab(a) the result is indeterminate. In fact if a« = p
we have ab(a) = p. p + (—p) = —p # p thus p does not absorb —u. On the
other hand if a = —p then ab(a) = p and (—p) + (—p) = —p thus —p does
absorb —pu.

THEOREM 6. Let 0 < a € R*. Then the following are equivalent
(a) a is an idempotent,

(b) (-a) + (-a) = —q,

©) (~a) + a = —a.
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Proof. (a) — (b). In general (—a) + (—a) < —a, so it suffices to show
that —a < (—a) + (-a). Let —a € —a. Then a & a. Hence 1a & a [other-
wise a = 2(3a) € a). Hence — 1a € —a. Therefore —a = (- a) + (- 3a)
€ (—a) + (-a).

(b) — (a). Assume (-a) + (-a) = —a. Suppose a € a. It suffices to
show that 2a € a. Otherwise 2a & a hence -2a € —a. Let -2a=b + ¢
where b, ¢ € —a. Then either b > —a or ¢ > —a. Now —a & —a since
a € a. Hence either b ¢ —a or ¢ ¢ —a contradicting the above.

(a) = (¢). In general (-a) + a > —a. Suppose a € (—a) + a. We must
show that a € —a. Now a has the form b + ¢ with b € —a and ¢ € a.
Then -b & a. Since ¢ € @ and « is closed with respect to addition
-b—c¢& a.Henceb + c € —a.

(c) — (a). Suppose a is not idempotent. Then (3a, b € a) (a + b & «).
Therefore —a — b € —a. Hence —a = (-a — b) + b € (-a) + a. However
—a ¢ —a since a € a. Thus (-a) + a # —a.

REMARK. (c) is a strange characterization of idempotence. Such a
result gives the subject a rather unusual flavor.

Equivalence Relations on R¥. Let A be a positive idempotent. We
define three equivalence relations R, S and T on R¥*.

(DaRBmodAiffa + A=+ A,

(2) a S Bmod A iff & + (-A) = B + (-A),

B)aTBmodAiff Ade A)ac B+ dand B C a + d).

To simplify the notation mod A is omitted when we are dealing with
only one A. R and S are obviously equivalence relations. T is an equival-
nce relation since A is idempotent. (Note incidentally that two different
ways of regarding an expression such as a + d are equivalent. First as the
sum « + d where d is regarded as an element of R* and secondly, as
{a + d: a € a}. Thus we can use whichever form is more convenient at
the moment.)

It is immediate that R, S and T are congruence relations with respect
to addition. Also, if ~ stands for either R, S or T then a« < 8 < y and
a ~ vy — a ~ B. To see this it is convenient to have the following simple
lemmas whose proofs are immediate.

LEMMA 4. Suppose a < B.thena RSB < B < a + A.
LEMMA 5. Suppose o < Bthena S B < B+ (-A) < a.

We next want to classify which of the above relations are preserved by
negations. For this we need a technical lemma.
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LEMMA 6. Let A be a positive idempotent. Then —[a + (-A)] + (-A) <

REMARK. This is not immediate since the inequality (-a) + (-B8) <
—(a + B) goes the wrong way. In fact, this seems surprising at first since
the first addend may be bigger than one intuitively expects, e.g. if
a =A = p then [a + (-A)] = ~[p + (-pn)] = p > 0. However, p + (—p)
= —p so the inequality is valid after all.

Proof. Suppose x € —[a + (-A)]. Then —x & [a + (-A)] i.e. —x does
not have the forma + ewitha € aande € -A,ie.,(Va € a)(-x —a &
~A). Hence (Va € a) (x + a € A). [Note the technicality that this is valid
since A & R*\]

Now suppose y € —[a + (-A)] + (-A). Then y has the form x + d
with x € —[a + (-A)]andd € -A.Leta€ a. Theny +a=(x +d) +a
=(x+a)+de A+ (-A)=-A. Hence y + a < 0. So certainly y + a
# 0 so —y # a ie. -y & a. Therefore y € —a. [We must beware of a
technicality in the definition of negation in order to justify the last step.
One way of resolving this is to choose z > y so that z € —[a + (-A)] +
(—A). Then from -z & a we can deduce what we desire.]

THEOREM 7. S is a congruence relation with respect to negation.

Proof. Suppose a S B. Then a + (-A) = B + (-A). Now a + (-A) <
B. Hence -8 < —[a + (-A)]. So -8+ (-A) < —[a + (FA)] + (-A) < -a.
Similarly —a + (-A) < —f. Hence the result follows by Lemma 5.

THEOREM 8. T is a congruence relation with respect to negation.

Proof. Let a < B. Suppose B < a + d where d € A. Then —(a + d)
< -B. So (~a) + (-d) < [a + d] < -B. Hence —a = (-a) +(-d) +d
< (-B) + d. The equality is valid since d € R*. This proves the result.

THEOREM 9. R is not a congruence relation with respect to negation.

Proof. Since A is idempotent, A+ A=A =0+ A hence A R 0.
However (-A)+ A= -A and 0+ A=A. So (-A)+A #0+A4; ie.

-A Ro.

THEOREM 10. a + A is the maximum element B satisfying B R a.
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Proof. Clearly a« + A R A since A is idempotent. However 8 R
a = B < a + A. (Note that Theorem 10 does not say that A is the largest
element such that @ + A R «. In fact ab(a) may be bigger than A.)
Similarly, we have

THEOREM 1. a + (-A) is the minimum element 3 satisfying B S a.
We now compare R, S, and 7.

THEOREM 12. T C R C S. Both inclusions are proper.

Proof. d€ A - d<A. Hence a < B+d— a< B+ A It is thus
clear that 7' C R. The inclusion is proper since A R 0 but no d € A
satisfies A <0 + d = d.

Now suppose a + A = B + A.

Then

(a+4)+(-4)=(B+4)+(-4),
a+[A+(-A)] =B +[Aa+(-A)],
o +(-4) = B +(-4).

Hence R < S. We already know that -A I}é 0. Certainly —A S 0 so the
inclusion is proper.

For convenience we mention elementwise characterizations of R, S,
and 7. Suppose a < . Then

aRBo(VbeB)(BdeA)(b—de a),
aSBo (VbeB)(VdeEA) (b—de a),
aTBo (AdeA)(VbeB)(b—deE a).

We next compare different A’s. We already know that —A absorbs A.
However, we do have the following

THEOREM 13. Let A, and A, be two positive idempotents such that
A, > A, . Then A, + (-A)) = A,.

Note that it is obvious that A, absorbs A, but this is not our concern
here. Let a € A, with a ¢ A|. Then 2a € A, and —a € —-A,. Hence
a=2a+ (-a) € A, + (-4)). This is almost enough to show that A, €
A, + (-4;). To complete the argument suppose that b € A, is arbitrary.
If b A, then b € A, + (-A,) by the above. If b € A, we can choose an
a as above. Necessarily b < a. Now by the above a € A, + (-A,). Hence
be A, + (-A). Since A, + (-4,) < A, this completes the proof.
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COROLLARY. Let A, and A, be two positive idempotents such that
A,> A, thena S Bmod A, » « R fmod A,.

Proof. This is similar to the proof that R C S.
Actually, we can prove something stronger.

THEOREM 14. Let A, and A, be two positive idempotents such that
A, > A,. Then a S Bmod A, —» « T fmod A, but not conversely.

Proof. Without loss of generality suppose a < 8. Then (Vb € B)
(vd & A)) (b — d € a). Choose d € A, such that d & A,. Then (Vb € B)
(b — d) € a which is just what we need. Finally d 7 Omod A, but d g
0 mod A, since d + (-A;) > 0 because 0 € d + (-A,) whereas 0 + (-4,)
= -A, <0.

Once more we fix A.

THEOREM 15. S is the smallest congruence relation with respect to
addition and negation containing R.

Proof. We know that S is a congruence relation containing R.

Let ~ be any congruence relation containing R. Then A ~ 0.

Since ~ is a congruence relation ~A ~ -0 = 0. Now suppose a S (.
Then a + (-A) =B+ (-A). Hence a=a +0 ~ a + (-A) = B + (-4)
~B+0=8.

THEOREM 16. Any convex congruence relation ~ containing T properly
must contain S.

Proof. By Theorem 15 it suffices to show that it contains R. Assume
a < B. Suppose a ~ 8 but a 7' B. Then (Vd € A) (a + d € B). Hence
a+ A < B.Sincea < a + A < Bit follows by convexity that a + A ~ «.

Case 1. a + A > a. Then add —a to both sides of the congruence
a+ A~ atoobtain ~a+ (a+ A)~(-a) +a <0. Choose x € a + A
such that x ¢ a and d € A. Then x +d € (a+ A)+ A =a + A. Also
—-x € —a. [As we did earlier we can use the technicality of using y > x to
justify the last statement. As an alternative we can note that the implica-
tion x € a > —x € —a breaks down only when a € R* in which case
what we are aiming for is trivial anyway]. Hence d = (x + d) + (-x) €
(a + A) + (—a). Thus A < (a + A) +(-a) ~ a + (-a) < 0. So by con-
vexity A ~ 0.
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Case2.a + A = a. Then A < ab(a) = ab(-a). Hence (~a) + A = —a.
Now B ~ a. Hence 8 + (-a) ~ a + (—a) < 0. Let x € B such that x & a.
Then —-x € —a so 0 =x + (-x) € B + (—a). Therefore B + (-a) > 0.
Also B+ (-a)= B8+ (-a) + A > 0 + A = A. By convexity A ~ 0.

So in either case we obtain A ~ 0. If «a R B then a + A = B + A.
Hence a ~ a + A = B + A ~ B. Therefore the congruence relation con-
tains R.

We shall now classify all convex congruence relation on R*. Given
any such relation ~ let A = (a € R*: a >0 and a ~ 0). (We use the
embedding R* — R¥ to make the natural identifications. Now a ~ 0 and
B ~ 0 imply a + B ~ 0 hence A generates an idempotent if we annex all
negative numbers in R* to A.

Assume a < B.If a T B then B < a + d for some d € A. Sinced ~ 0
we havea ~ a + dand a < B < a + d. Hence a ~ B. This shows that ~
contains 7.

We now show that S contains ~ . Otherwise suppose there exist a, 8
such that a ~ B but a § B.

Then a < B + (-A). Let x € B + (-A) such that x & a. Then x = b
+ (—e), with be B, —e € -A. a < x < b < B (this follows since x & a
—a<xandb e B - b<}p).

Since a ~ B it follows by convexity that x ~ b i.e. b — x ~ 0. How-
ever, b — x = e. Since —e € —A, e &€ A. We have deduced that e & A but
e ~ 0 which contradicts the definition of A.

We have shown that T < ~ < §. By Theorem 16 ~ must be 7 or S.
Conversely if « T Bmod A or a« S Smod A then the above process gives
rise to A itself; i.e.[a>0:a € R*anda TO0]l=[a>0:a€ R*anda S
0] = A (strictly speaking the non-negative elements in A).

Special Kinds of Idempotents. Let a € R* such that a > 0. Then a
gives rise to two idempotents in a natural way.

Let A, = [x: (3 standard integer n) (x < na)).

Let B, = [x: (V positive standard reals r) (x < ra)].

Then it is immediate that 4, and B, are idempotents. (The usual “¢/2
argument” shows this for B,.) It is also clear that 4, is the smallest
idempotent containing a and B, is the largest idempotent not containing
a. It follows that B, and A4, are consecutive idempotents. Note that B; = p
which we have already considered. 4,, which is the set of finite numbers
(plus all negative numbers) is what is called ¢ in [2].

THEOREM 17. (a) No idempotent of the form A, has an immediate
successor.
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(b) All consecutive pairs of idempotents have the form B, and A, for
some a € R*.

Proof. (a) Let A, C A but A, # A. Suppose x € A but x & A4,. Then
x > na for all positive standard integers n. Let y = yxa which is defined
since R* is a nonstandard model of R. Then y > Vn a for all positive
standard integers n so that y € 4,. So 4, > 4 ,. Similarly x > Vny so
x & A,. Hence A, < A. Thus 4, and A are not consecutive.

(b) Let C and D be consecutive idempotents such that C < D. Let
a€ Dwithaé& C. ThenC<B,<A,<D.HenceC=B,andD = A4,.

Types of a for Given ab(«). Among elements of « such that ab(a) =
A we can distinguish two types. (Assume A > 0).

(D ahastypelif @x € a) (Vy)[x +yEa—y ]

(2) a has type 2 if (Vx € a) (Ay &€ A) (x + y € «a), i.e. « has type 2 iff
a does not have type 1.

A similar classification exists from above.

(1) ahastype IAif Ax € a) (Vy)(x —y & a = y € A),

(2) ahas type 2Aif (Vx € a) Ay € A) (x — y & a).

Again « has type 2A iff a does not have type 1A.

THEOREM 18. « has type 1 iff —a has type 1A.
Proof. This is straightforward and left to the reader.

ExAMPLES. p has type 1 thus —u has type 1A. Also —u has type 2, thus
p has type 2A. One can think of type 2 as corresponding to a slightly
stronger absorption power than type 1.

THEOREM 19. a cannot have type 1 and type 1A simultaneously.

Proof. Let a have both types. Choose a € a, b & «a satisfying the
conditions for both types respectively. Consider (a + b) /2. Since ab(a) =
A, b—a& A Hence (b—a)/2 & A; ie. (a+b)/2—a& A and b —
(a + b)/2 & A. By choice of a the first statement gives (a + b)/2 & «a
and by the choice of b the second statement gives (a + b)/2 € a. Thus
we obtain a contradiction.

THEOREM 20. Suppose ab(a) = A > 0. Then « has type 1 iff a has the
form a + A for some a € R*.
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Proof. Let a = a + A. Then ab(a) = A by Theorem 4, (2). Since
A>0, a€a+ A [we chose d € A such that 0 < d and write a as
(a — d) + d]. It is clear that a works to show that « has type 1.

Conversely, suppose a has type 1 and choose a € a such that a + y
€ a > y € A. Then we claim that a« = a + A. By definition of ab(a)
certainly a + A < a. On the other hand by choice of a, every element of a
has the form a + d with d € A. Choose d’ € A such that d’ > d, then
a+d=[a—(d —d)]+d €a+ A. Hence a < a + A. Therefore a =
a+ A.

COROLLARY. « has type 1A iff a has the form a + (-A).

Proof. a has type 1A

iff —a has type 1,
iff —a has the forma + A,
iff « has the form (-a + A) = —a +(-A).

THEOREM 21. (a) If ab(a) > ab(B) then o + B has type 1 iff « has

type 1.
(b) If ab(«) = ab(B) then a + B has type 2 iff either a or B has type 2.

Proof. (a) Suppose « has type 2. Let a + b € a + B where a € « and
b € B. Since a has type 2 there exists d & ab(a) = ab(a + ) such that
a+dea Then (a+b)+d=(a+d)+bea+ B. Hence a + B has
type 2.

Now suppose a has type 1. Using Theorem 20 choose a € « such that
a C a + ab(a). Choose d € ab(«) such that d & ab(B). Ab € B) (b + d
& ). Hence BC b+ d< b+ ab(a). We thus obtain a + 8 <[a +
ab(a)] + [b + ab(a)] = (a + b) + ab(a) = a + b + ab(a + B). This
completes the proof of (a).

(b) This is similar to the proof of (a). If « or B8 has type 2 then we can
follow the proof of the fist part of (a) exactly. It both « and 8 have type 1
we obtain as in the above proof a < a + ab(a) and B8 < b + ab(p).
Hence a + B < a + b + ab(a + B). [Since ab(a) = ab(B) both are equal
to ab(a + B).]

THEOREM 22. If ab(«) has the form B, then a has type 1 or 1A.

Proof. Incidentally, we already know that in general ab(a) cannot
have type 1 and 1A simultaneously. Now a € B,. Hence (36 € a, ¢ & a)
(¢ — b=a).
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We now define an ordinary Dedekind cut for the real numbers as
follows. Let r € L (where L is the set of lower elements) iff b + ra € a.

It is immediate that0 € L,1 ¢ L,x <y € L - x € L. So we have a
Dedekind cut. Then L has a maximum or L’ has a minimum.

Suppose first that L has a maximum r. Then b + ra € a but for any
real s > r, b + sa & a. We now claim that b + ra works to show that «
has type 1. In fact, suppose b + ra + x € a. Let s > r. Since b + sa & a,
b+ sa> b+ ra+ x. Therefore x < (s — r)a. Thus x < ea for every
positive real ¢; i.e. x € B,.

A similar argument shows that a has type 1A if L’ has a minimum.

The result applies in particular to B, = p. It follows from Theorem 20
and its corollary that every a with ab(a) = p must be either of the form
a + pora+ (—p) with a € R*.

More General Functions. We first make some preliminary remarks
on the closure operator.

Letcl S = {x: (Ay € S) (x < y)}. Then cl s satisfies the usual axioms
for a closure operation. If S # ¢, S” # ¢ and S has no maximum, then
cl S € R*.

Let f be a continuous strictly increasing function in each variable
from a subset of R” into R. Specifically, we want the domain to be the
cartesian product ['1,_, 4, where 4, = (x: x > a,) for some g, € R and the
rangeis A = [x: x > a] for some a € R. [Some of the a’s may be —o0; i.e.
some of the A’s may be R.] By transfer f extends to a function from the
corresponding subset of R*” into R* which is also strictly increasing in
each variable and continuous in the Q topology (i.e. € and 8 range over
arbitrary positive elements in R*).

We now extend f to R*. Let a, > q, then

flay, ay,...,a,) =l f(by, b,,...,b,): a, < b, € a].

Note first that this really defines an element of R®. f(ay, a,,...,a,) is
clearly non-empty. If ¢, & a,, then f(b,, b,,...,b,) < f(¢;, ¢,,...,c,) for

all b, € a, since f is strictly increasing, so f(c;, ¢5,...,c,) €
f(ay, a,,...,a,). Again since f is strictly increasing f(a;,...,a,) has no
maximum. Thus f(a;, a,,...,a,) € R*.

ExAMPLES. Addition, in which case the domain is all of R?. Multipli-
cation in which case a; = a, = a = 0. In both cases the present definition
agrees with the one given earlier. A new example of special interest is
exp x. In this case the domain is R and a = 0. More generally we have the
binary function a® for a > 1.
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It is clear that f is strictly increasing. By continuity (specifically left
continuity) fis an extension of f using the above embedding R* — R*.

THEOREM 23. If f and g are functions of one variable fg = fg.

Proof.
fe(a) = cl fg(a),
f8(a) = fel g(a) = cl fcl g(a).
Since f is an increasing functoin both sets are the same.

The result can be generalized to more general compositions involving
functions of several variables. The notation is cumbersome but the proof
is essentially the same. Note also the obvious fact that the identity
function extends to the identity function.

We state the next theorem for a function of two variables and one
parameter in R* for convenience in notation although the theorem can be
obviously extended to functions of any number of variables and any set of
parameters in R*.

THEOREM 24. Let f be a function of two variables. Then f(a, a) =
c[f(b, a): b € a).

Proof. Using the embedding R* — R* we have
fla,a)=cl[f(b,c):b € a,c <al.

Since f is increasing it is clear that f(«, a) C cl[ f(b, a): b € a]. Now
consider any element of the form f(b, a) with b € a. Let b’ > b. Then
f(b', a) > f(b, a). By continuity of f there exists ¢ < a such that f(&’, ¢)
> f(b, a). Hence f(b, a) € cl f(a, a). Hence {f(b,a): b€ a} C
cl f(a, a).

Another convenient fact is the following which we state for functions
of two variables again for simplicity of notation. f(«a, a) = cl[ f(a, a):
a € a]. By definition f(a, @) = cl[f(a, b): a, b € a]. It is clear that the
former set is included in the latter. On the other hand f(a, b) <
f[max(a, b), max(a, b)] since f is increasing. So the latter set is included in
the former.

EXAMPLE. As a consequence of Theorem 23 and the above remark
(generalized to any number of variables) we have

af+ay=(ab+ac:aca,bec B, ccy).
We are now ready for a general transfer theorem.
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THEOREM 25. Let f and g be any two terms obtained by compositions of
strictly increasing continuous functions possibly containing parameters in R*.
Then any relation f = g or f < g valid in R* extends to R*

Proof. This follows from the above discussion.

ExampLEs. All identities for addition and multiplication such as the
distributive law restricted to positive elements. Of special interest to us are
the laws of exponents exp(a + B8) = exp aexp 8, (exp a)? = Bexp a, and
(aP)Y = af7. [Of course, we must always beware of the restriction in the
domain when it comes to multiplication]. Note that Theorem 24 justifies
the equality exp x = e*. We also have Inexp a = explna = a.

Finally, we never used right continuity in our discussion so Theorem
25 can be obviously generalized. However, this added generality is of no
special interest to us at this time.

As an application of transfer applied to the exponential and logarith-
mic function we can reduce the study of multiplicative idempotents to
that of additive idempotents.

THEOREM 25. The map o — exp a maps the set of additive idempotents
onto the set of all multiplicative idempotents other than 0.

Proof. Suppose a + a = a. Then exp aexp a = exp(a + a) = exp a.
Now suppose a > 0 and a®> = a. Then Ina is defined In(a) + In(a) =
In(a?) = Im a. Hence Ina is an additive idempotent. The proof is com-
pleted by noting the identity exp(In &) = a.

Similarly, multiplicative absorption can be defined and reduced to the
study of additive absorption. Incidentally the map a — exp a is essen-
tially the same as the map in [1, Theorem 6] which is the map from the set
of ideals onto the set of all prime ideals of the valuation ring consisting of
the finite elements of R*.

The existence of nonzero additive idempotents illustrate a limitation
of transfer. Another example is the following. exp x > x for all x € R and
hence by transfer for all x € R*. However exp ¢ = ¢ (recall that ¢ = 4,).
Also, if R* is a comprehensive enlargement of R, then any strictly
increasing continuous function f such that f(x) > x for all x € R has a
fixed point in R*; i.e. an a such that f(a) = a. To see this, let 8 € R* be
arbitrary. We define f, inductively by f,(x) = x and f,,; = ff,(x). Then
let a = (UX_,f,(x); x € B). We claim that « € R¥. The only thing that is
not immediately obvious is that a’ # &. Let x & B. Consider
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{x, fi(x), f,(x) -+ f,(x) --- }. Since R* is a comprehensive enlargement
of R (3y € R*) (Vn) [y > f,(x)]. Then y & a. It is easy to see that

fe) = a.
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