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Abstract
The canonical circle action on complex Stiefel manifolds isconsidered. The cor-

responding modp index for all primesp is computed and some Borsuk–Ulam type
theorems are proved.

1. Introduction

Let Vk(Cn) be the complex Stiefel manifold of orthonormalk-frames inCn. We
consider the freeS1-action onVk(Cn) given by z(v1,v2,: : : ,vk)D (zv1,zv2,: : : ,zvk). The
orbit spaceVk(Cn)=S1 is complex projective Stiefel manifold. We want to investigate
whether there exists anS1-equivariant map fromVk(Cn) to Vl (Cm) for positive integers
k, n, l , m such thatk � n and l � m. The analogous question for the real Stiefel
manifolds Vk(Rn) (with Z2-action) was treated in [7].

In [4] and [5], the authors considered the actions of the unitary groupU (k) and its
subgroup (Zp)k on Vk(Cn). They studied the degree of equivariant maps and, among
other things, they proved that there is no such map fromVk(Cn) to Vk(Cm) when n >
m. In this paper, we prove that this statement is also true forS1-equivariant maps.
Moreover, we obtain additional theorems of this kind. In particular, we show that a
sufficient and necessary condition for the existence of anS1-equivariant map fromU (n)
to U (m) is that n divides m.

Our method is the cohomological ideal-valued index theory introduced by Fadell
and Husseini ([3]) and independently by Jaworowski ([6]). The mod p cohomology of
Vk(Cn)=S1 for all primes p was calculated in [1]. Using this result, in Section 2 we

determine IndS
1
(Vk(Cn)I Zp) for all primes p and we also prove some facts concern-

ing IndS1
(Vk(Cn)I Z). These results are applied in Section 3 and the above mentioned

Borsuk–Ulam type theorems are obtained.
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2. Index of complex Stiefel manifolds

Let G be a group acting on a spaceX (X is a G-space). For a coefficient ring
R, the (cohomological) index ofX, denoted by IndG(XI R), is defined as the kernel of
the mapc� W H�(BGI R) ! H�(EG�G XI R) induced bycW X ! �, where� is any
one-point space. IfX is a freeG-space, then the orbit spacesEG�G X and X=G have
the same homotopy type.

2.1. Mod p index of Vk(Cn). Let us recall the structure of the modp co-
homology algebra of complex projective Stiefel manifolds.In [1], Astey, Gitler, Micha
and Pastor consider the homotopy commutative diagram of fibrations

(2.1)

Vk(Cn)

K

Vk(Cn)

K

Vk(Cn)=S1
Qf
K

g
K

BU(n� k)

i
K

CP1
f

K BU(n)

whereg is homotopy equivalent to the mapE S1
�S1 Vk(Cn) ! BS1

D CP1 obtained
from the mapVk(Cn) ! �, f is the classifying map for the sum ofn copies of the Hopf
bundle overCP1 and Qf is the classifying map for the (n � k)-bundle overVk(Cn)=S1

obtained as the pullback of the orthogonal complement of thecanonical bundle over
Grassmann manifoldGk(Cn) via the quotient mapVk(Cn)=S1

! Gk(Cn). Using this
diagram and Leray–Serre spectral sequence, they prove the following theorems. (In both
theorems,x 2 H2(Vk(Cn)=S1

IZp) is the modp reduction of the Euler class of the com-
plex line bundle associated with the principal bundleS1

,! Vk(Cn) ! Vk(Cn)=S1.)

Theorem 2.1 ([1]). Let p be an odd prime. There are cohomology classes yj 2

H2 j�1(Vk(Cn)=S1
I Zp), n� kC 1� j � n, such that

H�(Vk(Cn)=S1
I Zp) D Zp[x]=(xN)
3(yn�kC1, : : : , yN�1, yNC1, : : : , yn)

as an algebra, where ND Np(n, k) WD min
{

j
�

� n� kC 1� j � n, p ­
�n

j

�}

.

Theorem 2.2 ([1]). There are yj 2 H2 j�1(Vk(Cn)=S1
I Z2), n � k C 1 � j � n,

such that:
(a) if k < n or else kD n and n� 0, 1, 3 (mod 4),then

H�(Vk(Cn)=S1
I Z2) D Z2[x]=(xN)
3(yn�kC1, : : : , yN�1, yNC1, : : : , yn)

as an algebra, where ND N2(n, k) as in Theorem 2.1;
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(b) if k D n and n� 2 (mod 4), then

H�(Vk(Cn)=S1
I Z2) D Z2[y1]=(y4

1)
3(y3, : : : , yn)

as an algebra and xD y2
1.

Recall that the height of a cohomology class� is defined as ht(� ) WD max{m j

�

m
¤ 0}. Let us also recall the Lucas formula which states that ifp is a prime,a D

Pm
iD0 ai pi and bD

Pm
iD0 bi pi , 0� ai , bi � p� 1, then

�a
b

�

�

Qm
iD0

�ai

bi

�

(mod p).
Returning to the above theorems, note that ifk D n and n � 2 (mod 4), then

N2(n, k) D N2(n, n) D min
{

j
�

� 1 � j � n,
�n

j

�

� 1 (mod 2)
}

D 2 by Lucas formula.

Note also thatx ¤ 0 and x2
D y4

1 D 0 in this case. So, we can summarize and say
that ht(x) D Np(n, k) � 1 for any primep and anyn � k � 1.

In [1], the authors also show thatg�(w)D x, whereg is the map from diagram (2.1)

andw is the generator inH�(CP1I Zp) D Zp[w]. Since IndS
1
(Vk(Cn)I Zp) D kerg�,

from the preceding observations we immediately get the following theorem.

Theorem 2.3. Let p be a prime. Then,

IndS1
(Vk(Cn)I Zp) D (wN),

where (wN) is the ideal in H�(CP1I Zp) D Zp[w] generated bywN and

N D Np(n, k) D min

�

j n� kC 1� j � n, p ­

�

n

j

��

.

Hence, the index is completely determined by the integerNp(n, k). Let us now
compute this number in some cases.

It is obvious that for all primesp, n� kC 1� Np(n, k) � n and

(2.2) n D Np(n, 1)� Np(n, 2)� � � � � Np(n, n).

The following lemma will be very useful. The proof is straightforward from
Lucas formula.

Lemma 2.4. Let p be a prime and let aD
Pm

iD0 ai pi and bD
Pm

iD0 bi pi , where

0� ai , bi � p� 1. Then p­
�a

b

�

if and only if bi � ai for all i D 0, m.

In what follows, for positive integersa and b, we denote by�(a, b) the remainder
of the division of a by b. Also, for a prime p and positive integera, the number
of factors p in the prime factorization ofa is denoted by�p(a). If a D

Pm
iD0 ai pi ,

0� ai � p� 1, then�p(a) D min{i j ai ¤ 0}.
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Proposition 2.5. Let p be a prime, r nonnegative integer and n� pr . Then

Np(n, n� pr
C 1)D p�p(n��(n, pr )).

Proof. We want to calculateNp(n, n� pr
C1)D min

{

j
�

� pr
� j � n, p ­

�n
j

�}

. If

n D
Pm

iD0 ai pi , then from Lemma 2.4 it is obvious thatNp(n, n� pr
C1)D pl , where

l Dmin{i j r � i �m, ai ¤ 0}. Sincen��(n, pr )D
Pm

iD0ai pi
�

Pr�1
iD0ai pi

D

Pm
iDr ai pi ,

we see thatl D �p(n� �(n, pr )).

SinceVn(Cn) D U (n), the numberNp(n,n) determines IndS
1
(U (n)IZp). For r D 0,

the preceding proposition gives us the following corollary.

Corollary 2.6. For every prime p, Np(n, n) D p�p(n).

So, the numberNp(n, n) is maximal (i.e., equal ton) if and only if n is a power
of p. Now, from inequalities (2.2), we get the following claim.

Corollary 2.7. Let p be a prime and let nD pr . Then for all k2 {1, 2, : : : , n},
Np(n, k) D n.

Proposition 2.8. Let p be a prime, r nonnegative integer and n� pr . Then

Np(n, pr ) D n� �(n, pr ).

Proof. We wish to find the first binomial coefficient not divisible by p in the se-
quence

� n
n�pr

C1

�

,
� n

n�pr
C2

�

, : : : ,
� n

n�1

�

,
�n

n

�

. But, these binomial coefficients are respectively

equal to
� n

pr
�1

�

,
� n

pr
�2

�

, : : : ,
�n

1

�

,
�n

0

�

, so, if we determine the numberl WD max
{

i
�

� 0� i <

pr , p ­
�n

i

�}

, we will obtain the numberNp(n, pr ), since obviouslyNp(n, pr ) D n� l .
Lemma 2.4 applies and we immediately have thatl D �(n, pr ).

Corollary 2.9. If p is a prime, k D pr and k j n, then Np(n, k) D n.

Corollaries 2.7 and 2.9 provide some sufficient conditions for Np(n, k) to be max-
imal. Let us add one more proposition of this type.

Proposition 2.10. Let n� k � 1 and assume that n­ (k � 1)!. Then there exists
a prime p such that Np(n, k) D n.

Proof. The conditionn ­ (k � 1)! implies that for some primep,

�p(n) > �p((k � 1)!).
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This means that the binomial coefficient
� n

n�kC1

�

D

� n
k�1

�

Dn(n�1)� � � (n�kC2)=((k�1)!)
is divisible by p. Obviously, since�p((k� 1)!)� �p((k� 2)!)� � � � � �p(2!)� �p(1)D 0,
the same conclusion holds for

� n
n�kC2

�

, : : : ,
� n

n�1

�

and we have thatNp(n, k)Dmin{ j j

n� kC1� j �n, p­
�n

j

�

}Dn.

Of course, for given integersn � k � 1, there is always a primep such that
Np(n, k) is minimal, i.e.,Np(n, k) D n� kC 1 (simply takep such thatp ­

� n
n�kC1

�

).
We conclude this section with the proposition which corresponds to Corollary 2.7 and
which is proven directly from Lemma 2.4.

Proposition 2.11. Let p be a prime and let nD pr
�1. Then for all k2 {1,2,:::,n},

Np(n, k) D n� kC 1.

2.2. Integral index of Vk(Cn). Referring to diagram (2.1) again, we are inter-
ested in the kernel ofg�W H�(CP1IZ)! H�(Vk(Cn)=S1

IZ). Let c j 2 H2 j (BU(n)IZ),

j D 1, n, be the Chern classes of the canonical bundle overBU(n). Since the mapf
classifies the Whitney sum ofn copies of the Hopf bundle overCP1 and since the
total Chern class of this sum is (1C w)n, we have that f �(c j ) D

�n
j

�

w

j , wherew 2

H2(CP1IZ) is a generator. On the other hand, forn� kC 1� j � n, commutativity
of the diagram gives us

g�
��

n

j

�

w

j

�

D g� f �(c j ) D Qf �i �(c j ) D Qf �(0)D 0,

and so,

(2.3)

��

n

j

�

w

j n� kC 1� j � n

�

� kerg� D IndS1
(Vk(Cn)I Z).

Theorem 2.12. Let IndS1

q (Vk(Cn)I Z) WD IndS1
(Vk(Cn)I Z) \ Hq(CP1I Z).

(a) For q < 2(n� kC 1), IndS1

q (Vk(Cn)I Z) D 0.

(b) IndS1

2(n�kC1)(Vk(Cn)I Z) D Z


� n
n�kC1

�

w

n�kC1
�

.

(c) For q � 2n, IndS1

q (Vk(Cn)I Z) D Hq(CP1I Z).

Proof. Part (c) is a direct consequence of (2.3). For (a) and (b) we consider

the Leray–Serre spectral sequence of the fibrationVk(Cn) ,! Vk(Cn)=S1 g
! CP1. The

map g� is equal to the compositionH�(CP1IZ) D E�,0
2

�

! E�,0
1

� H�(Vk(Cn)=S1
IZ),

where � is the natural projection in this spectral sequence. This means that a class
� 2 Hq(CP1I Z) is in the kernel ofg� if and only if it is in the image of some dif-

ferential di W Eq�i ,i�1
i ! Eq,0

i .
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It is known that the fibreVk(Cn) is 2(n � k)-connected and so all differentials
di W Eq�i ,i�1

i ! Eq,0
i for q � 2(n� k)C 1 are trivial. This proves (a).

Moreover, it is known thatH�(Vk(Cn)IZ) D 3(zn�kC1, : : : , zn), the exterior algebra
on generatorszj 2 H2 j�1(Vk(Cn)IZ), and that, in the fibrationVk(Cn) ,! BU(n�k) !
BU(n), the generatorzn�kC1 transgresses to the Chern classcn�kC1 ([2]). If � is the

transgression in the fibrationVk(Cn) ,! Vk(Cn)=S1 g
! CP1, by diagram (2.1) and nat-

urality of the transgression, we conclude that

d2(n�kC1)(zn�kC1) D � (zn�kC1) D f �(cn�kC1) D

�

n

n� kC 1

�

w

n�kC1.

Since d2(n�kC1) is the only nontrivial differentialdi with target E2(n�kC1),0
i , we have

obtained (b).

3. Equivariant maps

A map f W X ! Y betweenG-spacesX and Y is said to be aG-equivariant map
(or just a G-map) if for all x 2 X and all g 2 G, f (gx) D g f (x). The following
theorem is the crucial tool in this section.

Theorem 3.1 ([3], [6]). If there exists a G-map fW X ! Y, then for any co-
efficient ring R,

IndG(YI R) � IndG(XI R).

Henceforth,k, n, l , m are understood to be positive integers such thatk � n and
l � m.

Proposition 3.2. If there exists an S1-map Vk(Cn) ! Vl (Cm), then

n� k � m� l .

Moreover, if n � k D m� l , then
� n

n�kC1

�

divides
� m

m�lC1

�

.

Proof. According to Theorem 2.12 (a), IndS1

q (Vk(Cn)IZ) D 0 for q < 2(n� kC1)

and by part (b) of the same theorem IndS1

2(m�lC1)(Vl (Cm)I Z) ¤ 0. From Theorem 3.1,
we immediately get that 2(m� l C 1) must be� 2(n� kC 1), i.e., n� k � m� l .

If n�k D m� l , then for t WD n�kC1D m� l C1, by Theorem 3.1 we have that

IndS1

2t (Vl (Cm)I Z) � IndS1

2t (Vk(Cn)I Z) and by Theorem 2.12 (b), these indices are equal
to Z


�m
t

�

w

t
�

andZ

�n

t

�

w

t
�

respectively. We conclude that
�n

t

�

j

�m
t

�

.
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Theorem 3.3. (a) There exists an S1-map Vk(Cn)! Vk(Cm) if and only if n�m.
(b) There exists an S1-map Vk(Cn) ! Vl (Cn) if and only if k� l.
(c) If there exists an S1-map Vn�s(Cn) ! Vm�s(Cm), then n� m.

Proof. (a) If there exists anS1-map from Vk(Cn) to Vk(Cm), then by Propos-
ition 3.2, n� k � m� k, i.e., n � m. Conversely, ifn � m, then the natural embedding
C

n
,! C

m induces anS1-map Vk(Cn) ! Vk(Cm). A k-frame (v1, : : : , vk) in Cn maps
to the k-frame (Qv1, : : : , Qvk) in Cm, where the vectorQvi is obtained fromvi by adding
m� n zeros at the end.

(b) According to Proposition 3.2 again, from the existence of S1-map Vk(Cn) !
Vl (Cn), we directly get the inequalityk � l . Likewise, if k � l , there is an obviousS1-
equivariant map fromVk(Cn) to Vl (Cn) which forgets the lastk� l vectors in a frame.

(c) The second part of the preceding proposition gives us that
� m

sC1

�

must be di-

visible by
� n

sC1

�

. Since
�a

b

�

, considered as a function ofa, is increasing, we have that
n � m.

If k is any positive integer, we can seeS1 as the subgroup ofU (k) consisting of
all scalar matrices. Furthermore, the action ofU (k) on Vk(Cn) which was treated in [4]
(matrix multiplication), restricts on this subgroup to theaction which is being investi-
gated in this paper. This means that, as a consequence of the part (a) of Theorem 3.3,
we have obtained the following result of Hara [4, p. 120].

Corollary 3.4. If there exists a U(k)-map Vk(Cn) ! Vk(Cm), then n� m.

Since U (m) D Vm(Cm), by Proposition 3.2 we see that the only complex Stiefel
manifolds which could beS1-equivariantly mapped toU (m) are unitary groupsU (n).
Moreover, we are going to prove the following theorem.

Theorem 3.5. There exists an S1-map U(n) ! U (m) if and only if n j m.

Proof. If there is anS1-map from U (n) to U (m), then from the second part of
Proposition 3.2, we conclude thatm must be divisible byn.

Assume now thatn j m. Since the action ofS1 on U (n) is just the scalar multipli-
cation, the following mapf W U (n) ! U (m) is S1-equivariant. IfmD r �n, each matrix
in U (m) can be divided inr 2 (n � n)-blocks. For a matrixA 2 U (n), we define f (A)
as the matrix with anA in each block on the diagonal and zero matrix in all other
blocks. This is clearly an element ofU (m) and the proof is completed.

REMARK 3.6. One can identifyVn�1(Cn) with the special unitary groupSU(n),
e.g., then�1 vectors could be written in the firstn�1 rows of the matrix and the last
row is filled with the coordinates of the (unique) vector suchthat the obtained matrix
belongs toSU(n). Then the mapf constructed in the preceding proof (as a map from
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SU(n) to SU(m)) is not S1-equivariant. This is because the action ofS1 on SU(n) is
not the scalar multiplication. Actually, the elementz2 S1 acts on the matrixA 2 SU(n)
by multiplying the firstn�1 rows and the last row is multiplied byzn�1. Furthermore,
if n j m, then S1-map fromSU(n) to SU(m) may not exist at all. For example,S1-map
from SU(5) to SU(10) does not exist. Namely, by Proposition 3.2, the existence of
S1-map SU(n) ! SU(m) implies that

�n
2

�

j

�m
2

�

, but
�5

2

�

D 10 does not divide
�10

2

�

D 45.

Since S2n�1
D V1(Cn), the following statements are easy consequences of Propos-

ition 3.2 and Theorem 3.3 (a).

Corollary 3.7. (a) If there exists an S1-map S2n�1
! Vl (Cm), then n�m� lC1.

(b) If there exists an S1-map Vk(Cn) ! S2m�1, then m� n� kC 1.
(c) There exists an S1-map S2n�1

! S2m�1 if and only if n� m.

The following proposition is a direct consequence of Theorem 2.3 and Theorem 3.1.

Proposition 3.8. If there exists an S1-map Vk(Cn)! Vl (Cm), then for all primes p,

Np(n, k) � Np(m, l ).

EXAMPLE 3.9. There is noS1-map V4(C6) ! V6(C9). Namely,
�6

3

�

D 20,
�6

4

�

D

15,
�6

5

�

D 6, so we have thatN5(6, 4)D 5. On the other hand,
�9

4

�

D 126 implies that
N5(9, 6)D 4 and the conclusion follows from Proposition 3.8.

It is clear that ifn � m andk � l , then there is anS1-map fromVk(Cn) to Vl (Cm)
(one can composeS1-maps Vk(Cn) ! Vk(Cm) ! Vl (Cm) constructed in the proof of
Theorem 3.3). Furthermore, it is obvious from parts (a) and (b) of Theorem 3.3 that
if one of these two inequalities is turned into equality, then the other one is equivalent
to the existence of anS1-map.

If we drop one of the conditionsn � m and/or k � l , can there exist anS1-map
from Vk(Cn) to Vl (Cm)? If k < l , the positive answer to this question is provided by
Theorem 3.5. We are not aware of any example ofS1-mapVk(Cn)! Vl (Cm) whenn>
m. On the other hand, in the following theorem, we outline somenecessary conditions
for existence of such maps.

Theorem 3.10. Let n> m. If there exists an S1-map Vk(Cn) ! Vl (Cm), then all
of the following conditions must be satisfied:
(i) n is not a power of a prime;
(ii) n j (k � 1)!;
(iii) n� k < m� l ;
(iv) if k is a power of a prime, then k­ n.
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Proof. The condition (iii) is a consequence of Proposition 3.2 and Theorem 3.3 (c).
The idea of the proof of (i), (ii) and (iv) is the following: ifsome of these conditions
fails, we find a primep such thatNp(n, k) D n and then we apply Proposition 3.8 ob-
taining a contradiction. If (i) fails, we refer to Corollary2.7. If (ii) is false, we use Prop-
osition 2.10. Finally, if condition (iv) is not satisfied (i.e., if k is a power of a prime and
k j n), then we have a contradiction by Corollary 2.9.

REMARK 3.11. Obviously, ifn> s>m and if there exists anS1-map Vk(Cn)!
Vl (Cm), then there is also anS1-map Vk(Cs) ! Vl (Cm) obtained by composing the
former one withS1-map Vk(Cs) ! Vk(Cn) (Theorem 3.3 (a)). This means that we can
strengthen the previous theorem by indicating that the conditions (i), (ii) and (iv) must
hold not just forn, but for all integersmC 1, mC 2, : : : , n.

At the end, we present a few examples of the usage of Theorem 3.10.

EXAMPLE 3.12. Fork D 1 or k D 2, (ii) implies thatn D 1. Thus, there is no
S1-map Vk(Cn) ! Vl (Cm) when k D 1 or k D 2 andn > m� 1. The same conclusion
holds for k D 3 since there is no positive integern such thatn � 3 andn j 2!.

EXAMPLE 3.13. If there is anS1-map V4(Cn) ! Vl (Cm) for somen > m� l �
1, by (ii) we see thatn must be equal to 6. From the condition (iii), we conclude
that there is noS1-map V4(C6) ! Vl (C5) for l � 3. For the same reason, there is
no S1-map V4(C6) ! Vl (C4) for l � 2. But, there is noS1-map V4(C6) ! V1(C4) D
S7 either, since otherwise we would have anS1-map V4(C5) ! V4(C6) ! V1(C4) and
this contradicts the condition (i) of the previous theorem since 5 is a (power of a)
prime number.

EXAMPLE 3.14. There is noS1-equivariant mapV8(C24) ! V1(C23) D S45.
Namely, although the conditions (i), (ii) and (iii) from Theorem 3.10 hold, (iv) fails
since 8D 23

j 24. Moreover, there is noS1-map V8(C24) ! Vl (Cm) for any l �
m< 24.
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