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Abstract
An ICON surface is an incompressible compact orientableseparating surface
properly embedded in a knot exterior. We show that for any pdditive num-
ber n, there exist plenty of knots whose exterioEs contain an ICON surfacé~
with |0F| = n. We also show that our examples satisfy theconjecture, that is,
m(E/F) = Z.

1. Introduction

A well known conjecture in combinatorial group theory is tbe calledKervaire
conjecture

Conjecture 1.1. Let G be a groupG # 1. ThenZ x G cannot be normally gen-
erated by one element.

F. Gonzalez-Acufia and A. Ramirez proved that Kervaire cbmje is equivalent
to what they called th&-conjecture [2]:

Conjecture 1.2. If F is a compact orientable nonseparating surface propemhy-
bedded in a knot exterior &), then1(E(K)/F) = Z.

We remark that by a surface we mean a connected 2-manifold.
Following Gonzalez-Acufa, we define:

DEFINITION 1.3. An ICON surface is an incompressible compact orieetaloin-
separating surface properly embedded in a knot exterior.

An incompressible Seifert surface for a knot is then an examp an ICON sur-
face, but as pointed out by Gonzalez-Acufia and Ramirez, notsclear whether or
not there exists ICON surfaces with disconnected bounddere we show that there
exist plenty of knots with ICON surfaces with disconnecteditdary.
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Theorem 1.4. Given any odd positive number there exist plenty of knots whose
exteriors contain an ICON surface F witiF| = n.

We make a general construction that produces explicit elesmgd knots with ICON
surfaces. This produces surfaces of genusaving n boundary components, odd, or
more generally, ICON surfaces of genmshavingn boundary components, odd, n <
m. The main construction is shown in Figs. 1, 2, 3. Basicalg idea is to start with a
genus one Seifert surface for the unknot, seen as a diskwidttbands. Take 3 copies of
the surface and join them by tubes, getting a genus 3 orilensaioface with 3 boundary
components, which is compressible. Then, cut the bandsthiem and make them pass
through the tubes and then glue them again, getting a new &mbta nonseparating
surface in its exterior. Under some mild conditions the atefwill be incompressible.
A generalization of the construction produces, for each imtielgern, knots K whose
exteriors haver(+ 1)/2 disjoint ICON surfaces, of genusn—1,n—2,...,n—(n—1)/2
and withn,n—2,n—4, ..., 1 boundary components respectively.

We also make a more particular construction producing kndisse exteriors con-
tain an ICON surface of genus 2 with 3 boundary componentayshin Fig. 8. Here
the idea is to start with the unknd€ and a disk bounding it. Now take 3 copies of
the disk, join them with 4 tubes, getting an orientable gehusnseparating surfacg
with 3 boundary components. Now find an unkroin the complement of the surface,
so thatS is incompressible in the complement of the likku L. By doing 1/n-Dehn
surgery onL, we get a new knoK, and the corresponding surfa& remain incom-
pressible. It is easy to find knots in the complementSo$o thatS is incompressible
in the complement oK U L; the difficult part is to find one which is trivial.

Finally, we show that all our examples satisfy tlleconjecture. We remark that
the Z-conjecture is known to hold for surfaces with 1 or 3 boundeoynponents [2],
and that J. Rodriguez-Viorato [4] has recently shown thaersé infinite families of
pretzel knots satisfy it.

2. The construction of ICON surfaces

Let K be the trivial knot, and leF be a disk properly embedded in the exterior
of K, E(K), whose boundary is a longitude &(K). Let N(F) be a regular neigh-
borhood of F in E(K), N(F) =~ F x |. Take 3 parallel copies oF in N(F), say
Fi1=F x {1}, F, = F x{1/2} and F3 = F x {0}. Let x, y be distinct points in the in-
terior of F, and lett; = xx[1/2,1], t, = yx[0,1/2], i.e., t; is a straight arc connecting
F1 and F,, andt, is a straight arc connectinf, and Fs.

ConnectFy, F, and F3 with tubes following the arc$; andt,. That is, consider
disjoint regular neighborhoodd (t1), N(t2) of t; andt,, in F x[1/2,1] andF x[0,1/2],
respectively, and leG = (Fy UdN(t;) U F, UdN(to) U Fg) —int((FL U Fo U Fg) N(N(t) U
N(t2))). Note thatG is a compact orientable nonseparating surface with 3 baynda
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Fig. 1.

components inE(K), but of course it is compressible. Such a surfé&eés shown in
Fig. 1.

Let D; and D, be disjoint disks properly embedded iE(K) —int N(F), such that
9D (resp.dDy) consists of one arc iifr;, one arc inFz, and two arcs iIHN(K), so
9D (resp.dD;) bounds a diskg; (resp.Ey) in d(E(K)—intN(F)), which we assume
to be disjoint from the pointx andy. We assume also that the disks and E, are
disjoint, i.e., D; and D, are not nested. LeB; (resp.B,) be the 3-ball bounded by
D; and E; (resp.D; and E,) contained inE(K) — int N(F).

Let o1 anda, be two disjoint arcs properly embedded E{K), which are disjoint
from G. Assume thaty; N B; consists of one arc, having one endpointdiN(K) and
one endpoint inD;, and thaty; N B, consists of one arc, having one endpointN(K)
and one endpoint iD,, for i = 1, 2. The intersections of the arag and o, with B;
(reps. Byp) determine a 2-tangle iB; (resp. By), with 9D, (resp.dD;) as a meridian;
assume that this is not a rational tangle of the fdRfi/n), i.e., there is no a dislo
embedded inB; (resp. By), with interior disjoint from the arcs of the tangle, so that
dD consists of the union of one arc #N(K), one arc inD; (resp.D5), and the pair
of arcs of the tangle. Assume that the pariwgfoutside B, U B; is an arc that starts at
9By, passes througN(t;), wraps around\(ty), i.e. it has winding numbes 0 in the
solid torusF x [0, 1/2] — N(tp), then passes again throug(t;) and finishes abB,,
as in Fig. 2. Assume also that the partaf outside B; U B, is an arc that starts at
9By, passes throughi(ty), wraps aroundN(t;), passes again throudki(t,) and finishes
at 9B;, as in Fig. 2. More precisely, assume thgtN N(t;) consists of two straight
arcs in N(ty), that is, arcs which are fibers in the product structureNgf;), and that
the knotk, obtained from the arc of; contained inF x [0, 1/2], after joining its
endpoint with an arc lying inN(t;) N F,, has winding numbet4 0 in the solid torus
F x[0, 1/2] — N(t2). Similarly for the arca,. Outside the regioN(F)U B; U By, there
are no restrictions for the ares, and ay.
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Fig. 2.

We can think ofa; and o, as arcs with endpoints iK; assume then that the
endpoints ofe; anda, on K alternate. Followingx; anda, we can add two bands to
K. That is, consider embeddings: | x | — S3, so thatby(I x 1)NK = by ({0} x 1)U
bi({1} x 1), and thatby(I x {1/2}) = a1, and by: | x | — S, so thatby(l x 1) N
K = ({0} x 1) U by({1} x ), and thatby(l x {1/2}) = ap. Of course, assume that
the two embeddings are disjoint. By twisting the bands, we that there are many
possible bands given by; and ap; take any two of them, just assume that the disk
F, though as a disk with boundar, union the banddy and b, is an orientable
(singular) surface. As the endpoints @f and «, alternate, this surface has to be a
once punctured torus (with ribbon singularities), and titsnboundary is a new knot
K1i. Namely, K; is the knotK; = (K — (by({O} x 1) U by({1} x 1) U b({0} x 1) U
bo({1} x 1)) U by (I x {0}) U by(l x {1}) U bo(I x {O}) Uba(l x {1}).

Now, in the exterior ofKy, consider the union of the surfad®@ appropriately
pasted with 3 copies of each of the bargsandb,, as in Fig. 3, and denote this sur-
face by S. Then S is a compact connected orientable nonseparating surfaueey
embedded inE(K31), with |0S|] = 3, and we show next tha® is incompressible, that
is, Sis an ICON surface with 3 boundary components. Also note ¢estusg) = 3.

In Fig. 4 we show an example of such a kit without the surfaceS.

Theorem 2.1. Let K; and S be as above. Then S is incompressible.
Proof. LetD;, D, be the disks defined above, and [}, D4 be defined aP; =

N(t1) N Fy and D4 = N(t;) N F3. In E(K1) —int N(S) the disk D; gives rise to a twice
punctured disk plus four disks, as shown in Fig. 5; similddy D,. The diskD3 also
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Fig. 3.

Fig. 4.
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Fig. 5.

give rise to a twice punctured disk plus four disks, as showrrig. 5; similarly for
D4. In this figure we have indicated with signst; —" the side of the surfaces in
which a neighborhood of the boundaries of the puncturedsdiigk assuming that the
side of F; pointing out of N(F) is the “+” side. Note that the disk®;, D, Ds,
D4 cut off the “+” side of the surfaceS into two annuli, a once punctured annulus
and several disks. The—" side of the surfaceS is cut off by the disksD;’s in a
similar manner.

Suppose thatS is compressible, and |eE be a compression disk. Consider the
intersections betweeB and the collection of disk®;’s, which consist of simple closed
curves and arcs. Let be an innermost simple closed curve of intersectioti jrwhich
bounds a diske’. The curvey is contained in one of the diskd;; suppose first that it
lies in D1 or Dy, say inD;. Let D’ be the disk bounded by in D;. If the disk D’ is
not disjoint fromKj, then it must contain one point of intersection betw&gnand one
of the arcsu; or «y, but then the spherk’ U D’ would intersect the simple closed curve
formed bya; or «, plus one arc oK in one point, which is not possible. Suppose now
that y is contained inD3 or Dy, say in D3. Again, let D’ be the disk bounded by
in D3. If the disk D’ is not disjoint fromK4, then it must contain one or two points
of intersection betweel3; and the arax;. If it contains just one point, then the sphere
E’U D’ would intersect the simple closed curve formeddayplus one arc oK in one
point, which is not possible. Suppose then tldtcontains two points of intersection
with «;. If the disk E’ is contained inE(K1) — N(F), then the arax; could not join
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N(K) and D’, so E’ must be contained ifN(t;) U (F x [0, 1/2] — N(tz)). But then the
winding number ofa; in F x [0, 1/2] — N(t,) would be 0, which is a contradiction.
Then in both cases the didR’ has interior disjoint fromK; and from the surface. So
by doing an isotopy of the disk, the curvey of intersection can be removed.

So assume that the intersection betwéemnd the disksD;’s consists of arcs. A
neighborhood of the boundary @& lies on a side ofS, so assume that it lies in the
“+" side of S. The proof in the other case is similar. Letbe an outermost arc of
intersection inE, which cuts off a diske” from E, wheredE” = y U 8, with B8 being
an arc inS, and the interior ofE” is disjoint from the diskD;’s. If the arcy is trivial
in the corresponding disb;, i.e., there is a diskD’ C D, so thatdD’ = y U §, where
8 C S, and the interior ofD’ is disjoint from K; and the surfaces, then by cuttinge
with an outermost such disk contained D, we would get another compression disk
E with fewer intersections with th®;’s. So suppose that the agc is non-trivial in
the corresponding disb;.

It is not difficult to check that the arg must be as one of the types of arcs shown
in Fig. 5, numbered 1 to 9. Suppose we have Case 1. In this tasarty cuts
off a disk D” from D; or D,, whose interior intersectdl(K;) in two disks andS in
three arcs, and such thaD” = y U §, whereé is an arc in the 4" side of S. The
curve B U § lies in the “+” side of S and after possibly isotoping it, we can assume
it bounds a diskC contained in the diskF;. Let C' = E” U D” U C; this is a sphere
which intersectsx; U« in 1 or 3 points, depending if the digk contains or not the
disk Ds. In any case we can find a simple closed curve which intergbetsphereC’
is one point, which is not possible.

Suppose we have Case 2 or 3. Note that in those cases thé&diskust be con-
tained inside the 3-balB; or B,. In Case 2 the ar@ consists of an arc on the disk
F1 and then an arc along one of the bands. In Case 3, th@ aansists of an arc on
one of the bands, then an arc &q and then another arc on the other band. In both
cases it would follow that the tangle insid® or B, is of the form R(1/n), which is
not possible by hypothesis.

Suppose we have Case 4. In this case the #iSknmust be contained iB; or Bs;.
The arcy determines a diskD” in D; or Dy, which intersects both arag; and as.
The arcp consists of an arc on one of the bands, then an ar&0and then another
arc on the same band. This configuration is not possible,tfonplies that the are;
or o intersectsg”.

Suppose we have Case 5. There are two cases, depending obdgitierpof the
disk E”. The first case is thaE” lies in the exterior ofN(F), and then the ar@ lies
in F1. Then necessarily one of the ares or o, would intersect the diskE”, which
is not possible. The other possibility is th&t' lies in N(t;) U (F x [0, 1/2] — N(tp)).
Note that the region o§— E in which g lies is a once punctured annulus, afichas
its endpoints in the same component of the boundary of tigjwme This would imply
that the arcx; would intersectE”.
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Fig. 6.

Suppose we have Case 6, and assume jthli¢s in D3. In this case the disE”
must be contained imN(t;) U (F x [0, 1/2] — N(tp)), for otherwise it would intersedD;
and D,. Note that the part of the arg; contained inN(t;) U (F x [0, 1/2] — N(tz)) can
be made to coincide with the ag, and then can be pulled out ®(F x [0, 1/2] —
N(t2)), by usingE”. So this implies that the winding number ef in F %[0, 1/2] —
N(tp) is O, which is a contradiction.

Suppose we have Case 7. In this case theyarmust be contained iD; or Dy,
for if it is contained in D3, then the diskE” would also intersecD; or D, an then
it would not be outermost. The only possibility is that theslkdE” is contained in a
region consisting of the product of one of the bands urfox [0, 1/2] — N(t2), and
then the arcg goes once througliN(t;). But this implies again that the ake; has
winding number 0 inF x [0, 1/2] — N(t2).

Finally note that cases 8 and 9 are not possible simply bectngse cannot be an
arc g with the given endpoints, and with interior disjoint froBy, D, and Ds.

The only possibility left is that the disle is disjoint from the disksD;'s. As
we say before, the+” side and the =" side of S are cut off by the diskD;’s into
annuli, once punctured annuli and disks. Now, it is not diffito see that there are no
compression disks for these subsurfaces. So the suBamast be incompressible.[]

To get knots with an ICON surface havimgboundary components, odd, proceed
in a similar manner. Take the trivial knd{ and a diskF in its exterior as before.
Take nown copies of F, denoted byF,, ... F,. Connect the disks witm — 1 tubes
Ty ---Th1, SO that the tub€l; connects the disk$; and Fi.;. We get a surfaces.
Consider now two arcs ifE(K) disjoint from G, such that inE(K) — int N(G) the
arcs behave exactly as before, and so thapasses through the odd numbered tubes
and wrap around the even numbered tubes, @ngasses through the even numbered
tubes and wraps around the odd numbered tubes, as shownaiatiy in Fig. 6 for
the casen = 5. Suppose that the winding number of these arcs in the gmneling
solid tori is # 0. More precisely, letN; be the solid torus determined by the region
between the disk$5 and F,1 when we remove a solid tube given By. The arc
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a intersects the solid torudli, i odd, in one or two arcs. Join the endpointsoqf
lying in F with an arc lying in the intersection between the diskand the solid tube
Ti_1, and ifi +1 < n—2, join the endpoints of; lying in F 1, with an arc lying
in the intersection between the disk,; and the solid tub€l; ;. By doing this we
get a knotk;; now assume that the winding number lgfin N; is # 0. Do a similar
assumption for the are,. Take now bands following the areg anda, to get a knot
K1. By taking the union of the surfac& and n copies of each of the bands we get
an ICON surfaceS for K; with n boundary components. Note that ger)s€ n. The
proof that S is incompressible is just the same as the proof of Theorem 2.1

For the following construction assume further that the wigdnumber of the arcs
a1 andasy in the solid toriN; formed inN(F) is # 0,£1. Lets be thei-th component
of 39S, that is, the component coming froff. Note that if eachs has the orientation
induced by that ofS, thens ands ., are oppositely oriented, far=1,...,n—1. Let
A be the annulus i®N(K;) cobounded bys ands.; whose interior is disjoint from
dS, fori =1,...,n—1. Let § be the surface obtained by taking the uni®w A;, and
then pushing its interior into the interior &(K1). Note thatS is an orientable surface
of genusn + 1 and hasn — 2 boundary components. The surfaSeis compressible,
to see this just note that two tubes were formed in a neigldmaltof the bands. By
compressing these tubes, i.e., by compress§hgwice, we get a surfac§ of genus
n—1 and withn —2 boundary components. Equivalently, is obtained by joining the
disks F; and Fi;; with an annulus before the bands are attached, and thennonlg
copies of the bands are attachedGo Note also thatS and § can be made disjoint.
Starting with S; and then repeating the operation with the annulgs and then with
As, etc., we get a collection of ICON surfaces as stated in the theorem.

Theorem 2.2. Given any odd integer,nthere are knots K whose exteriors con-
tain (n + 1)/2 disjoint ICON surfacesof genus nn—1,n—2,...,n—(n—1)/2 and
with n,n—2,n—4,..., 1 boundary components respectively.

Proof. The knotsK; just constructed satisfy the required properties. Noteé tha
there is a twice punctured tords embedded in the exterior df;, so that one bound-
ary component ofl lies in 9dE(K;) and is parallel tos;, and the other boundary com-
ponent lies inS, it is just a core of the annulugy. In fact, T is the union of an
annulus cobounded by a core of the annulysand a curve ordN(K), with a copy
of each of the bands. To see that the surf&seis incompressible do an innermost
disk-outermost arc argument as in Theorem 2.1, but alsayusie torusT. We have
assumed that the winding number of the argsw;, in the solid toriN; is # 0,41, just
to avoid outermost arcs of intersection in a compressiok disich are of Type 5 as
in Fig. 5. Those arcs can be ruled out when proving that thiasaiS is incompress-
ible, but cannot be ruled out when proving the incomprebsitnf S;. The remaining
surfaces are shown to be incompressible by a similar argumen []
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Fig. 7.

By complicating the construction, it is not difficult to cdngct examples of ICON
surfaces of genugin and n boundary components] being any positive integer. To
do that, just start with a knoK having an incompressible Seifert surfatleof genus
g — 1, and use this surface instead of the diski.e., taken copies ofH, join them
by n—1 tubes and then add two bands to the surface which go thrdwglubes.

Another way of complicating the construction is to start afobe with n copies
of a disk F, but now join the disks with many tubes, say consider a ctiiecof arcs
between the disk&; and F; 1, possibly knotted and tangled, and then add bands which
go through the tubes and regions between the disks in a coetgdi manner. This will
give ICON surfaces of genus with n boundary components, where > n.

In all the surfaces just constructed,sif, s,,...,S, denote the boundary components
of an ICON surface, thes ands i are oppositely oriented, for all=1,...,n—1.
This is just a consequence of the construction. It is possibl construct examples
where this does not happen, for example in Fig. 7 such a suifashown schemat-
ically; the surface is formed by 5 disks and 4 tubes arranggmopriately, and then
to ensure incompressibility we have to add two bands whichthgough each of the
tubes and regions.

As we said before, given positive integarsand m, with n odd andn < m, there
is a knot whose exterior contains an ICON surface of genusith n boundary com-
ponents. On the other hand, it is no clear whether theresegistot knots with ICON
surfaces of genum with n boundary components, but wheme< n.

Now we construct a genus 2 ICON surface with 3 boundary compisn LetK
be the trivial knot, and leF be a disk properly embedded in the exteriorkof E(K),
whose boundary is a longitude &(K). Let N(F) be a regular neighborhood d¥
in E(K), N(F) @ F x |I. Take 3 parallel copies oF in N(F), say F; = F x {1},
F, = F x{1/2} and F3 = F x {0}. Take 4 disjoint tubed;, T,, Tz and T4, so thatT;
and T, join F; with F,, and T3 and T4 join F, with F3, exactly as shown in Fig. 8,
getting a surfaces. Now take a knotL in the complement ofG, just as shown in
Fig. 8. Note thatL is the trivial knot.
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Fig. 8.
Lemma 2.3. The surface G is incompressible in the exterior ofuKL.

Proof. LetD; be a disk that compress the tubein S°, so thatL intersectsD;
in one point, fori = 1, 2, 3, 4. Suppose thd is a compression disk fo& disjoint
from L. The intersection betweeB and the disksD; consist of a collection of simple
closed curves and arcs. Simple closed curves are removeduas untersection arcs
can also be removed, for these are trivial in the puncturellsdd;. So, if G is com-
pressible, there must be a compression disk disjoint fraendibksD;. It is easy to see
that such a disk cannot be outsilF), so it has to be, say, in the region betwden
and F,. So, dE lies in the surfacex obtained fromF; and F, after adding the tubes
T, and T,, which is a twice punctured torus intersecting the khoin two points. Cap
off the boundary components &f with two disks embedded i8°, lying in the outside
of N(F), getting a torusX’. Let T be an arc contained iN(F) N dN(K) connecting
the two attached disks. Note that is knotted as a trefoil knot, and that the digk
lies in the side of:’ not bounding a solid torus. S®E must in fact bound a dislg’
contained inX’. One possibility is thaE’ contains the two points of intersection bf
with , and E U E’ cobound a 3-ball containing the arc bf lying betweenF; and
F,. Note that such an arc is an unknotting tunnel for the trefaibt, so it cannot lie
inside a 3-ball. The other possibility is th& contains the two points of intersection
of the arct with X’; but this is not possible for the arcis also an unknotting tunnel
for the trefoil knot. Then the dislE must be parallel to a disk i, and so it is not
a compression disk. A similar argument shows that there isampression disk in the
region betweerF, and Fs. L]

Theorem 2.4. Let K, be the knot obtained after performintyn-Dehn surgery
on L, n # 0, and let G, be the surface properly embbeded ir{kg) obtained from
G after the surgery. Then (Gis an ICON surface in E}), of genus2 and having3
boundary components
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Proof. The proof is essentially the same as that of Theorem [8]oLet D; be
a disk that compress the tulfig, so thatL intersectsD; in one point, fori =1, 2, 3, 4,
and letA; = D; —intN(L). Suppose thaE is a compression disk fa&, after perform-
ing 1/n-Dehn surgery orL. Assume that the core of the Dehn surgery torus intersects
E transversely, and leP = E —int N(L); this is a planar surface having one boundary
component inG,, which we call the outer boundary component, and, gayound-
ary components irdfN(L), called the inner boundary components, each of slofre 1
in dN(L). Look at the intersection betwed? and the annuliA’s. If there is a simple
closed curve of intersection which is trivial in sormdg, or there is a trivial arc of inter-
section in somé&A;, then the intersection betwedh and theA;’s is not minimal, or the
intersection betweelkt and the core of the surgered torus is not minimal. So assume
that the intersection betwedn and theA;’s consist of spanning arcs in the annidli’s.
Look now at the intersection pattern id. It must consist of arcs, all going from the
inner boundary components to the outer boundary. Note et aner boundary com-
ponent of P intersects eacl; in n points, so it intersects the collection of thg’s in
4n points. So there arerdarcs of intersection incident to each inner boundary com-
ponent, which connect this boundary component to the outendlary component of
P. The arcs incident to an inner boundary component di&dmto 4n regions, which
may contain some other inner boundary component$ ofBy taking one outermost
of such regions, taken over all regions determined by thersettions arcs betwedn
and theD;’s, we see that there must be a di€kC P, so thatdoQ = §; U 8, U 3 U 84,
where §; is in one of the inner boundary components Bf §, is in the intersection
betweenP and A;, for somei, §3 is in the outer boundary component &f and &4
is in the intersection betweeR and Aj1;. It is not difficult to see that such a disk
cannot exist. So, is incompressible. O

QUESTION 2.5. Is there a knoK having an ICON surface of genus 1 with more
than one boundary component? Is there a lower bound for thasgef an ICON sur-
face havingn boundary components?

If a knot K has an ICON surface of genug then by a result of Gabai [1],
genusK) < n. In particular, for the knots constructed in Theorem 2.1d #meir gen-
eralization ton boundary components, it is not difficult to see that each esé¢hknots
bounds a genus( 1)/2 Seifert surface, as expressed in Theorem 2.2. Also, nate th
the knotsK, of Theorem 2.4 are genus one knots; to see that take a copye afisk
F1 and add one tube following one arc of the krot

3. The surfaces satisfy theZ-conjecture

Here we show that the surfaces constructed in the previotgosesatisfy the
Z-conjecture. The proof follows the same ideas as in [4], isbing in pushing an
arc contained i N(K) with endpoints indS into the surfaceS.
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Fig. 9.

Theorem 3.1. Let K and S be any of the knots and ICON surfaces constructed
in Theorems 2.1, 2.2, 2.4Then S satisfy th&-conjecture.

Proof. Suppose we have a kniét and an ICON surfac& as constructed in The-
orems 2.1 and 2.2. Lef, y», ..., ¥n be the boundary components &f It follows
from the construction of the surfaces thatandj;,, are oppositely oriented, far=
1,2,...,n—-1, and thaty; and y, have the same orientation. L&; be the annulus
in aN(K) lying betweeny, andyi;1, 1 =1,2,...,n—=1,n, modn; let & be a span-
ning arc of A;, i =1, 2,...,n, oriented fromy; to 1. Let [a] be the class of; in
m1(E(K)/S). Note that in the simplest construction, that of Figs. 3thé&re is a diskD
embedded in the region between the disksand F,, such thatoD = a; U 8, where
B is an arc onS, and intD intersectsN(K) in two meridian disks ands in n arcs
joining these meridian disks, as shown in the left side of. Big Note the the points
of intersection ofK with intD are oppositely oriented. The asg can be homotoped,
keeping its endpoints fixed, to an arc of the fopma;t-n)-ar-n}-n;t- B, wheren; is
an arc inD that goes from one endpoint ai to an endpoint of,, andn;, n] are the
arcs of intersection betweel and S that have endpoints ip,. From this follows that
in 71 (E(K)/9), [a] = [mllan] = mllan]lnillnad 8], so [ad] = [mal[an] " [an]lni ™",
for [n7], [n7] and [B] are trivial in w1(E(K)/S). This implies that ;] = 1.

In a more general case, where there are many tubes which méyndited and
entangled with the bands, by sliding a parallel copy of the aralong S and then
along one of the tubes that conndet and F,, we see that there is a collection of
disks D1, Dy, ..., Dy, embedded in the region betwedn and F, so thatoD; =
a; U B1 U 81 U By, where gy and g lie in S and §; is disjoint from S and N(K),
9Dy = 81U B2 U, U B5, wherep, and g, lie in S andé; is disjoint from S and N(K),
oD =81 U B U UB, wherepg; lies in Sandé; is disjoint from S and N(K), until
oDy = &1 U B, whereg; lies in S. Also, the interior of eactD; intersectsN(K)
in pairs of meridian disks oppositely oriented, and intetses in collection of arcs
joining those pairs of disks and possibly in simple closedves. Then by homotop-
ing a1, we have that inty(E(K)/S), [a1] = [n1][@n] *[an]ln1] " [n2llan] *[@n]ln2] - -
[nd[@n] " [an][nk] el Callea] ™ - - - [ed][aille] " [Bal[81][ B1], where then;’s are arcs in
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D joining one endpoint ofa; with one of the endpoints o&,, the ¢'s are simple
closed curves lying inD N'S, and thee;’'s are arcs inD joining one endpoint ofy
with the ¢i’s. See Fig. 9. From this follows thag] = [81] in 7 (E(K)/S). Similarly,
[01] = [82] = -~ [6r-a] = [B] =1, SO pu] =1 in m(E(K)/S).

Let S be the surface obtained by takii®p A; and then pushing it into the interior
E(K). As in the proof of Theorem 14 of [2], the fact thay] = 1 in 71(E(K)/S) im-
plies thatz,(E(K)/S) = 71 (E(K)/S). Repeating the argument but now with the arc
ag, if follows that 71(E(K)/S) = mi(E(K)/S. 3), where S 3 is the surface obtained
from S by attaching the annulug\; and pushing it into the interior oE(K). So
by induction, after attaching the odd numbered an®jli we get thatr,(E(K)/S) =
m1(E(K)/S1,3..n-2), WhereS; 5 2 is a Seifert surface foK. Now, it follows from
Proposition 11 of [2] thatr1(E(K)/S) = mi(E(K)/S13,..n-1) = Z.

For the knots and surfaces constructed in Theorem 2.4, dasiarigument show
that the surfaces satisfy tH&-conjecture. ]

In this proof we use the fact that consecutive curve$ $fare oppositely oriented,
but as mentioned after the proof of Theorem 2.2, this is netys the case. In ex-
plicit cases, as this shown in Fig. 7, the same argument shiosisthe surface con-
structed satisfies th& conjecture, but it is not clear that the same proof works fbr a
the possible examples.
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