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Abstract

It is well known that a group of automorphisn@of an unbordered Klein surface
X of topological genusy > 2 in the orientable case amgl > 3 otherwise has at
most 84 — ¢) elements, where = 1 or 2 respectively. In the middle of the fifties,
Oikawa used the cardinality of a G-invariant subset to introduce the bouf@| <
12(g — 1) + 6k in the orientable case. Much later, T. Arakawa has genethlilzis
result, involvings = 2 or 3 such subsets and showing in addition that the bound
for s = 3 is sharp for infinitely many configurations. Here we imprdfie bound
of Arakawa fors = 2, showing in particular that the last is never attained. dthb
orientable and non-orientable case, we also find boundsffitrary s and show their
sharpness for infinitely many topological configurationssindg another well known
theorem of Oikawa and the canonical Riemann double covergetesimilar results
for bordered Klein surfaces.

1. Introduction

Let X be an unbordered Klein surface of topological gegus 2 or g > 3, ac-
cording to if X is orientable or not. It is well known that a group of autonfogms G
of X has at most 84(— ¢) elements [13, 19], where correspondingly= 1 or 2. Here,
following Singerman [19], a non-orientable unborderediKlsurface will be called a
non-orientable Riemann surface. In [16] Oikawa took intecamt the cardinalityk
of a G-invariant subset and found a bouh@| < 12(g — 1) + 6k in the orientable
case. Fifty years later, at the beginning of this centuryAfakawa [2] obtained simi-
lar bounds in the orientable case for cardinalitiessef 2 ands = 3 G-invariant sub-
sets. Here we improve the bound of Arakawa ®e 2, showing in particular that
the last is never attained. Our bound is particularly uséfuthe proofs of some re-
sults concerning the orders of the groups of automorphidnashyperelliptic and cyclic
g-trigonal non-orientable unbordered Klein surfaces. V¢® dind bounds for arbitrarg
for both orientable and non-orientable Riemann surfadeswisg in addition that they
are sharp for infinitely many topological configurations.ingsanother result from the
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mentioned Oikawa'’s paper [16] and the canonical Riemantbléocover, we get similar
new results for bordered Klein surfaces. Moreover, we obitaimediate proofs of the
number of well known results of other authors.

2. Some preliminaries

2.1. Fuchsian and non-euclidean crystallographic groups. We shall use com-
binatorial approach, based on Riemann uniformization rdvep Fuchsian groups and
non-euclidean crystallographic groups (NEC groups in t$hamich was described ex-
tensively in [1] and [4].

An NEC groupis a discrete and cocompact subgroup of the gr@ugf isometries
of the hyperbolic planeH, including those which reverse orientation, and if such a
subgroup contains only orientation preserving isometriben it is called a Fuchsian
group. Macbeath and Wilkie [14, 20] associated to every NEQuUgrA a signature,
which determines its algebraic structure. It has the form

@ ;£ [my, ..., m]; {Cq, ..., C}).

The numbersn; > 2 are called theroper periods the bracket; = (ni1, ..., nis) are

the period cyclesthe numbersy; > 2 are thelink periodsandg > 0 is said to be the

orbit genusof A. The orbit spaceéH /A is a surface of topological genus having k

boundary components, and it is orientable or not accordinthé¢ sign beingt+ or —.
A Fuchsian group can be regarded as an NEC with the signature

(9 +:[my, ..., m]: {=}),

which shortly will be denoted byg my, ..., m;); a Fuchsian group without periods
will be denoted by ¢; —) and called aFuchsian surface groypan NEC group which
is not a Fuchsian group will be refered to apraper NEC group The group with the
signature (1) has a presentation given by generators:

@ x,i=1,...,r, (hyperbolic rotations)
(b) cj,i=1,...,k j=0,...,s, (hyperbolic reflections)
(c) e,i=1,...,k, (connecting generators)

(d) &, b, i =1,...,q if the sign is+, (hyperbolic translations);, i =1,..., 9 if
the sign is—, (hyperbolic glide reflections)

and relations:

1) x"=1i=1,...,r,

(2 cs =& lcos, i =1,...,k

(3) cﬁ-_lzcﬁ = (Cj_C))" =1,i=1,...,k j=1,...,5,

(4) X1---x e -eabarthrt:--aghgag byt =1, if the signis+, x---x €+ - -&d? - -d3 =
1 if the sign is—.

Any set of generators of an NEC group satisfying the abovatiogls will be called
a canonical set of generatorand reflectionsc;;_1, ¢;; will be said to beconsecutive
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For the convenience, we shall call the produgtsc; the canonical decomposable
elliptic elements ofA. Connecting generators are usually hyperbolic transiatiout if
the orbit genus is zero, the signature has only one propéodband one period cycle,
then they are elliptic i.e. they are hyperbolic rotations.

Every NEC group has a fundamental region associated, whgeeltolic areac(A),
for an NEC groupA with signature (1), is given by

orfwg iz (1-2) e 133 (1- 1))

wherea = 2 if the sign is+ ande = 1 otherwise. It is known that an abstract group
with the presentation given by the generators (a)—(d) aedrétations (1)—(4) can be
realized as an NEC group with the signature (1) if and onlyh& above expression is
positive. Finally, ifI" is a subgroup of finite index in an NEC group then it is an
NEC group itself and there is a Hurwitz—Riemann formula \Wwhsays that

_ M0

[A:T] = )

2.2. Riemann and Klein surfaces and their group of automorpisms. Now,
by the Riemann uniformization theorem, a compact Riemanface of genusy > 2
can be represented as the orbit spagd”, for some Fuchsian surface grolipwith the
signature ¢§; —). A conformal automorphism or shortly an automorphism oérRann
surface is an auto-homeomorphism whose local forms areytamalr they composed
with the complex conjugation are analytic. Clearly an awigshism preserve orienta-
tion if and only if no maps of the later type as local forms appeFurthermore, a
group of conformal automorphisn@ of a surface given in such a way, can be repre-
sented as the factor group/T", where A is a proper NEC or a Fuchsian group accord-
ing to if G contains orientation reversing automorphisms or not. Nowuabordered
Klein surface is a compact surface, possibly non-oriestabith a dianalytic structure
which, roughly speaking, differs from the classical analdtructure by the fact that
the complex reflectiorz — —Z is allowed for transition maps [1]. Combinatorial study
of groups of automorphisms of unbordered non-orientabkirk$urfaces is possible es-
sentially due to the same facts. This time, however, a gmumiformizing X is an
NEC surface group with the signaturg; &; [—]; {—}) and so, in particularA neces-
sarily is a proper NEC group.

Throughout the paper, an automorphism of an a Riemann suvfdt mean an an
automorphism preserving orientation, unless otherwiatedt Aut(X) will denote the
group of all, including orientation reversing, automogyhs and AutX) its subgroup
of index < 2 containing orientation preserving ones.



254 E. BUJALANCE AND G. GROMADZKI

2.3. Some abstract group theory. Finally we will need the following simple
result of abstract group theory, being a kind of mathemhtickklore, known as a
Poincare lemma.

Lemma 2.1. Given an abstract group G and a subgroup K of finite index there
exist a subgroup H of K of a finite index which is normal in G.

Proof. Let G/K be the set of left cosets and letG(K) be the group of its
permutations. Then the mapping G — S(G/K) given by ¢(g)(xK) = (gxX)K is a
homomorphism. Furthermore fay € kergp, K = ¢(g)(K) = gK which means that
g€ K. SoH = kerg is a subgroup we are looking for. ]

3. Classical Riemann surfaces

Let X be a Riemann surface with a group of automorphistns A G-invariant
subsetB of X is said to beirreducible if it has no G-invariant proper subsets. Obvi-
ously, irreducibleG-invariant subset has no more th#a| elements and those subsets
whose cardinalities are strictly smaller th#@|, are said to beproper. Clearly, the
mentioned Oikawa and Arakawa bounds are not attained if dndeosubsets is not
proper. This is one of the reasons which allow us to restrucselves to studying for-
mulae for proper irreducibl&-invariant subsets only. Another such reason is provided
by the lemma below, from which it follows that the whole saedaexcept a finite num-
ber of points, is covered by the improper irreducideinvariant subsets which actually
means that, up to certain extent, the fact that the surfasanhroperG-invariant sub-
sets actually does not impose restrictions on the ordersogrioup of automorphisms.

3.1. On proper irreducible G-invariant subsets. The next lemma follows from
the basic geometrical properties of the canonical praack — X /G, which is rami-
fied covering, but for the sake of convenience, the consigterith algebraic character
of the paper and completeness of our exposition we give annaliive algebraic proof.

Lemma 3.1. Let X = H/T, let G = A/I" C Aut(X). Then each proper irredu-
cible G-invariant subset of X is equal for(sh;) | § € A} and has|G|/m; elements
where h runs over the points fixed by the canonical elliptic genesitg of A.

Proof. Letf: A — G andr: H — X be the canonical projections. Then, given
x e X andg € G,

(2) gx=mn(h) for g=06() and x = mx(h).

Now let B denote a proper irreducibl&-invariant subset and let = (h) € B. First
we shall show thair (h;) € B for somei. SinceB is irreducible, it equals the orb{b x
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and since it is properx is a fixed point of some = 6(5). But thenysh = h for some
y € I'. Hencey$ is elliptic and therefore is conjugate to a power of some &Gptat
generator, says = 8§x/ 5%, and soh = §h;. But thenz(h;) = 6(5)"x € B. Now
assume thatr(h;) € B. Thenn(h;) = 6(8)x(h;), which givesysh; = h;. It follows
that x; and @8)x (y8)~* have common fixed point, which in turn means that they are
conjugate, a contradiction which completes the first parthef proof.

For the second part, observe we already know Bat {7 (sh;) | § € A} for some
i. Now m(sh) = m(6'h;) if and only if §1y8’ = xi'“ for somei andy € I' and so
8718 e I'(x) = (I, ;). HenceB has

. o [A:T7] _H
AT = e = m

elements. O

3.2. On Oikawa and Arakawa results. As we mentioned in the introduction,
Oikawa [16] and Arakawa [2] found the bounds for the order ajraup G of auto-
morphisms of a compact Riemann surfaXetaking into account the genwus> 2 and
the ordersk,l, m of s < 3, G-invariant subsets. It is easy to see that the Oikawa bound
12(g — 1) + 6k is attained, for a Riemann surfacé admitting aG-invariant subset of
cardinality k, if and only if the group of automorphisms of is generated by two
elements of order 2 and 3. The Arakawa bound 2(1) + k + 1 + m is attained just
for the Riemann surfaceX for which the canonical projectiolX — X/G is ramified
over exactly three points. Here we show that the Arakawa (@ — 1) + k + 4l
is never attained and we shall find more precise bound, wisickttained for infinitely
many genera.

Theorem 3.2. Let X be a Riemann surface of genus @ with two proper irre-
ducible G-invariant subsets of cardinalities k and |. Thether |G| <2(g—1)+k+1
or G has order precisely

® @D +k+1)

for some m> 2. Furthermore given m> 2 there are infinitely many values of g for
which there exist Riemann surfaces of genusagmitting two proper irreducible in-
variant subsets of cardinalities k and &nd the group g of automorphisms of order
(3) and in such case necessarily the orbit spacgGXis the sphere with exactly three
cone points of order$G|/k, |G|/l and m.

Proof. LetX = H/T and letG = A/T". Observe that by Lemma 3.1A has at
least two periodsn;, m, and we havek = |G|/m; and| = |G|/m,. If the orbit genus
of A is nonzero, themu(A) > 27(2 —1/m; — 1/my). Thus, by the Hurwitz—Riemann
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formula 2g—1)/|G| = 2—1/m;—1/m, and in turn|G| < g—1+k/2+1/2, which is
strictly smaller than 2{— 1)+ k +I. Therefore we may assume that the orbit genus of
A equals 0. But now, if its signature has more than four peritiilsn 1(A) > 27(1—
1/m; — 1/my) for somem;, m,. Hence again from the Hurwitz—Riemann formula,
20—1)/|G| =1—1/my — 1/my,, which in turn gives|G| < 2(g— 1)+ k + 1. Thus

we can assume that has at exactly three perioas;, my, mz = m. But then,u(A) =
27(1—1/my—1/my; —1/m3) and so by the Hurwitz—Riemann formulag2¢ 1)/|G| =
((m—=1)/m) — 1/m; — 1/m,, which in turn implies thatG has the order (3).

Now, given my, mp, and mg = m > 2 such that Im; + 1/m, + 1/mz < 1, (G
my, My, M3) is a signature of a Fuchsian group. Then the Fenchel “conjecture”
[6, 11] guarantees that there exists a Fuchsian surfacerayb@ of A of finite in-
dex and the Poincare lemma allows us to assumelIthigt normal in A which means
that the group,G = A/T" is generated by two elements and b of ordersm; and
m,, whose product has ordens. In this way we obtain a Riemann surfage= H/T
of some genug, admitting two proper irreduciblé&-invariant subsets of cardinalities
k=|G|/m; andl = |G|/m,, and a group of automorphisms of order (3). Finally, given
a prime p let, in the above constructior;, be a p-Frattini subgroup ofl’, i.e. the
subgroup generated by all commutators andpafiowers. Thenl', is a characteristic
subgroup ofl" and hence is normal il and |T'|/T', is elementary abelian group of
order p?% and henceH /T, has genusg—1)p® + 1. So takingl'y for all primes p or
iterating this construction for givemp by taking an infinite series of descending sub-
groupsl’y =T, I'; = (I'h—1)P we obtain surfaces and subsets in question for infinitely
many genera. O

Corollary 3.3. Let X be a Riemann surface of genus@ with two proper ir-
reducible G-invariant subsets of cardinalities k and |. MH&| < 4(g—1) + 2k + 2|
and this bound is attained for infinitely many values of g.

Corollary 3.4. The bound of Arakaw&(g—1)+k+4! for the order of the group
of automorphisms of a Riemann surface of genus @ having two invariant subsets
of cardinalities k and | is never attained.

Proof. Indeed, by Theorem 3.5G| <2(g—1)+k+1 < 8(g—1)+ k+ 4l since
8(g— 1)+ k + 4l is not of the form (3). O

For an automorphism of a Riemann surface having 2 fixed poimshave the
following result of Szemberg [17].

Corollary 3.5. The order of an automorphisg of a compact Riemann surface
X of genus g> 2, having two fixed poinfsis at most4g.
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3.3. The bound fors > 4 and its attainment. As we mentioned in the intro-
duction, Oikawa and Arakawa have found the bounds for therood a groupG of
automorphisms of a compact Riemann surfdcénvolving the genus and the cardinal-
ities of s < 3 G-invariant subsets. Here we shall find such bounds for arlyits.

Theorem 3.6. Let X be a Riemann surface of genus @ with a group of auto-
morphisms G and with G-invariant irreducible subsets .B., B, of cardinalities @ <
.-+ < Oy, and assume that 5 4 of them are proper. Then each divides|G| and

Git---+0s

2
Gl<—=(g-1
IGl= c—50@-D+ —

Converselyfor each s these bounds are attained for infinitely many \whifeg.

Proof. LetX =H/I', G = A/I" and letr: X — X/G be the canonical projec-
tion. By Lemma 3.1,A has signature)(; my, ..., m;), whereqg = |G|/m; fori <s
and so, in particulan, > s. Thus

2(9_1)>s_2_( 1 _|_..._|_i)

|G| - my Mg

by the Hurwitz—Riemann formula, which in turn gives our bdun

Now, givens > 4 andqq, ..., (s being divisors of|G|, where somej; is strictly
smaller thanG|/2 if s=4, letm; = |G|/q; fori =1,...,s. Consider a Fuchsian group
A with signature (Omy, ..., ms). Then, as before, the Fenchel “conjecture” guarantees
that there exists a Fuchsian surface subgrbupf A of finite index and the Poincare
lemma allows us to assume thBtis normal in A. Therefore this configuration pro-
vides a Riemann surfac®/I" of some genusg), havings proper irreducibleG-invariant
subsets of cardinalities, saw,...,0s and a groupgs = A/I" of automorphisms of order

O1+---+0Qs

2
—3_2(9—1)+ —

Clearly our surface has also— s improper G-invariant subsets. Finally, the Frattini
construction for primesp allows us to produce surfaces and subsets as above for in-
finitely many genera. Ll

As an immediate Corollary we have the following bound of Rarland Kra [9].

Corollary 3.7. A single automorphism of a compact Riemann surface of genus
g > 2, having g> 3 fixed points has order not exceedin?/(q — 2))g + 1.
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3.4. Automorphisms of bordered orientable Klein surfaces. There is another
important result in the mentioned already paper of Oikaw@].[INamely, a bordered
orientable Klein surfaceX with a group of automorphism& and k boundary com-
ponents, can be embedded in an unbordered Riemann suxfase that X' \ X is
composed ok disjoint open discs and the action Gf can be extended tX’. Further-
more, G preserves the centers of the discs attacheX’inLater on, it was remarked
by Greenleaf and May [10], that the same holds true for noantable Riemann sur-
faces. On the other hand, there is another tool which allawselate bordered and
unbordered Klein surfaces—the Riemann double cover. Theseools will allow us
to derive immediately some known results on the groups adraatphism of bordered
Klein surfaces and to prove some new results.

We start with the following famous bound for bordered orédaé Klein surfaces
of topological genusy > 2, introduced by May in [15].

Corollary 3.8. Let X be a bordered orientable Klein surface of topologicahgs
g > 2 and having k boundary components. Thim*(X) < 12(p—1), where p stands
for the algebraic genus of X.

Proof. Herep = 29 + k — 1 and, on the other hand; can be considered as
a group of automorphisms of a compact Riemann surface of éimeigg with an in-
variant subset of cardinalitk. From the Oikawa result, we know that the group of
orientation preserving automorphisms has at mosg £2() + 6k elements. So for
the groupG of all automorphisms, including the orientation reversimes, we have
|G| <2(120—1) + 6k) = 12(p — 1). O

Next we obtain results of Pozo from [18]

Corollary 3.9. Let G be a group of automorphisms of an orientable bordered
Klein surface X of topological genus X 2, including orienation reversing ongsnd
having 2 or 3 invariant subsets of the set of boundary components. ,Tiespectively
|G| <4(p—1) or |G| < 2(p—1), where p stands for the algebraic genus of X.

Proof. LetX’ be a Riemann surface obtainned by mentioned theorem of @ikaw
and let Letky,...,ks, wheres =2 or s = 3, be the cardinalities of invariant subsets in
question. Then for their surk, p > 2g+k—1. So by our Corollary 3.3 fos = 2 and
by the bound of Arakawa fos = 3 mentioned at the begining of Subsection 3.2 the
group of orientation preserving automorphisms>df has no more than g(— 1) + 2k
and 2@ — 1) + k respectively elements. S¢G| <8(g—1)+4k <4(p—-1) fors=2
and |G| <4(g—1)+ 2k < 2(p—1) for s = 3, which completes the proof. ]

Similarly, for more than three invariant subsets of the gdbaundary components
we obtain at once the following new generalization of Cagll3.9.
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Corollary 3.10. Let G be a group of automorphismmcluding the orientation
reversing onesof an orientable bordered Klein surface X of topological ggrg> 2
and algebraic genus ,phaving s> 4 invariant subsets of the set of boundary compo-
nents. ThenG| < 2(p — 1)/(s — 2).

Proof. The groupG can be considered as a group of automorphisms of a com-
pact Riemann surfacX’ of genusg having s invariant subsets, say of cardinalities
Ki, ..., ks and letk = k; +--- + ks. Then on the one hand, for the subgro@p of
G consisting of orientation preserving automorphismsXéf |G*| < 2(g—1)/(s—2)+
k/(s—2), by Theorem 3.6, while on the other hand for the algebraitugp of X we
have p > 2g + k— 1 and hence the result. []

We again back to results of Pozo from [18].

Corollary 3.11. Let G be a group of automorphismmcluding the orientation
reversing onesof a bordered orientable Klein surface X of algebraic genus |2
having an invariant subset of interior points of cardingld. Then|G| <4(p—1)+4q.

Proof. The canonical Riemann double covéris a Riemann surface of genys
having the two subsets of cardinalitigs Let G be the group of automorphisms &.
Then, for the subgrougs of orientation preserving automorphisms Xf these two
subsets are invariant. So, by Corollary 3G;"| < 4(p— 1) + 4q and, as|G| = 2G|,
the result follows. (]

The next result is new and in particular it strengthens tisalteof Pozo fors = 2

Corollary 3.12. Let G be a group of automorphismmcluding the orientation
reversing onesof a bordered orientable Klein surface X of algebraic genus 2
having s invariant subsets of interior points of cardiniakt q, . .., gs. Then

1 1
< — J—
|G| S 1(p 1)+ S 1(q1+ + 0s).

Corollary 3.13. Let G be a group of automorphismecluding orientation re-
versing onesof an orientable bordered orientable Klein surface X of tiggécal genus
g > 2 having s invariant subsets of the set of boundary componetardinalities
P1, - .., Ps and t invariant subsets of interior points of cardinalitigs, . . ., g;, where
t+s>4. Then

IG| =

@Dt — 2 (prtt Pt ute )
s+t—29 s+t—2p1 Ps + Q1 )
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Proof. By Oikawa theorem, the subgroup™ of G acts as a group of auto-
morphisms of a closed Riemann surface of geguwith s + t invariant subsets of
cardinalitiespy, ..., Ps, 01, - - - » s and hence the result follows by Theorem 3.6l

4. Non-orientable Riemann surfaces

Each classical Riemann surface can be viewed as an orientablordered Klein
surface and, following Singerman [19], we shall refer to a-odentable unbordered
Klein surface as to aon-orientable Riemann surfacdt is well known [19], that a
non-orientable Riemann surface of topological gegus 3 (which is the number of
cross caps attached to the sphere), has at mosgt-82 elements and this bound is
both attained and not attained for infinitely many valuegofThe groups for which it
is attained, are known in the literature Blsgroups.

4.1. On proper irreducible G-invariant subsets. Let X = H/I’ be a non-
orientable Riemann surface, |& = A/I" be its group of automorphisms and let
7:H — X andf: A — G be the canonical projections. Given a canonical system
of generators forA, let hy, ..., h; be the set of fixed points of all canonical elliptic
generators and canonical decomposable elliptic elements ., x; and letlq, ..., Iq
be the axes of canonical reflections, ..., ¢, of A. With these notations we have
the following

Lemma 4.1. Each proper irreducible G-invariant subset of X equals eith
{r(rhi) | A € A}, and has|G|/2m; or |G|/m; elements depending on if ¥ decom-
posable or nator {w(rkj) | » € A} for some ke l; \ {hy, ..., h} and has|G|/2
elements.

Proof. The proof is similar to that of Lemma 3.1. Also herevegix € X and
geG

gx=mx(rh) if g=6() and x =mr(h).

Now let B be a proper irreduciblé&-invariant subset and let = =#(h) € B. Since
B is irreducible, it equals the orbi&Ex and since it is properx is a fixed point for
someg = 6(1). But thenyrh = h for somey € I'. So yA is either elliptic or a
reflection and therefore is conjugate to a power of some deabelliptic generator
or canonical decomposable elliptic element, say = A, xi”ixrl, or to someg;, say
YA = /\ici){l. Henceh = Ajh; or h = Ak for somek; €I; \ {hy, ..., h}. In the first
case,w(hj) = 6(x)"*x € B and in the second one(k;) = #(1;)"*x € B.

Finally, as beforezr(Ahi) = = (3'h;) if and only if A™1y2" = x™ for some integer
a; andy € I' and sor~1A" belongs toI'(x;) if x; is not a product of two reflections
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or to I'(c, ¢') if x; =cc and henceB has respectively

g [ATT |G
W= T T m
or
: oo AT |G
e e o T am
elements.

Similarly, w(rki) = w(V'k) if and only if A1yA’ = ¢ for somey € T" and so if
and only if =11’ belongs toI'(c;). HenceB has

[A:T] |G|

[A:T{c)] = NS

elements. 0

DEFINITION 4.2. The two types ofs-invariant subsets from Lemma 4.1, corres-
ponding respectively to canonical elliptic generators eadonical decomposable elliptic
elements or canonical reflections, are called respectivethe first or the second type

4.2. The bounds and their attainments. Observe that if a surface has G-
invariant subset of the second type, then it has infinitehnynsuch subsets. So, first
we shall see that these play rather limited role in our stidie

Corollary 4.3. Let G be a group of automorphisms of a non-orientable Riemann
surface X of topological genus @ 3 not having invariant subsets of the first type.
Then|G| <g-—-2

Proof. If G= A/T", thenA has no elliptic elements. Thys(A) is a multiplicity
of 27 and therefordG| < g — 2. O

In the remainder of the subsection we shall deal with actalusving invariant sub-
sets of the first type. We start with the following theoremaaming one invariant subset.

Theorem 4.4. Let X be a non-orientable Riemann surface of topologicalugen
g > 3 with a group of automorphisms G and let B be a G-invariantdueible subset
of the first type of cardinality k. The|G| < 12(g — 2 + k) and this bound is attained
for infinitely many g.

Proof. LetX =H/T" and letG = A/T be a group of automorphisms &f. No-
tice that sinceA is a proper NEC group, either its orbit genus is non zero aedsipn
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is — or it has a period cycle. The s& in question comes from a proper periador
a link periodn of A, i.e. |B| = |G|/m or |B| =|G|/2n

In the first case, if there exists another proper perivdthenp(A) > 27 (1—-1/m—
1/m’) > 27(1/2—1/m) and so|G| < 2(g — 2 + k) by the Hurwitz—Riemann formula.
Now if there is a period cycle with a link periad, then u(A) > 27(1/4—1/m) which
by the Hurwitz—Riemann formula givg§&| < 4(g — 2+ k). Finally, if m is the unique
proper period and there are no link periods, the@\) > 27(1 — 1/m), which gives
IGl<g—-2+k

In the second case, if there are at least two proper peribds,it(A) > 27 (1/2—
1/2n) and so|G| < 2(g — 2+ k). So assume thah has just one proper perioah. If
m > 3, thenu(A) > 27(1/6 — 1/2n) and so|G| < 6(g — 2+ k). If m = 2 then either
there is another link period and(A) > 27 (1/4—1/2n), which gives|G| < 4(g—2+Kk)
or the orbit genus is nonzero, or else there is another pegold. But in the last two
casesi(A) > 2n(1— 1/2n) and so|G| < g — 2 + k. Therefore we may assume that
there are no proper periods k. If the orbit genus is nonzero or there are two period
cycles, thenu(A) > 27(1/2—1/2n) and so|G| < 2(g — 2 + k). Thus we can assume
that A has signature (Bt;[—]:{(n,Nn2,...,ng)}). If s> 4, thenu(A) > 27(1/4—1/2n)
and so|G| <4(g— 2+ k). So assume tha = 3. Thenu(A) > 27(1/12—1/2n) and
therefore|G| < 12(g — 2 + k).

Observe that fom > 7, u(A) = 27(1/12— 1/2n) if and only if A has signature
©O; +:[-]: {(2, 3,n)}). Now it is known [19] that forn = 7 (for n > 7 it seems to
be a folklore), there are normal subgroupsof A with signaturesd; —; [—]; {—}) for
infinitely many values ofg and so the bound 18(— 2 + k) is attained for infinitely
many configurations. O

REMARK 4.5. Observe that the bound §2¢ 2 + k) for the order of a group of
automorphisms of a non-orientable Riemann surface of ggnasattained for an NEC
group A with signature (9+; [—]; {(2, 3,n)}). Therefore necessarilyt has reflections
and so the corresponding surfaces have infinitely many uniete G-invariant subsets
of the second type.

Theorem 4.6. Let X be a non-orientable Riemann surface of topologicalugen
g >3 and let B and B be proper G-invariant irreducible subsets of the first type
of cardinalities k and |. ThenG| < 4(g — 2+ k 4+ 1) and this bound is attained for
infinitely many genera.

Proof. LetX = #H/I" be a non-orientable Riemann surface with a group of auto-
morphismsG = A/I". Three cases are possible
() |B1] = |G|/myq, |Bz| = |G|/m, for some proper periodsy;, m, of A,
(i) |B1] = |G|/2n1, |By| = |G|/2n, for some link periodsny, n, of A,
(i) |B1| =|G|/m, |Bz| = |G|/2n for some proper perioch and a link periodn of A,
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In the case (i),u(A) > 27(1 — 1/m; — 1/my) and so by the Hurwitz—Riemann
formula, |G| <g—-2+Kk+1.

Now consider the case (ii). Here eithér has nonzero orbit genus or a proper
period, or two period cycles, or else it has a signatuter(@—]; {(n1, N2, ..., Ng)}). In
the first caseu(A) > 27(1—1/2n; — 1/2n;), which gives|G| <g—2+k+1. In the
second casey(A) > 27 (1/2—1/2n;—1/2n3), which by the Hurwitz—Riemann formula
gives |G| < 2(—2+ k+1). In the third caseu(A) > 27(1— 1/2n; — 1/2n,) which
by the Hurwitz—Riemann formula gives agaié| <g—2+ k+1. So let A have a
signature (0+;[—]: {(N1, N2, ..., Ns)}). If s> 4 thenu(A) > 27(1/2—1/2n; —1/2ny),
which by the Hurwitz—Riemann formula givé&| < 2(g— 2+ k +1). So assume that
s = 3. Thenu(A) > 27(1/4— 1/2n; — 1/2ny), which gives|G| <4(g—2+ k +1).

Finally in the case (iii),u(A) > 27(1/2— 1/m — 1/2n), which gives|G| < 2(g —
2+ k+1).

To prove that the bound ¢ 2+ k) is attained for infinitely manyg, let G be an
arbitrary H-group, say of ordeN. Then the corresponding surface has t@&envariant
subsets of cardinalitiek = N/6 andl = N/14. Now sinceN = 84(g — 2) we have
g = N/84+ 2 and therefore 4(— 2+ k +1) = N, which completes the proof. [l

REMARK 4.7. Observe that the boundgd{ 2 + k + |) for the order of a group
of automorphisms of a non-orientable Riemann surface ofiggrhaving two invariant
subsets of points of the first type, is attained férgroups and so for an NEC group
A with signature (0+:[—]: {(2, 3, 7)}). HenceA has reflections and again the corres-
ponding surfaces have infinitely mar@-invariant subsets of the second type.

Theorem 4.8. Let X be a non-orientable Riemann surface of topologicalugen
g > 3 with a group of automorphisms G and with G-invariant irrethie subsets
B, ..., By of cardinalities g <--- < g, and assume that B. .., Bs, where s> 3,
are of the first type. Then

2
Gl<—"_(g=2
Gl = c—5@-2+q+ " +0)
and this bound is attained for infinitely many g.
Proof. Let, as alwaysX = H/I" andG = A/I". Let By, ..., B; come from the

proper periodsny,...,m; and letB,4, ..., Bs come from the link periodsy, ..., Ng .
Then |Bj| = |G|/m; fori =1,...,t |B|=|G|/2nj_¢ fori =t+1,...s and so

1 s—t 1
H(A)22n<—1+t—zf+—— —)

i=1
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which by the Hurwitz—Riemann formula gives
|G| < 2 9—-24+0qr 440
) g O Os)-

Now we shall show that these bounds are attained for infinitehny g and alls > 3.

Fors>5, let G = Z,® st ®Z, = (a1, - .., a-1), let A be an NEC group with
signature (0+;[-]; {(2,. 5., 2)}) and letd: A — G be an epimorphism defined by

8., for i=0
0(c) =aga, for i =s-1,
ag for i=s

Now, neither a canonical reflection nor a canonical elligglement belongs ta" =
kerf. SoT is torsion free. But since orientation reversiogeiCs_1 isometry belongs
to I', the last has signaturey,(—; [—]; {—}), where by the Hurwitz—Riemann formula
g=253(s—4)+2 and soX = /T is a non-orientable Riemann surface of genus
having the group of automorphisn@ and G-invariant subsets,..., Bs of cardinalities
di, . - ., s, for which
2

|G| = sTz(g—z‘l‘cll‘|""‘i‘qs)-
Finally, given an odd primep, let for the abovel’, T'y be its p-Frattini subgroup
i.e. the subgroup generated by all commutators andpgibwers. NowTI', is a char-
acteristic subgroup of* and hence is normal ia, which produces surfaceX, and
subsets as above for infinitely many gengga= p91(253(s —4) + 2).

The cases = 4 must be treated separately. L&t=Z, D3 = (x | X?) @ (a, b |
a2, b?, (ab)®), let A be an NEC group with signature;(@:[—]: {(2, 2, 2, 3)) and let
6: A — G be an epimorphism which maps consecutive canonical reftectintoa, X,
xb, b, a. Then, as fors > 4, we argue that" = keré has signatured; —;[—]:{—}) and
so we obtain a non-orientable Riemann surface for which bwe bound is attained.
Next, using the above Frattini arguments, we produce suctacgs and subsets for
infinitely many generay.

Finally for s = 3, the bound 2f — 2 + k + | + m) for the order of a group of
automorphisms of a non-orientable Riemann surface of ggnliaving three invariant
subsets of points of cardinalitids| and m, is attained, for example, for surfaces with
H-groupsG of automorphisms. ]

REMARK 4.9. Observe that the formulae from the above theorem dogsnno
volve explicitly the cardinality of theG-invariant subsets of the second typesif t.
However this can be done writing the bound from our theorem as

2
|G|§a(g—2+Q1+“'+qS)+O'(QS+1+"'+Qt)-
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and obtaining in this way a function properly involving ajl.

The following Corollary generalizes the principal resulorh [7], where it was
proved for bordered non-orientable Klein surfaces, andrésalt from [3], where the
bound was found fog = 1, 2.

Corollary 4.10. Let ¢ be an automorphism of a non-orientable Riemann surface
of topological genus @ 3 having q> 3 fixed points. Then

2
ol = q—_2(9+q—2)-

5. Bordered non-orientable Klein surfaces

Now we shall derive some results concerning automorphismboodered non-
orientable Klein surfaces with fixed points. Here, as in sghen 3.4, we shall use
two tools: an analogue of Oikawa theorem mentioned by Geaérdnd May in [10]
for non-orientable bordered Klein surfaces, and the cambriRiemann double cover
described in [1]. The symbop will stand for the algebraic genus of a non-orientable
bordered Klein surface.

Corollary 5.1. Let G be a group of automorphisms of a bordered non-orieetabl
Klein surface of topological genus 3 3 having k boundary components. Thigd| <
12(p —1).

Proof. G can be considered as a group of automorphisms of a non-abient
Riemann surface having invariant subset of cardinalityBut then, by Theorem 4.4,
G| =12@9—-2+Kk) =12(p—-1). O

The next two corollaries can be obtained using, for borderad-orientable Klein
surface X, the canonical double covet as in Section 3.4

Corollary 5.2. Let G be a group of automorphisms of a borderadn-orientable
Klein surface X of algebraic genus 32 having an invariant subset of points of car-
dinality q. Then|G| < 4(p—1) + 4q.

Proof. The canonical Riemann double covérof X has genusp and letG be
the lifting of G. ThenG* has two invariant subsets of points ¢ of cardinalitiesq
and so|G| = |G"| < 4(p — 1) + 4q, by Corollary 3.3. O

Corollary 5.3. Let G be a group of automorphisms of a borderadn-orientable
orientable Klein surface X of algebraic genus>p2, having s> 2 invariant subsets
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of interior points of cardinalities ¢ ..., gs. Then
Gl < ——(p— D)+ ——(u+++ +)
“s_1 p s_1 O Os)-

Proof. LetX be the canonical Riemann double cover andGebe the lifting of

G. ThenG* has 2s invariant subsets of points &nof cardinalitiesqs, g, . . . , Gs, s
and so
6H < 2 (p— D) oo+ + )
T 25-2 2s—-2
by Theorem 3.6. Hence the result sin| = |G*|. ]

Similarly, using Oikawa theorem and Theorem 4.8, we obtain

Corollary 5.4. Let G be a group of a borderechon-orientable Klein surface X
of topological genus ¢ 3 having s invariant subsets of the set of boundary compo-
nents of cardinalities p..., ps and t invariant subsets of interior points of cardinalities
di, ..., G, where t+s> 3. Then

IG| = m(g—zﬂ‘ Tz_z(pl—i----—i- Ps + 01+ -+ ).

Using our results one can also obtain, at once, the boundthégroup of auto-
morphisms ofqg-hyperelliptic and cyclicg-trigonal bordered Klein surfaces of genus
large enough which were found in [18] by Pérez del Pozo. WesHirihe paper by
considering similar problem for non-orientable unbordekdein surfaces.

Recall that a Klein surfac& which admit an automorphisma of order p so that
the orbit spaceX/(¢) has algebraic genug is said to be a [§, g)-gonal Klein sur-
face and forp = 2 and p = 3 we obtain the concepts af-hyperellipticity andqg-
trigonality respectively.

Theorem 5.5. Let X be a non-orientable g-hyperelliptig > 2) Riemann surface
of algebraic genus p- q + 1 and lety be the g-hyperelliptic involution. Then

8(p—q) if X/¢ has nonempty boundary

|AUt(X)| = {24(p_ g) otherwise

Proof. Let X = H/T, Aut(X) = A/T and (¢) = I'"/T for some NEC groups
I, T/, A. By [5], [ has signature

(h; :t; [21 p+.:¥—.2q, 2], {(_)v q-&:l.—‘r]h, (_)})1
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for someh in range 0< h < /2 or 1< h < q respectively, wherg) = 2 or 1 if the
sign is+ or —, or elseh =q + 1 for n =1 and p odd.

Now Y = X/¢p = H /T is a Klein surface of algebraic genags orientable or not
according to the sign of”, having p + 1 — 2q distinguished interior points. But since
p>q+ 1, I'V is unique, by [9], and so in particular this set of interiorirge is in-
variant under the action of /I".

Now if Y has nonempty boundary, then using Corollaries 3.11 or 5.2oktain
|Aut(Y)| < 4(p — q) in the orientable and non-orientable cases. TherefAtg(X)| =
2|Aut(Y)| = 8(p —q).

If Y is unbordered then, by Oikawa theorem in the orientable @asserve that here
we allow also antianalytic automorphisms) and by Theorednithe nonorientable one,
|Aut(Y)| < 12(p — q) and so|Aut(X)| = 2|Aut(Y)| < 24(p — q). []

In a similar way, using characterization of cyclig-trigonality from [8], we
can prove

Theorem 5.6. Let X be a non-orientable cyclic g-trigonal Riemann surfaife
algebraic genus p> q + 1, where g> 2, and let ¢ be automorphism of cyclic g-
trigonality. Then

6(p—q) if X/¢ has nonempty boundary
AUX)] = {18(p —q) otherwise
Proof. Let, as beforeX = H/T', G = A/T and (p) = I'"/T for some NEC
groupsT, IV, A. By [8], I has signature

(h: = 3, (4233972, 3 (), 9t4h, (),

wheren = 2 or 1 according to if the sign ig- or —, h is an integer in range 8 h <
(q+1)/n and X/¢ is unbordered only fop =1 andh =q+1. NowY = X/ = H/T’

is a Klein surface of algebraic genushaving (p + 2 — 3q)/2 distinguished interior
points. But, sincep > q + 1, I’ is unique, by [9] and so in particular this set is
invariant under the action ok /I".

If Y has nonempty boundary then, using Corollaries 3.11 or 5.8, obtain
|Aut*(Y)| < 2(p —q) in the orientable and non-orientable case respectivety thare-
fore |Aut®(X)| = 3JAut*(Y)| < 6(p — q), while if Y is unbordered, then it is a non-
orientable Riemann surface of topological gemus- 1. So |Aut(Y)| < 6(p — q), by
Theorem 4.4 and therefordut™(X)| = 3|Aut(Y)| < 18(p — q). []
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many normal subgroup in a given Fuchsian group through tleeofis?oincare lemma
and Fenchel “conjecture” can be recognized as a corollathefSelberg lemma.
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