Petrovt, Z.Z. and Prvulow, B.I.
Osaka J. Math.
50 (2013), 187-196

EQUIVARIANT MAPS BETWEEN
COMPLEX STIEFEL MANIFOLDS

ZORAN Z. PETROVEC and BRANISLAV |. PRVULOVIC

(Received November 21, 2011, revised June 25, 2012)

Abstract
The canonical circle action on complex Stiefel manifoldeassidered. The cor-
responding modo index for all primesp is computed and some Borsuk—Ulam type
theorems are proved.

1. Introduction

Let Vk(C") be the complex Stiefel manifold of orthonormiglframes inC". We
consider the fre&st-action onVi(C") given by z(vy, v, ..., v) = (zZv1, Zvo, . .., Zv). The
orbit spaceV,(C")/S* is complex projective Stiefel manifold. We want to investig
whether there exists a@t-equivariant map fromv,(C") to V;(C™) for positive integers
k, n, I, m such thatk < n and|l < m. The analogous question for the real Stiefel
manifolds Vi (R") (with Z,-action) was treated in [7].

In [4] and [5], the authors considered the actions of theampigroupU (k) and its
subgroup Zp)* on Vk(C"). They studied the degree of equivariant maps and, among
other things, they proved that there is no such map fMuC") to Vk(C™) whenn >
m. In this paper, we prove that this statement is also true Seequivariant maps.
Moreover, we obtain additional theorems of this kind. In jgatér, we show that a
sufficient and necessary condition for the existence oSarquivariant map fronJ (n)
to U(m) is thatn divides m.

Our method is the cohomological ideal-valued index theartyoduced by Fadell
and Husseini ([3]) and independently by Jaworowski ([6]JneTmod p cohomology of
Vk(CM)/St for all primes p was calculated in [1]. Using this result, in Section 2 we
determine Inal(vk(C");Zp) for all primes p and we also prove some facts concern-

ing Indsl(Vk((C”);Z). These results are applied in Section 3 and the above meudtio
Borsuk—Ulam type theorems are obtained.
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2. Index of complex Stiefel manifolds

Let G be a group acting on a spacé (X is a G-space). For a coefficient ring
R, the (cohomological) index oK, denoted by Infi(X; R), is defined as the kernel of
the mapc*: H*(BG; R) - H*(EG xg X; R) induced byc: X — x, wherex is any
one-point space. IX is a freeG-space, then the orbit spacBsz xg X and X/G have
the same homotopy type.

2.1. Mod p index of Vi(C™). Let us recall the structure of the mog co-
homology algebra of complex projective Stiefel manifoldis.[1], Astey, Gitler, Micha
and Pastor consider the homotopy commutative diagram cditidos

Vk(fn) = Vk(fn)
2.1) Vi(C)/St —— BUN — k)

gl li

cPr—' L BU(N)

where g is homotopy equivalent to the mapSt xg V(C") — BS' = CP>* obtained
from the mapV(C") — x*, f is the classifying map for the sum afcopies of the Hopf
bundle overCP> and f is the classifying map for then(— k)-bundle overV,(C")/St
obtained as the pullback of the orthogonal complement ofcteonical bundle over
Grassmann manifol@y(C") via the quotient mapv(C")/S' — Gk(C"). Using this
diagram and Leray—Serre spectral sequence, they proveltbeihg theorems. (In both
theoremsx € H%(V,(C")/S: Z;) is the modp reduction of the Euler class of the com-
plex line bundle associated with the principal bun8le=— Vi (C") — V(C")/St.)

Theorem 2.1([1]). Let p be an odd prime. There are cohomology classes y
H2L(V(C")/SY Zp), n—k +1 < j <n, such that

H*(Vk((cn)/sl’ Zp) = ZP[X]/(XN) 029 A(yn—k+11 sy YN YNHL - Yn)
as an algebrawhere N= Ny(n, k) :=min{j [n—k+1<j<n, pt (M}
Theorem 2.2([1]). There are y € H2I7L(V,(C")/S% Z,), n—k + 1< j <n,
such that

(@) if k <n orelse k=n and n=0, 1, 3 (mod 4),then

H*(Vk((cn)/sls Zz) = Zz[x]/(XN) ® A(yn—k+11 s YNZL YN e yn)

as an algebrawhere N= Ny(n, k) as in Theorem 2.1;
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(b) if k =n and n=2 (mod 4),then
H*(Vi(C")/S" Z2) = Zalyal /(Y1) ® A(Ya, - -, Yn)
as an algebra and x= y2.

Recall that the height of a cohomology classis defined as h¥) := max{m |
o™ #£ 0}. Let us also recall the Lucas formula which states thap i a prime,a =
Yiloap andb=Y " bp, 0=a, b < p-1, then(;) =[], (}) (mod p).

Returning to the above theorems, note thaki=n andn = 2 (mod 4), then
Na(n, k) = Na(n, n) = min{j | 1< j <n, (T) =1 (mod 2} = 2 by Lucas formula.
Note also thatx # 0 andx? =y} = 0 in this case. So, we can summarize and say
that ht) = Np(n, k) — 1 for any primep and anyn > k > 1.

In [1], the authors also show thgt(w) = X, whereg is the map from diagram (2.1)
and w is the generator irH*(CP*; Z,) = Zp[w]. Since Indsl(vk(C”);Zp) = kerg*,
from the preceding observations we immediately get thefolig theorem.

Theorem 2.3. Let p be a prime. Then
Ind® (Vi(C"); Zp) = (wV),

where (w) is the ideal in H(CP>; Zp) = Z,[w] generated bywN and

n—k+1§j§n,P+G?}

Hence, the index is completely determined by the inteyg(n, k). Let us now
compute this number in some cases.
It is obvious that for all primeg, n—k + 1 < Ny(n, k) <n and

N = Np(n, k) = min{j

(2.2) n = Np(n, 1) > Np(n, 2) > --- = Np(n, n).

The following lemma will be very useful. The proof is straifgitward from
Lucas formula.

Lemma 2.4. Let p be a prime and let & Y[ a p' and b= Y"" b p', where
O0<a, b <p—1 Then pt (}) if and only if h <& for all i =0, m.

In what follows, for positive integera andb, we denote byp(a, b) the remainder
of the division ofa by b. Also, for a prime p and positive integel, the number
of factors p in the prime factorization of is denoted byvp(a). If a=>",ap',
0=<4& = p—1, thenvp(a) = min{i | & # 0}.
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Proposition 2.5. Let p be a primer nonnegative integer and & p". Then
Np(n, n— p' + 1) = pr® 7P,
Proof. We want to calculatdly(n,n—p" +1)=min{j | p" <j<n, p4 (T)} If

n=>Y",ap', then from Lemma 2.4 it is obvious th&tp(n,n— p" + 1) = p', where

| =min{i [r <i <m, a #0}. Sincen—p(n,p)=Y"oap - Jap =" ap,
we see that = vy(n— p(n, p)). O

Since Vy(C") = U(n), the numberNy(n, n) determines Inﬁ(U (n):Zp). Forr =0,
the preceding proposition gives us the following corollary

Corollary 2.6. For every prime p Np(n, n) = p*®.

So, the numbeN,(n, n) is maximal (i.e., equal tm) if and only if n is a power
of p. Now, from inequalities (2.2), we get the following claim.

Corollary 2.7. Let p be a prime and let &= p". Then for all ke {1, 2,...,n},
Np(n, k) = n.

Proposition 2.8. Let p be a primer nonnegative integer and & p". Then
Np(n, p) =n—p(n, p').

Proof. We wish to find the first binomial coefficient not dilak by p in the se-
quence(, 5 .1), (h_p42)s--- (;"1): (7). But, these binomial coefficients are respectively

equal to(p,’ll), (p,'lz), ... (1), (). so, if we determine the number=max{i |0 <i <

p", p+(})}, we will obtain the numbeNy(n, p"), since obviouslyNp(n, p’) =n—1.
Lemma 2.4 applies and we immediately have that p(n, p"). ]
Corollary 2.9. If p is a primg k= p" and k| n, then Ny(n, k) = n.

Corollaries 2.7 and 2.9 provide some sufficient conditiamsN,(n, k) to be max-
imal. Let us add one more proposition of this type.

Proposition 2.10. Let n> k > 1 and assume that f (k — 1)!. Then there exists
a prime p such that Nn, k) = n.

Proof. The conditiom } (k — 1)! implies that for some primep,

vp(n) > vp(tk — ).
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This means that the binomial coefficieft ', ,) = (") =n(n—1)- - - (n—k+2)/((k—1)!)

K+1
is divisible by p. Obviously, sincevp((k—1)1) > vp((k—=2)) >--->v,(21) = vp(1) =0,
the same conclusion holds f¢f . ,), ..., (,";) and we have thaNy(n, k) = min{] |
n—k+1=<j=n pt()=n O

Of course, for given integera > k > 1, there is always a prime such that
Np(n, k) is minimal, i.e.,Np(n, k) = n—k + 1 (simply takep such thatp f (,_y.,)).
We conclude this section with the proposition which coroegjs to Corollary 2.7 and
which is proven directly from Lemma 2.4.

Proposition 2.11. Let p be a prime and let &= p" —1. Then for all ke {1,2,...,n},
Np(n, k) =n—-k+ 1.

2.2. Integral index of Vi(C"). Referring to diagram (2.1) again, we are inter-
ested in the kernel of*: H*(CP>*;Z) — H*(W(C")/S%: Z). Let ¢; € H2(BU(n); Z),
j =1,n, be the Chern classes of the canonical bundle ®&(n). Since the mapf
classifies the Whitney sum af copies of the Hopf bundle ove€P>* and since the
total Chern class of this sum is { w)", we have thatf*(c;) = (T)w' wherew €

H?(CP>®;Z) is a generator. On the other hand, for-k + 1 < j < n, commutativity
of the diagram gives us

g*((ri])wj) =g f*(cj) = f*i*(c;) = f*(0) =0,

and so,

oo {()

Theorem 2.12. Let Indgl(vk((C”); Z) .= IndSl(Vk(C”); Z) N HY(CP>; Z).
(@) For g <2(n—k+ 1), Incf (Vi(C"): Z) = 0.
(b) IG5}y 4y 1y (MdC™): Z) = Z{(,,_§, ) w*+1).
() For q = 2n, Ind (Vu(C"): Z) = HI(CP>; Z),

n—k+1<j< ”} < kerg® = Ind® (V(C"): Z).

Proof. Part (c) is a direct consequence of (2.3). For (a) d&)dwe consider
the Leray—Serre spectral sequence of the fibra¥ig(C") — Vi (C")/S* 2 cP®. The
map g* is equal to the compositiobl *(CP>; Z) = E;"O NN EX0 C H*(W(C")/Sh: z),
where v is the natural projection in this spectral sequence. Thisnsehat a class
o € HY(CP>; Z) is in the kernel ofg* if and only if it is in the image of some dif-
ferential g : E* "'t — E®C.
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It is known that the fibreV(C") is 2(n — k)-connected and so all differentials
di: ESV S E®O for g < 2(n—K) + 1 are trivial. This proves (a).

Moreover, it is known thatH *(Vk(C"); Z) = A(Zn—x+1,---,2Zn), the exterior algebra
on generatorg; € H2~1(V,(C"); Z), and that, in the fibratio,(C") < BU(n—k) —
BU(n), the generatorz,_x.; transgresses to the Chern clagsk+1 ([2]). If 7 is the
transgression in the fibratiow (C") < V,(C")/St 2 CP>, by diagram (2.1) and nat-
urality of the transgression, we conclude that

n
Oon—k+1)(Zn—k+1) = T(Znk41) = T (Chxs1) = (n k4 1)w”_k+1.

Since dyn 41y is the only nontrivial differentiald; with target EZ™**° we have

obtained (b). ]

3. Equivariant maps

A map f: X — Y betweenG-spacesX andY is said to be aG-equivariant map
(or just aG-map) if for all x € X and allg € G, f(gx) = gf(x). The following
theorem is the crucial tool in this section.

Theorem 3.1([3], [6]). If there exists a G-map :fX — Y, then for any co-
efficient ring R

Ind®(Y: R) C Ind®(X: R).

Henceforth,k, n, I, m are understood to be positive integers such that n and
| <m.

Proposition 3.2. If there exists an Smap \(C") — V{(C™), then
n—k<m-1I.

Moreover if n —k = m—1, then (,_y.,) divides (.7, ).

Proof. According to Theorem 2.12 (a), @%d\/k(C”);Z) =0forqg<2(nh—k+1)
and by part (b) of the same theorem ﬁag,ﬂ)(v. (€C™; Z) # 0. From Theorem 3.1,
we immediately get that &8{—1| + 1) must be> 2(n—k + 1), i.e,n—k <m—1I.

If n—k =m-I, then fort :==n—k+1=m-1+1, by Theorem 3.1 we have that
Ind§(\4 c™;z) c |nd§§(vk(<cn); Z) and by Theorem 2.12 (b), these indices are equal
to Z{(T)w') and Z((])w') respectively. We conclude th&f) | (7). O]
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Theorem 3.3. (a) There exists an’Smap \,(C") — Vi (C™) if and only if n< m.
(b) There exists an Smap \,(C") — V(C") if and only if k> I.
(c) If there exists an Bmap V_s(C") — Vm_s(C™), then n< m.

Proof. (a) If there exists as'-map from Vi(C") to Vi(C™), then by Propos-
ition 3.2, n—k <m-—Kk, i.e.,, n <m. Conversely, ifn < m, then the natural embedding
C" < C™ induces anSt-map Vi (C") — Vi(C™M). A k-frame @, ..., v) in C" maps
to the k-frame @, ..., vx) in C™, where the vecto®; is obtained fromv; by adding
m —n zeros at the end.

(b) According to Proposition 3.2 again, from the existenéeSbmap Vi(C") —
Vi (CM), we directly get the inequalitk > |. Likewise, if k > 1, there is an obvious'-
equivariant map fromV,(C") to V,(C") which forgets the lask —| vectors in a frame.

(c) The second part of the preceding proposition gives us (gfﬁ) must be di-
visible by (). Since (f), considered as a function @f, is increasing, we have that
n<m. O

If k is any positive integer, we can s& as the subgroup of (k) consisting of
all scalar matrices. Furthermore, the actiondk) on Vi (C") which was treated in [4]
(matrix multiplication), restricts on this subgroup to thetion which is being investi-
gated in this paper. This means that, as a consequence oathéap of Theorem 3.3,
we have obtained the following result of Hara [4, p.120].

Corollary 3.4. If there exists a Wk)-map (C") — W (C™), then n< m.

Since U(m) = V»(C™), by Proposition 3.2 we see that the only complex Stiefel
manifolds which could beS*-equivariantly mapped tdJ (m) are unitary groupgJ (n).
Moreover, we are going to prove the following theorem.

Theorem 3.5. There exists an Smap U(n) — U(m) if and only if n| m.

Proof. If there is anSt-map fromU(n) to U(m), then from the second part of
Proposition 3.2, we conclude that must be divisible byn.

Assume now thah | m. Since the action o' on U(n) is just the scalar multipli-
cation, the following mapf: U(n) — U(m) is St-equivariant. Ifm =r -n, each matrix
in U(m) can be divided irr? (n x n)-blocks. For a matrixA € U(n), we define f (A)
as the matrix with anA in each block on the diagonal and zero matrix in all other
blocks. This is clearly an element &f(m) and the proof is completed. []

REMARK 3.6. One can identifyv,, 1(C") with the special unitary grouguU(n),
e.g., then—1 vectors could be written in the first—1 rows of the matrix and the last
row is filled with the coordinates of the (unique) vector subht the obtained matrix
belongs toSU(n). Then the mapf constructed in the preceding proof (as a map from
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SU(n) to SU(m)) is not St-equivariant. This is because the action S on SU(n) is
not the scalar multiplication. Actually, the element S' acts on the matrixA € SU(n)
by multiplying the firstn—1 rows and the last row is multiplied &'~. Furthermore,
if n|m, thenSt-map fromSUY(n) to SU(m) may not exist at all. For exampl&t-map
from SU(5) to SU(10) does not exist. Namely, by Proposition 3.2, the exiseaf
St-map SU(n) — SU(m) implies that(3) | (5), but (3) = 10 does not dividg’y) = 45.

Since "1 = V,(C"), the following statements are easy consequences of Rropos
ition 3.2 and Theorem 3.3 (a).

Corollary 3.7. (a) If there exists an Smap $" ! — V{(C™), then n< m—1+1.
(b) If there exists an Bmap \L(C") — ™1 then m>n—k + 1.
(c) There exists an ‘Smap $" ! — ™1 if and only if n<m.

The following proposition is a direct consequence of Theo&3 and Theorem 3.1.
Proposition 3.8. If there exists an Smap \,(C") — Vi(C™), then for all primes p
Np(n, K) < Np(m, I).

EXAMPLE 3.9. There is naSt-map Va(C®) — V6(C®). Namely, () = 20, (§) =

15, ()) = 6, so we have thaNs(6, 4)= 5. On the other hand(;) = 126 implies that
Ns(9, 6) = 4 and the conclusion follows from Proposition 3.8.

It is clear that ifn < m andk > |, then there is ar$*-map fromV(C") to V;(C™)
(one can compos&'-maps Vi(C") — Vi(C™) — V,(C™) constructed in the proof of
Theorem 3.3). Furthermore, it is obvious from parts (a) dodof Theorem 3.3 that
if one of these two inequalities is turned into equality,ntiibe other one is equivalent
to the existence of ai$'-map.

If we drop one of the conditionsa < m and/ork > |, can there exist ars*-map
from V(C™) to Vi(C™? If k < |, the positive answer to this question is provided by
Theorem 3.5. We are not aware of any exampl&bmap Vi (C") — V{(C™) whenn >
m. On the other hand, in the following theorem, we outline soraeessary conditions
for existence of such maps.

Theorem 3.10. Let n> m. If there exists an ‘Smap \(C") — V,(C™), then all
of the following conditions must be satisfied
(i) n is not a power of a prime
(i) nf(k—-1)%5
(i) n—k <m-—1;
(iv) if k is a power of a primgthen ki n.
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Proof. The condition (iii) is a consequence of Propositidh&hd Theorem 3.3 (c).
The idea of the proof of (i), (i) and (iv) is the following: some of these conditions
fails, we find a primep such thatN,(n, k) = n and then we apply Proposition 3.8 ob-
taining a contradiction. If (i) fails, we refer to CorollaB;7. If (i) is false, we use Prop-
osition 2.10. Finally, if condition (iv) is not satisfieddi, if k is a power of a prime and
k | n), then we have a contradiction by Corollary 2.9. O

REMARK 3.11. Obviously, ifn > s> m and if there exists a$*-map Vx(C") —
Vi(C™), then there is also a$'-map Vi(CS) — V;(C™) obtained by composing the
former one withSt-map Vi (CS) — Vi(C") (Theorem 3.3 (a)). This means that we can
strengthen the previous theorem by indicating that the itiond (i), (i) and (iv) must
hold not just forn, but for all integersm+1,m+2,...,n.

At the end, we present a few examples of the usage of Theorgth 3.

ExAMPLE 3.12. Fork =1 or k = 2, (ii) implies thatn = 1. Thus, there is no
S'-map Vi(C") — Vi(C™) whenk =1 ork =2 andn > m > 1. The same conclusion
holds fork = 3 since there is no positive integarsuch thatn > 3 andn | 2!.

EXAMPLE 3.13. If there is arS'-map V4(C") — V{(C™) for somen > m>| >
1, by (ii) we see than must be equal to 6. From the condition (iii), we conclude
that there is noSt-map V4(C® — V(C®) for | > 3. For the same reason, there is
no St-map V4(C® — Vi(C# for | > 2. But, there is naSt-map V4(C®) — V4(C%) =
S’ either, since otherwise we would have 8hmap V,4(C®) — V4(C% — V4(C% and
this contradicts the condition (i) of the previous theoreimce 5 is a (power of a)
prime number.

EXAMPLE 3.14. There is noS'-equivariant mapVg(C?*) — Vi(C?) = S,
Namely, although the conditions (i), (i) and (iii)) from Toweem 3.10 hold, (iv) fails
since 8= 23 | 24. Moreover, there is n®'-map Vg(C?*) — V(C™) for any | <
m < 24.
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