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SINGULAR Q-HOMOLOGY PLANES OF
NEGATIVE KODAIRA DIMENSION HAVE SMOOTH LOCUS OF
NON-GENERAL TYPE
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Abstract
We show that if a norma@-acyclic complex surface has negative Kodaira dimen-
sion then its smooth locus is not of general type. This gdizesaan earlier result
of Koras—Russell for contractible surfaces.
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1. Main result

We work in the category of complex algebraic varieties. Weaticwe the program of
classification ofQ-homology planes. A normal surfac is called aQ-homology plane
if its rational cohomology is the same as that of the affine@l@?, i.e. H*(S,Q) = Q.
Properties of these surfaces have been analyzed for a lorg motivations come from
studies on the cancellation conjecture of Zariski, on the-thiimensional Jacobian con-
jecture, on quotients of actions of reductive groups on effipaces or on exoti€"’s.
For a review in the smooth case see [16, 83.4] and in the s@ingudse [21]. Here
we study singulaQ-homology planes. The basic invariants $fare the (logarithmic)
Kodaira dimension¢(S) and the (logarithmic) Kodaira dimension of the smooth cu
S, (). They take values if—o0, 0,1, 2 and satisfy the inequality(S) > «(S) (see
[9] for the definition and properties of the logarithmic Ka@dadimensionk). The classi-
fication of singularQ-homology planes with smooth locus of non-general type,with
k() < 1, built on work of many authors, has been completed by thé dughor in
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[23] and [22]. We therefore concentrate on the case whenrtitoth locus is a surface
of general type. While a priori there is no bound on the Kaaiimension ofS, we
show that it is necessarily non-negative. Formulating ieitother way we obtain the
following result.

Theorem 1.1. Singular @Q-homology planes of negative Kodaira dimension have
smooth locus of non-general type.

The theorem is a generalization of a result of Koras—Rufkg&]lon contractible sur-
faces and their earlier analysis of quotients of smoothregctible threefolds by hyper-
bolic actions ofC*, which was a crucial step in the proof of linearizability ©f -actions
(and hence actions of connected reductive groupsfgrsee [12].

It follows from the logarithmic Bogomolov—Miyaoka—Yau ingaity proved by
Kobayashi [10] that ifS is a Q-homology plane withk(S) = 2 then S has only
one singular point and this point is of analytical ty@&/G for some finite subgroup
G < GL(2,C) (see for example [23, 3.3]). By a theorem of Pradeep—Shigz=tf S
is rational. SingularQ-homology planes of this type do exist (see for example [17,
Theorem 1]). Even with these results in hand the proof of treoitem is long. This
is mainly due to the lack of structure theorems for surfackglam-) general type.
We assume, a contrario, tha{S) = —oc and ¥(S) = 2 and we analyze the conse-
guences. We use methods developed by Koras and Russell ingI8gnificant part
of which can be adapted to our situation, where we do not hlageassumption that
S is contractible. The result for contractible surfaces isowered as a special case.
The final contradiction is obtained in a series of steps imstg more and more the
possible geometry and derived numerical properties of thentiary and of the excep-
tional divisor of the resolution.

We now give a more detailed overview. In Section 3 we desdnifimological and
geometric properties of &-homology planeS, of its minimal resolutionS and its
smooth locusS,. Basic properties of the snc-minimal bounddy the exceptional div-
isor E of the minimal resolution and of the logarithmic canonicalisbr K + D + E,
whereK is a canonical divisor on a minimal smooth completi& D + E) of &, are
derived. In particularE and D are connected trees arffl has at most one branch-
ing component. In the whole paper the fact tisatdoes not contain curves which are
topologically contractible is essential. By an inequalify Miyaoka [15] the numbek
defined by K + D + E)Z = —1— € is non-negative. A major step is Proposition 4.2,
where we show that except one case the inequ#lityE + 2¢ < 5 holds. This gives
strong bounds oK - E ande and allows us to list possible dual graphsl:%f(see Prop-
osition 4.6). We decompose the divisBras E = E + A, where A consists of external
(—2)-curves ofE. The assumptioR(S) = —oo is used to find an affine ruling o for
which A is contained in fibers. Next it is proved in Section 5 tha€ifis irreducible
then the process of resolving the base point of this rulingSaran be well controlled.
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The second step (Section 6) is to show that the boundaryas only one branching
component. This leads to a precise description of the Ffisaiski decomposition of
K + D + E. The third step is done in Section 7, where it is proved thatlifymg S
by including the branching component Bf does not decrease the Kodaira dimension,
i.e. the new surface is still of general type. This takes i@mrable amount of work,
but then applying the logarithmic Bogomolov—Miyaoka—Yaednality limits possible
shapes ofE to four cases (see Corollary 7.7). These are finally exclide8ection 8
by analyzing properties of the affine ruling &\ A. In Sections 7 and 8 we need to
support our analysis by referring to results of computelgmms.

Let us mention that the complete counterparts of sma@thomology planes are
complex surfaces with rational cohomology Bf, called fake projective planegthey
are algebraic by [1, V.1.1]). The smooth ones are well urideds for example it has
been shown recently in [3] that there are exactly 100 of themtaubiholomorphism,
hence up to algebraic isomorphism. For recent results @ukinQ-homology project-
ive planes see for example [8].

2. Notation and preliminaries

We use standard notions and notation of the theory of opezbedir surfaces, we
recall some of them. The reader is referred to [16] for a tkaireatment as well as
for basic theorems of the theory. We denote the linear andenigai equivalences of
divisors by ~ and = respectively.

Let T be a divisor with simple normal crossings on a smooth coraptetrface.
We write T for the reduced divisor with the same support afd fér the number of
irreducible components of . If U is a component off thenpgr(U) =U - (T —U) is
called thebranching number of U in Tand anyU with gt > 3 is called abranching
componenf T. If T is reduced and its dual graph contains no loops then we say tha
T is a forest it is a treeif it is connected. A component witfir < 1 is called atip of
T. The dual graph oflT is weighted, the weights of vertices are the self-inteieast
of the corresponding components Bf We define the discriminard(T) as equal to 1
if T =0 and as the determinant of the minus intersection matriX aftherwise. By
elementary expansion properties of determinants we have:

Lemma 2.1. Let C be a component of a rational tree, Rt Ry, ..., R« be the
connected components of -RC. Let G be the irreducible component of; Rneeting
C. Then

d(R) = —C*[d(R)=)_d(R —C) [ d(R).
i i j#i

SupposeT is a (reduced) rational chain, i.e. it can be writtenTas- Ty +- - -+ Ty,
whereT; = P!, Br(T)) <2 andT,- T4y =1fori =1,...,n—1. There are at most
two choices of the first component of a chain, each defineseadiorder on the set
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of its components. We writd = [-T2,...,—T2] and by T' we mean the same chain
considered with an opposite ordering (there is only onerardef n = 1). We define
d'(T) = d(T — T;) and we putd'(d) = 0. In caseTZ = ... = T2 = —2 we write

T =[(n)]. We call T admissibleif 'I'i2 < —2 for eachi. If d(T) # 0 we define

d/

and &T) = e(TY).

SupposeT is a tree with exactly one branching componé&pt ThenT is called a
wide forkand is calleda fork if Br(To) = 3. The fork T is admissibleif it is rational,
the three connected components Tof- Tp are admissible chains and the intersection
matrix of T is negative definite. Admissible chains and forks are eyaitié excep-
tional snc-divisors of minimal resolutions of quotient gutar points. A singular point
on a surface is of quotient type if and only if locally anatgly it is isomorphic to
the singular point ofC2/G for some finite subgrou < GL(2, C).

A normal pair (X, D) consists of a complete normal surfage and a reduced
simple normal crossing divisoD, whose support is contained in the smooth locus of
X. If X is smooth then X, D) is a smooth pair An n-curveis a smooth rational
curve with self-intersectiom. If D contains no non-branching-{)-curves then the
pair (X, D) is snc-minimal. If Xo is a normal (smooth) surface then any normal pair
(X,D), such thatX\ D = Xy is called anormal (smooth completionof Xy. If (X,D) is
a normal pair then a blow-up of with centerc € D is called sprouting (subdivisional)
for D if ¢ belongs to exactly one (two) irreducible componentDof

Let (X,D) be a smooth pair. Denote the canonical divisornomy Ky. If o: Y —

X is a blow-up we denote its exceptional divisor by Bxcthe total transform, the re-
duced total transform and the proper transformDoby ¢*D, o 1D, o’D respectively.
We need the following easy observations.

Lemma 2.2. Let (X, D) be a smooth pair and let: Y — X be a blow-up.
() If A, B are divisors on X then AB=0¢'A-0*B =0*A-0"B.
(i) If o is sprouting for D or if D=0 theno*(Kx + D) = Ky + 071D —Exco and

Kx-(Kx + D) =Ky - (Ky + 0 D) + 1.
(iiiy If o is subdivisional for D thew*(Kx + D) = Ky +0!D and
Kx:(Kx + D) = Ky - (Ky + ¢71D).

To compute the negative part of the Zariski—Fujita decortjposof the logarith-
mic canonical divisorKx + D it is useful to compute théark of D (Bk D). Barks
are defined independently for all connected component®,060 in what follows we
will assume thatD is connected. IfD is an admissible chain or an admissible fork we
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define BKD as a uniqueQ-divisor with support in Sup satisfying
(Kx + D—BkD)-D; =0

for each componenbD; of D. If D=T =T; +---+ T, is an admissible chain then
it is also convenient to define a ‘one-sided baB&(T, T;) with support contained in
SuppT by

T -Bk(T, T1) = —6i1

(Kronecker's delta). If in the last case the choiceTafis clear from the context we
write BK' T for Bk(T, T;). Clearly, BKT = BKk(T, T1) + Bk(T, Tp).

To define the bark in general we need some additional notiBapposeD is not
a chain. A chainT € D is atwig of D if gp <2 for all components o andpp =1
for some (unique in fact) component @f If T is a twig of D then by adefault order-
ing of T we mean the one in which the tip & contained inT is the first component
(Ty) of T. Analogously, ifD is not an admissible chain (it may or may not be a chain)
we define admissible twigs and maximal admissible twigdDof

Suppose novD is neither an admissible chain nor an admissible fork. Rgt.., Rs
be all the maximal admissible twigs @. We define

BkD =Bk Ry +--- + Bk Rs.

We put D¥ = D — Bk D,

S S

5(D) =) 8(R), eD)=) eR) and &D)=) &R).
i=1

i=1 i=1

We will need the following properties of barks, most of whiihlow by a straightfor-
ward calculation (cf. [16, §2.3]).

Lemma 2.3. Let T=T; + --- + T, be an admissible chajnwrite BK' T =
L mT and BKT =YL, mT, then
() d(T)=d(T)—1, &)= (T —&T —T))™ §(T) < &T) < 1-5(T),
(i) m =d(Tis1+---+ To)/d(T),
(i) 0 <m <land0<m <1 (in particular Supp BKT = Supp BKT = SuppT).
Moreovey if m; = 1 for some i then T=[2, 2,..., 2] and m = 1 for each i,
(iv) BK? T = —¢(T) and

CdM+dTH+2

BK2T = —(T) — &T) — 25(T) = am >

—2.

REMARK. The formulag(T) = (—T2—e(T —T1)) ! shows that knowing(T) one
can recoverT in terms of continued fractions.



66 K. PALKA AND M. KORAS

Lemma 2.4. Let F =B + Ry + R, + Rs be an admissible fork with maximal
twigs R. Write Bk F = Zi”:l m; F, where F are the irreducible components of F.
Then
(i) 0<m <1 (in particular Supp BKF = SuppF). Moreovey if m; = 1 for some i
then F consists of—2)-curves and m= 1 for each i,

(ii) (d(Ry), d(Ry), d(Rg)) is one of the Platonic triples(2, 3, 3), (2, 3, 4), (2, 3, 5pr
(2, 2,k) for some k> 2,

(i) 1 < 8(F) <&F) <2< -B?,

(iv) d(F) = d(R:)d(R;)d(Rs)(—B* — &F)),

(v) BK®F = —(5(F) — 1)(—B2 — &(F)) ! — e(F) < —e(F) < —1.

REMARK 2.5. Note that sinc&(T) + §(T) < 1 (ande(T) + §(T) < 1 too) for
an admissible chaif, we have Bk T = —2 if and only if T consists of £2)-curves.
Then for an admissible forle we get by Lemma 2.4 (iii) thas(F) + &F) < 3 <
1- B2 so—Bk?F <§(F)— 1+ e(F) <2 and again the equality occurs if and only
if F consists of £2)-curves (is a £2)-fork).

Lemma 2.6. For every d> 2 there exist at least two admissible chains with dis-
criminant ¢ [d] and [(d — 1)]. Here is a full list of all other admissible chains for
d <11
d=5:[3, 2],
d=7:14,2] [3 (2]
d=28:[3, 3], [2 3, 2],
d=29: [5, 2], [3, (3]

d =10: [4, (2)],
d =11: [6, 2], [4, 3], [3, Q)] [2, 3, (2)]

A P!-ruling of a complete normal surface is a surjective monphisf the surface
onto a smooth curve, for which general fibers are isomorpbi®* Let (X, D) be
a smooth pair and lep: X — P! be aP-ruling. The multiplicity of an irreducible
componentL of a fiber will be denoted byu(L). The horizontal partDy, of D is
defined as an effective divisor with support in Siippsuch thatD — Dy, is effective and
intersects trivially with fibers. A horizontal irreducibtarve C is called ann-section of
p (or simply ‘section’ ifn = 1) if C-F = n for any fiberF of p. The components of
any fiberF are eitherD-components (the ones containedDn or (X — D)-components.
We denote the number oX(— D)-components of by o(F), by v the number of fibers
with & = 0 (which are contained D) and by Xx_p the sum of numberss(F) — 1)
taken over the set of fibers not containedbn Of course, for a general fiber = 1.
Put h = #Dy,. The basic observation is that if one contracts a vertiedl){curve and
simultaneously changes(( D) for its image then the numbels(X) —by(D) — X + v
andh do not change. So since forRt-bundle over a smooth complete curtvgD) =
h 4+ v, by(X) =2 andX = 0, we get the following relation (cf. [5, 4.16]).
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Proposition 2.7. If (X, D) is a smooth pair then for an*-ruling of X
Yx_p = h+ v —2+ by(X) — by(D).

Any O-curve on a smooth surface induce®&ruling with this curve as one of the
fibers (see [1, V.4.3]). The structure of singular fibers ofhsuulings is well known
(we will mostly rely on properties listed in [23, 2.10]).

DEFINITION 2.8. A rational ruling of a surface is a surjective morphism of the
surface onto a smooth curve, for which general fibers aremalicurves. Ifpy: Xo —
By is a rational ruling of a normal surface then bya@mpletion of p we mean a triple
(X, D, p), where (, D) is a normal completion oKy and p: X — B is an extension
of po to a P-ruling with B being a smooth completion dBy. We say thatp is a
minimal completion of pif p does not dominate any other completion mmf

If pis a minimal completion ofpy then every vertical €1)-curve contained irD
intersects at least three other componentof

We recall the notion of Hamburger—Noether pairs. For detade [25] and [12,
Appendix].

DEFINITION 2.9. Suppose we are given an irreducible germ of a singular an
lytic curve (x1, q1) on a smooth algebraic surface and a cuBsepassing throughy;,
smooth at;. Putc; = (Cy- x1)q, and choose a local coordinage at g; in such a way
that Y1 = {y; = O} is transversal t&C; at q; and p1 = (Y1 x1)q, iS not bigger tharc;.
Blow up overq; until the proper transformy, of x; meets the reduced total inverse
image F, of C; in a pointq,, which does not belong to components f other than
the unique exceptional compone@ of F; — C;. We then say thaC, (and R) is
produced from ¢ by the pair(gll). Putc, = (Cz- x2)q,- We repeat this procedure and
we define successivelyyi, ¢) and C; until x,.1 is smooth for somér > 1. Then we
refer to the sequenc(agll), (;22) ..., () as the sequence ¢lamburger-Noether pairs
(or characteristic pairsfor short) of the resolution of x1, g1) or the sequence athar-
acteristic pairs of F whereF is the (reduced) total transform &;. It is convenient
to extend the definition to the case whemn,(q:) is smooth by defining its sequence
of characteristic pairs to b§).

The conventionc; > p; seems artificial, but will be useful in our situation. Note
also that the definitions make sense fos,(q:) reducible, as long as each blow-up
(except possibly the last one) leaves irreducible brancifies, unsplitted, so that the
center of the succeeding blow-up is uniquely determined.
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Lemma 2.10. Assume that the sequence of blow-(®9je),, leading from(x;,q;)
to (xi+1,Gi+1) is described as above by the characteristic p@b Let u; be the multi-
plicity of the center ob;. Then we have
() ci+1=gcdCi, p),

(i) >, nj=¢c + p —ged@, p),
(i) X, nd=acp.

Proof. The formulas hold in casg = p;. If ¢ > p; then perform the first blow-
up and note that the remaining part of the sequengy ;; is described bxq;p‘) in
caseci —p = pi or by (") otherwise. The multiplicity of the first center {s. Now
the result follows by induction on mag( p;). [l

Consider a fiberF of a P*-ruling of some smooth complete surface, such tRat
contains at most one—(l)-curve. Suppos& is a component ofr with ug(U) = 1.
There is a uniquely determined sequence of contractions-tj-¢urves inF and its
subsequent images which makEsa smooth O-curve and does not contrakt The
reverting sequence of blow-ups orders naturally the setoofippnents ofF in order
they are produced. LeB,, ..., Bx be the branching components Bf ordered as de-
scribed. We call the chain consisting of, the components produced befoBg and
of B; the first branch of F the chain consisting of components produced afigbut
before B, and of B, the second branch of Fetc. The k + 1)-st branchis a chain of
components produced afté.

DEFINITION 2.11. LetF andU be as above. Denote the birational transform of
U after contractions (the image df) by the same letter. I is singular letL be
the (1)-curve of F. For someq € L let (x, q) be an irreducible germ of a smooth
analytic curve intersecting. transversally ay. Denote its image after contractions by
(x1,01)- Then the sequence of characteristic pairs of the resolwdf (x1,01) produces
L (and F) from U (cf. Definition 2.9). If the choice ol is clear from the context
we refer to this sequence #ise sequence of characteristic pairs of F

Note that by definition if(gi), i =1,...,his the sequence of characteristic pairs of
F then gcdén, pn) = 1 and the last curve produced by the sequence (the unigle (
curve in caseF is singular) has multiplicityc;. As in Definition 2.9 the sequence of
characteristic pairs of a smooth fiber (§) = (5)-

EXAMPLE 2.12. Consider @!-ruling of some complete surface. Let the nota-
tion be as above. Let

F=A+ -+ A+L+B+-+Bp
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be a non-branched singular fiber with a uniquel)-curve L. Only the tips ofF, A,
and By, have multiplicity one.F is produced fromA, by one characteristic pair, call
it (;) (we have gcdf, p) = (x - L)q = 1). The algorithm to recoveF when (;) is
known reduces to some simple observations. Cetbe the birational transform of\,
after the contraction of the remaining components of ther.fildde havec = (Cy- x1)q,
and p = (Y1 x1)q- Consider a blow-up atj;, let E be the exceptional curve and
let (x’,q), 9 € E be the proper transform ofx{, q1). If ¢ = p thenq does not
belong toC; + Y1 and we are done. I€ > p thenq € Cy, (C1: x')¢ =c— p and
(E-x")q = p. In casec— p > p we continue with the pai(c‘pp) and with Cy, E, ')
replacing Ci, Y1, x1). In casec — p < p we continue with the pail(cfp) and with
(E, Cq, x') replacing Cq, Y1, x1). Put A= A, +---+ A;. One proves that

c=d(A) and p=d(A).

Here are some examples. = [k, 1, k — 1)] then (g) = (). If F=[(k—1), 1,k
then () = (X)) If F =15,3,1,2,3,(3)] then(}) = (3).

Lemma 2.13. Let A and B beQ-divisors on a smooth complete surfaseich
that the intersection matrix of B is negative definite andBA< O for each irreducible
component Bof B. Denote the integral part of &-divisor by|[ ].

(i) If A+ B is effective then A is effective.
(i) 1f ne N and n(A + B) is a Z-divisor then B(n(A + B)) = h°([nA]).

Proof. See Lemma 2.2 [23]. O

For a divisorD on a smooth complete surfacé we define the arithmetic genus of
D by pa(D) = (1/2)D-(Kx + D) +1. We havepa(D1+ D2) = pa(D1) + pa(D2) + D1-
D,—1. One shows by induction that B is a rational reduced snc-tree theg(D) = 0.
For the notion and properties of the Kodaira dimension ofvésdr see [9].

Lemma 2.14. Let D be an effective divisor on a complete smooth rational su
face X.
(i) We have A(Kyx + D) + h%(=D) > pa(D). If |Kx + D| = @ then D is a rational
snc-forest and if moreover B D; 4+ D, with py(D1) = pa(D2) =0 then Dy - D, < 1.
(i) If D has smooth rational components and X in neither a Hirmehrsurface nor
P2 then D~ )" Cj, where G = P! and G < —1.
(iii) If x(Kx + D) = —oo then for any divisor F one hag(F + m(Kx + D)) = —o0
for m > 0.

Proof. (i) The Riemann—Roch theorem on a rational surfagesgi’(K x + D)+
h%(—D) > pa(D) and the other properties follow by applying it in variousysdcf. [25,
2.1, 2.2]). For (ii) see [12, 4.1], for (ii)) see [4, 2.5]. []
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One of the fundamental facts used in this paper is the ingguafl Bogomolov—
Miyaoka—Yau type proved by Kobayashi ([10]). It is most cameat for us to refer to
the following corollary from a generalization proved by lgaen (see [14, 5.2] for the
generalization and [20, 2.5] for the proof of the proposi}io

Proposition 2.15. Let (X, D) be a smooth pair with«(Kx + D) > 0.
() The following inequality holds

3(X~ D) + 2(Kx + D)} = (Kx + D).

(i) For each connected component of, hich is a connected component Bk D
(hence contractible to a quotient singuladitgenote by G the local fundamental group
of the respective singular point,ut D = D — Bk D. Then

1 1
X(X=D)+ ) —— = Z(Kx + D%
¥|Gp| 3"

3. Basic properties and some inequalities

Let S be a complexQ-homology plane, i.e. a normal complex algebraic surface,
such thatH*(S, Q) = Q. We assume tha¥ is singular. We denote by: S— S the
snc-minimal resolution of singularities and ty be the reduced exceptional divisor of
p. In the whole paper we assume for a contradiction #{&) = —co0 and k() = 2
and we derive consequences. Sin€&) = 2, & is neither affine- nolC*-ruled, so it
admits a unique snc-minimal completio8, © + E) (see [22, 1.1 (1)]).

We call a curveC on (S, D + é) simpleif and only if C = P! andC has at most
one common point with each connected componenbDcf E. Once we know thaS
is affine we get tha€ on (S, D + E) is simple if and only ifo(C N S) is topologically
contractible. Decompos& as E = E + A, where A is the divisor of external42)-
curves inE, i.e. A is a reduced divisor with the smallest support, such thatloes
not contain a £2)-tip.

Let us first collect some basic results, mainly followingnfrg23]. For open sur-
faces and for smooth pairs we have a notion of minimalityechdimost minimality
which generalizes the notion of minimality for complete @tiosurfaces, we refer to
[16, 2.3.11] for the details. We use the fact that for almogtimal pairs the Zariski
decomposition of the logarithmic canonical divisor can benputed in terms of barks.
Denote the canonical divisor & by K.

Proposition 3.1. With the notation as above one has
(i) S is affing rational and its singular locus consists of one singular odf quo-
tient type



SINGULAR Q-HOMOLOGY PLANES 71

(i) there is no simple curve off, D + E), in particular the pair (S, D + E) is almost
minimal and(K + D + E)” = Bk D + BK E,

(i) not every component df is a (—2)-curve i.e. E # A,

(iv) d(D) = —d(E) - |Hi(S, Z)|2, 71(S) = 71(S) and H(S,Z) =0 for i > 1,

(v) D is a rational tree and if it has a component with non-negatself-intersection
then this component is branching and D is not a fork

(vi) the inclusion DU E — S induces an isomorphism omH, Q),

(viii ¥ =h+v—-2andv <1,

(viii) Pic S = H1(S, Z) is of order dE) - |Hi(S, Z)|.

Proof. (i) S is affine and logarithmic by [23, 3.2, 3.3], so it is rationg [24].
(i) The non-existence of simple curves is proved for exampl [20, 3.4] (or one can
refer to the nonexistence of contractible curves $nsee [6]). Then §, D + E) is
almost minimal andK + D+ E)~ = BkD+BKE by [16, 2.3.15] and by the uniqueness
of the Zariski decomposition. (iii) fE = A then K + D)-E = 0, so sincec(S) > 0
and sinceE has negative definite intersection matri(K + D) > 0 by Lemma 2.13,
a contradiction. For (iv), (vi)—(viii)) see [23, 3.1, 3.2].

(v) Since S is affine, D is connected, so it is a rational tree by 3.4 loc. cit.
Let B be a component oD with B2 > 0. We blow up overB until B> = 0. Let
(S, D) — (S, D) be the resulting birational morphism. We can choose theecerof
subsequent blow-ups so th&t contains at most one non-branchingl{-curve and,
unlessD = B, so that the blow-ups are subdivisional fbr and its total transforms.
In any case it follows thaB has to be a branching componepp(B) > 3), otherwise
we get aP!-, aC*- or aC*-ruling of S, henceik(S) < 1 by litaka’s addition theorem
(cf. [9, 10.4]), which is a contradiction. Suppose now tliatis a fork andB is its
unique branching component. Théhgives aP!-ruling of S for which Dy, consists of
three sections. By Proposition 3.1 (vii) we hai¥g, = 2, becauseE is vertical. Note
that every vertical £1)-curve is ang-component. Suppose there is a singular fiber
F containing a unique<1)-curve L. We haveu(L) > 1, so Dy does not intersect
L. However,F — L has at most two connected components,Ds@ontains a loop, a
contradiction. Thus every singular fiber has at least twa){curves. Denote the fiber
containingé by Fo. Let Dy be the divisor oflj-components ofFg and letLq, L>
be some {1)-curves inFy. We haveDg # 0, otherwise one of th&-components of
Fo would be simple. Any {1)-curve inFgy intersectingé is a tip of Fy, otherwise it
would haven > 1 and so it could not intersedd,, hence would be simple. We have
o(Fg) < 3, so sinceFg is connected, there is ai-componentM C Fy intersectingé
and Dy which is not exceptional (not a—({)-curve). It follows thato(Fo) = 3, so Fg
is the only singular fiber.

SupposeFg is branched. Lefl be a maximal twig containind.; and let R be
the component offp — T meetingT. SinceLq, L, are the only £1)-curves of Fy,
renamingL, and L, if necessary by a sequence of contractions-df)¢curves different
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than L, we can contract the whol&. We haveu(R) > 1, otherwise this contraction
would makeR into a non-tip component of a fiber with a uniquel)-curve, which is
impossible foru(R) = 1 (cf. [23, 2.10 (i)]). It follows that all components af have
multiplicity bigger than 1, sd-T = 0. But D is connected, so this gived- L, <1,
a contradiction with (ii).

Since Fy is a chain,M is not branching, so (ii) implies that it intersedts,, hence
Dp - (L1 + Lo + Dg) < 2. SinceDy, - Dg > 0, this gives, sayDy - Ly = 0. As L;
is not simple,L; intersects two different connected componentsDef which gives
Dp-Dg =2 andDy-L, = 0. ThusL, is simple, a contradiction. O

The unique singular point @8 is analytically of typeC?/G for someG < GL(2,C).
We can and will assume thd& is small, i.e. it does not contain pseudo-reflections.
Then G is isomorphic to the local fundamental group of the singplaint (see [2], [16,
1.5.3.5]). The divisorE is an admissible chain i6 is cyclic and an admissible fork
otherwise. The discriminant is given b;(é) = |G/[G, G]| (see [19]). From (v) we
see that the maximal twigs d® are admissible, so sina{D) < 0 by (iv), D is not a
chain. Moreover, (v) implies tha( D + E) is the unique snc-minimal completion &
(see [22, 2.8]). Lefl; fori =1,...,s be the maximal twigs oD, putT =Ty +---+ Ts.
We put

o =d(T), & =4(T), &a=¢eT) &=¢eT)

and
5§ =6(D), e=¢e(D), é=¢&D).

We write P for (K + D + E)* and\ for (K + D + E)~.

Lemma 3.2. The integer defined by the equalitfk + D + E)2 = —1—¢ depends
only on the isomorphism type of &1d has the following propertie&f. [13, 5.3]):
(i) €=0,
(i) K- (K+D)=3-¢e—K-E <0,
(i) #HE+#D =7+e +K-D + K - E,
(iv) s <e=—Bk®D <1+e¢+BKk*E +3/|G|.

Proof. Since the snc-minimal completion §§ is unique,e is determined by the
isomorphism type ofS. (i) Since N' # 0, by Proposition 2.15 (i) we getl — ¢ =
(K +D+E)? < 3x(S) = 3(x(S)—1) = 0. (iii) Since D and E are connected rational
trees, their arithmetic genera vanish and we get(K + D + é) =3—¢, s0K? =
3—e—K-D—K-E and the formula follows from the Noether formu#e?+ x (S) = 12.
(i) SupposeK - E + ¢ < 2. By the Riemann—Roch theorem

h%(—K — D) + h%2K + D) > K- (K 4+ D) + pa(D) =3—€¢ — K -E > 0,
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so —K — D > 0, otherwise we would have(K + D) > 0. We haveK - E > 0 and
K- E; > 0 for every componeng; of E, henceE is in the fixed part o—K — D, so
—K — D — E > 0, which contradictsc(K + D + E) = 2. (iv) We have BRD = —e
by Lemma 2.3 (iv) andV = Bk D + Bk E by Proposition 3.1 (ii), so

—1-e=(K+D+E?=P>*+Bk’D+BKE
and then (iv) is a consequence of Proposition 2.15 (i) @dpto G, D + E). O

Lemma 3.3. Suppose: < 2. Then
(i) 12K + D + E| # 9,
(i) s—2—-6/|G| <3,
(i) s—3<e+Bk? E+ 9/|G|, and if the equality holds then all twigs of D are tips
(iv) if A=0 thene+s>s+e+K-E/4-5/2

Proof. (i) Riemann—Roch’s theorem give%—K —D —E)+h%2K + D+ E) >
2—¢c. If —-K—D—E >0 then—K —D—E > 0, which contradicts (K + D + E) = 2.
Thus X +D+E > 0. (ii) Let R=D—-T. Each component of + T is in the support
of NV, hence intersects trivially wittP. By (i) and Proposition 2.15 (ii) we have

0<P-@QK+D+E)=2P-(K+D+E)—P-(D+E)=2P>—P-R

6
< — _-P-R
|G|

As R is a rational tree, its arithmetic genus vanishes, so
P-R=(K+D-BkD)-R=-2+(T—-BkD)-R=-2+s-3§

by Lemma 2.3 (ii). (iii) is a consequence of Lemma 3.2 (iv)) &énd the fact that the
inequality can become an equality onlydf=§.

(iv) Let m be the biggest natural number for whitB + m(K + D)| # @; m > 2
by (i). Write

E+mK +D)~ > aC,

whereg; are positive integers an@; are distinct irreducible curves. We havé +D+
ZaiCi\ =@, so by Lemma 2.14 (ilC; are smooth rational curves, such tigtD < 1.
By Lemma 2.14 (ii) we can assume that they have negativeirgelfsections. Since
E + m(K + D) is effective, E + m(K + D¥) is effective by Lemma 2.13, so we can
write it as

E+mK + D" =) ¢C,

wherec; > 0 andC; are as above. Note thd¢ - E > 2, otherwiseE = E = [3] and
E-(2K + D + E) = -1 < 0, which would lead tac(K + D) > 0 by (i). Suppose
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(E + 2K) - Cj < O for somei, sayi = 1. If C; € E then, sinceC;- D < 1 and since
A = @, we haveC; - E > 2 by Proposition 3.1 (ii), s&K - C; < —(1/2)C; - E < -1,
which contradictsC? < 0, asC; =~ PY. ThusC; C E. But thenK - C; > 0 and

0> (E+2K)-Cy=K-Ci+ Be(C1) -2,

SO sinceA = 0, we getE = C; and K - E < 1, a contradiction. We infer that 8
(E + 2K) - (E + m(K + D#). We have

(E4+2K)-(K+D)=2K-(K+D+E)—K-E=6-2—K-E

and

BkD-K=BkD.(K+D*+Bk’D—-BkD-(D—T)—BkD-T
=0-e—38+s,

so from the above inequality we get
1 1 1 1
—-f—e<—(K-E-2)43—-€¢—=-K-E<-(K-E=2)+3—¢— =K E,
s e_2m( )+ €3 _4( )+3—¢€ 5

which gives (iv). ]

4. Bounding the shape of the exceptional divisor

Proposition 4.1. Let X beZ-homology plane with a unique singular pqimthich
is of analytical typeC?/Z,. Then there exists a smooth affine surface Y with an action
of Z, on it, which has a unique fixed poinis free on its complement and for which
X 2= Y/Z,.

Proof. We modify a bit the arguments of [11, 2.2]. Lete X be the singular
point. Then there is a (contractible) neighborhaddC X of g, which is analytically
isomorphic toC?/Z,. Let p: (C?, 0) — (N, q) be the quotient map and lgt be the
embedding ofN — g into X — . Let G be the commutator ofr1(X — q) and let
Yo — X —q be the covering corresponding to the inclusiBr— z;(X —q). We show
that Y = Yo U {0} is smooth. SinceC? — 0 is simply connectedpicz_g has a lifting
p: C2—0— Yo. The embeddingN, N —q) < (X, X —q) induces a morphism of long
homology exact sequences of respective pairs. The redumadlbgy groups ofN and
X vanish, so in both sequences the boundary homomorphismis@rerphisms. By
the excision theorent,(N, N —q,Z) = Hy(X, X—q,Z), henceHi(N —q,Z) — Hi(X—
g, Z) is an isomorphism. Since1(N — q) is abelian, it follows that the composition

mi(N —q) » m(X —q) - Hi(X —q, Z)
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is an isomorphism. Le¥;, y» € C2 — 0 be two points lying over the same point in
N —q, such thatp(y:) = p(y2). The path joiningy; andy, in C?—0 maps byp to a
loop Yo. Let o € m1(N —q) be a loop which is the image iN — g of the same path.
Then 1(j)(«) € m1(X —q) belongs toG, hencea is in the kernel of the composition

71N —q) — m(X —q) - Hi(X —q, Z),

which is trivial. We get thaty; = y,, so p is a monomorphism and we see that the
local fundamental group o¥ at O is trivial. By [19] (the proof is topological and
works for non-algebraic surfaces) we see tifais smooth.

Because a finite unbranched cover of an algebraic valgtis algebraic and the
map Yo — X —q is finite, C[Yy] is an integral extension of[X —q] =~ C[X], hence
it is a finitely generated and integrally clos@€dalgebra. The homomorphis@[ X] —
C[Yo] induces a morphisnt: SpecC[Yo] — X. The natural embedding : Yo —
SpecC[Yy] is an isomorphism onta ~1(X — q) and extends to a morphism by the
smoothness ofY. The inverse extends to a morphism from SE§¥,] to X by the
normality of SpedC[Y). O

The following theorem is a key step in the proof of the mairulesf the paper.
It is based on the method of finding well-behaved exceptiacnales on open surfaces
of negative Kodaira dimension introduced in [12, 4.2, 4.8¢ avhich has its origin in
Lemma 2.14 (iii).

Proposition 4.2. Either K- E 4+ 2¢ <5 or ¢ = 2, E = [4] and D consists of
(—2)-curves.

Proof. Note that
2K +E)-(K+D)=6—-2—K-E,

so K - E + 2¢ <5 is equivalent to (K + E) - (K + D) > 0. Under two additional
assumptions, that there exists -alf-curve A € S, such thatA- E < 1 and thatS is
contractible, it is proved in [13, 5.10, 5.11] that the inelify (2K + E)- (K + D) <0
implies the existence of an exceptional simple curve 8p0 4+ A), which intersects
A. Of course, it also intersect®, as S is affine. Moreover, it is shown that under
the above assumptions the process of contracting and firelioly (-1)-curves can be
iterated to infinity. By the definition of simplicity this is eontradiction, because the
number of connected components &fis finite. The proof of 5.10 loc. cit. does not
require the contractibility, but only th@-acyclicity of S, so it can be simply repeated
in our situation. However, the case when the ‘initial’ curedoes not exist has to be
reconsidered in our situation.

SupposeK -E+2¢ > 5. From the above remarks it follows that we can assume that
there is no £1)-curve A € Swith A-E < 1. We can repeat the proof by contradiction
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in 5.7 loc. cit. up to 5.7.4 (i). In 5.7.4 (ii) an argument nefieg to [11] (and hence to
contractibility) is used and it needs to be modified in ounaiion. We are therefore
in a situation whereK + E* = 0, B E is an integer and consists of £2)-curves.
As E does not consist of{2)-curves, by Remark 2.5 and Lemma 2.4 (v)2Iﬁ<: -1
and E is a chain. We have now

—1-e=(K+D+E?=(D+BKkE?>=D%-1,
hencee = —D? = 2+ K - D = 2. By Riemann—Roch’s theorem
h%(E 4+ 2K)+ h%(—K —E) > K- (K + E)=3—¢—K-D = 1.

If —K —E ~ U for an effective divisorJ thenK + E# =0 impliesU + Bk E =0,

hence BKE = 0, which is impossible by Lemma 2.3 (iii). Recall that for@adivisor

T we denote the integral and fractional partsTofby [T] and {T} respectively. We
get 2K + E) > 0, which by Lemma 2.13 (i) implies that [R(+ E*)] ~ U for some
effective divisorU. Then

0=2(K + E*) = [2(K + E®] + {2(K + Ef)} =U + (-2 BKE},

so since{—2BKE} is effective,{—2BKkE} = U = 0. Thus 2BKE is a Z-divisor. Since
E is not a (2)-chain, E # Bk E and we get 2B = E and

2K + E=2K +2E* ~U = 0.

It follows that A =0 andK-E = 2. Moreover, af;-(2K + é) = 0 for each component
E: of E, we get that eitheE = [4] or E = [3, (k), 3] for somek > 0 (recall that [K)]

is a chain of £2)-curves of lengthk). To finish the proof we need to exclude cases
other thanE = [4].

Supposeé = [3,(k), 3] for somek > 0. We have ® = 9—k by Lemma 3.2 (iii), so
there are only finitely many possibilities for the weightagatigraph ofD. Lemma 3.2
(iv) gives

3 3

. 3
eD)<3+BKE+ — =2+ — =2+ .
(D) |G| d(E) 4k + 2)

D consists of £2)-curves, se(D) = s—§. Taking a square of the equality in Propos-
ition 3.1 (ii) we get—3 = P?>—¢e(D) —1, soP? =s—2—4§. SinceP? > 0, we obtain:

O0<s—2-46< 3 = 3 .
4k+2) 4(11-#D)
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In particular,s—2 < § + 3/8 < s/2+ 3/8, sos < 4. Another condition is given by
Proposition 3.1 (iv):
d(D)

Td(E) ©

We check by a direct computation that there are only two pEinseighted dual graphs
of D and E satisfying both conditions (one checks first that the firgidition implies
thatk <1 for s= 3 andk < 2 for s = 4):

(1) s=3T1=[22,T.=[222,T:=[222], E=I[3 3]

(2 s=4T=[2, =2, Ts=[2, T,a=[2 2, 2], E=[3, 3]

Note that in case (2D — T, — T, — T3 — T4 has three components. In both cases
—d(D) = d(E) = 8, so Hy(S, Z) = 0 by Proposition 3.1 (iv). By Proposition 4%
can be identified with the image of a quotient morphipmY — Y /Zg of some smooth
affine surfaceY. Let (X, y) be local parameters which are semi-invariant with respect
to the action ofZg (recall thatt € C(Y) is semi-invariant with respect to the action of
G onY if there exists a character: G — C*, such thatg*t = x(g)t). As in the case
of C2 — C2/Zs, if C is the proper transform o8 of p({x = 0}) thenC-E =1 and

C meetsE is a tip (cf. [7]). Thus

a contradiction. O

Corollary 4.3. If e =0then K-E€{3,4,83. If e =1then K-E € {2, 3. If
e = 2 then either K- E =1 or E = [4].

Proof. We haveK - E + ¢ > 3 ande > 0 by Lemma 3.2 (i), (ii). By Propos-
ition 4.2 we haveK - E + 2¢ <5 for (E, €) # ([4], 2), so the corollary follows. [

Proposition 4.4. (i) If ¢ =0 then E is irreducible and D is a fork
(i) If E is a fork thene = 2,
(i) A does not contain a fork.

Proof. (i) SinceD is not a chain we have > 3. Fore = 0 Lemma 3.3 (iii) gives

- 9
0<s—3<BKE+ —.
|G|

If E is a fork then BRE < —1 by Lemma 2.4 (v), sdG| < 8. SinceG is small
and non-abelian, it is the quaternion group, for which theoh&ion consist of £2)-
curves (the abelianization of the group4s x Z,, row 2 is the table [2, Satz 2.11)]),
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a contradiction with Proposition 3.1 (iii). Thug is a chain, sod(E) = |G| and we
getd'(E) + d'(E!) <7 by Lemma 2.3 (iv). SupposE has more than one component.
Taking into account Corollary 4.3 there are two possileiitfor E: [3,4] and [2,5]. In
both cases we obtain BE +9/|G| =0, sos = 3 and the inequalities Lemma 3.2 (iv)
and Lemma 3.3 (ii) become equalities. We get § < 1, which is possible only if
maximal twigs ofD are irreducible. Denoting the branching componenDoby B we
haved(D) = dyd,d3(—B2—$6), so sinced(D) < 0, we get—B? < § < 1, a contradiction
with Proposition 3.1 (v). ThereforeBt= 1. If s # 3 then Lemma 3.3 (iii) and Corol-
lary 4.3 give subsequentlys 3)d(|§) <5,s=4 andE = [5]. Thene=§ = 4/5, so
the inequality Lemma 3.3 (iv) fails, a contradiction.

(i) Let E be a fork. By (i)e # 0. Suppose = 1. Then

. 9
BK’E + — + 1> 0,
+|G|+ >

so since BKE < —e(E), we get|G|(e(E)—1) < 9. One checks using [2, Satz 2.11] that
the last inequality is satisfied only for the folk, which has [2], [2], [3] as maximal
twigs and [2] as a branching curve. In this casé& Bk= —(3/2) and |G| = 24, so the
initial inequality fails.

(i) SupposeA contains a fork. Ther = 2 by (ii), so #£ = 1 by Corollary 4.3.
By Lemma 2.13 we have

7(S\ A) = k(Kg+ D + A) = k(Kg + D) = &(S) = —oc.

SupposeS\ A is affine-ruled. Consider a minimal completio, © + A) — B of this
ruling (cf. Definition 2.8). SinceS is affine, the horizontal component is contained in
D. If E is vertical thenS, is affine-ruled, which contradict&(S) = 2. Thus there are
two horizontal components i + E. SinceE N D = @, we havev = 0, s0Xg, = 0
by Proposition 3.1 (vii), hence each singular fiber has aumig1)-curve. Then each
connected component & is a chain, a contradiction. By [18\ A contains an open
subsetU, which is PlatonicallyC*-fibred. In particularS\ A is C*-ruled (we have
shown that it is not affine-ruled). The compondhtcannot be vertical for this ruling,
otherwiseS, is C*-ruled, which contradictg (S) = 2. Consider a minimal completion
of this ruling. We havev = 0, so X5 = 1. By the description of the Platonic fibration
in loc. cit. the branching component of the fork containedAinis horizontal. LetFg
be the fiber containing tw&-components, call thenh; and L,. By minimality only
these curves can be-1)-curves of Fg. DecomposeA into A; + A,, where A; is a
fork and A, is a chain (possibly empty). Sind® N Fy is connected and sinc8 is
affine, we haveL,- D = L,- D = 1. This gives [; + L,)- A1 = 1 becausery and
A are trees. Say.1-A;=1andL,-A; = 0. If only one of thel;’s is a (1)-curve
then it follows from the structure of a singular fiber with aigue (1)-curve that it
has to belL,, as A; intersects a component &% of multiplicity one. In any case we
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get thatL? = —1, L,- A, = 0 and by the negative semi-definiteness of the intersection
matrix of a fiberL, + A5 is a chain. Analyzing the contraction of this chain as in [13,
6.1] one shows that the fact thit - E = 1 leads toL - E=1,ie Lyis simple on

(S, D + E), hence on § D + E), which contradicts Proposition 3.1 (ii). O

Corollary 4.5. S\ A is affine-ruled.

Proof. The logarithmic Kodaira dimension 8f A is negative, so by the structure
theorems mentioned abo®\ A is affine-ruled or it contains a Platonic fibration as an
open subset. The last case is possible onlx i€ontains a fork, which is excluded by
Proposition 4.4 (iii). O

Recall that [k)] denotes a chain of{2)-curves of lengthk and that the default
ordering of a twig is the one in which the first component ispadf the divisor and
the last component intersects some component of the dimisbcontained in the twig.

Proposition 4.6. E is of one of the following types
(@) [5]. [6], [7]
(b1) fork:

A——-2——8B

-2

with (A, B) equal ta ([3], [2, 2]), ([3], [2, 2, 2]), ([3], [2, 2, 2, 2]), ([2, 3], 2, 2]) or
(I(n), 3], [2]), where n> 0,
(b2) fork:

A——-3——B

-2

with (A, B) equal to one of ([2, 2], [2, 2]), ([2, 2], [2, 2, 2]), ([2, 2], [2, 2, 2, 2])or
(12], [(mM]), where n> 0,

(b3) [(r), 3, X)] forr,x >0,

(c1) [(r), 4] or [(r), 5] forr > O,

(c2) [(x), 3, (y), 3] or [(x), 3, (¥), 4] or [(x), 4, (y), 3] for x,y =0,

(€3) [(r), 3, X), 3, (y), 3] for r, X,y > 0,

(c4) [2,4,2],[2,5,2], [2,3,3,2], [2,3,4, 2], [2, 4, 2, 2]2]5, 2, 2]

Proof. If E is a fork thene = 2 by Proposition 4.4 (i), s& = [3] by Corollary 4.3.
We know thatA does not contain a fork, so all possihfés satisfying Lemma 2.4 (ii)—
(iii) are listed in (b1) and (b2). Chains fer= 2 other than [4] are in (b3) anB’s for
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¢ = 0 are in (a) (cf. Corollary 4.3 and Proposition 4.4 (i)). Now wan assume thét is
a chain and = 1, soK - E € {2, 3} by Corollary 4.3. The possibilities witk - A < 1 are
listed in (cl1), (c2) and (c3), so we can now assufeA = 2. If T is an ordered chain
with the first component; then we writed”(T) for d’'(T — T;). From Lemma 3.3 (iii) we
getd'(E) + d'(E") < d(E) + 7 and since

d(E) = 2d'(E) — d"(E) = 2d'(E!) — d"(EY),

we have

%(d(é) +d"(E)) + %(d(é) + d”(EY) < d(E) + 7,

sod”(E)+d”(E!) < 14. This gives six possibilities foE: [2,4,2], [2,5,2], [2,3,3,2],
[2,3,4,2],[2,4,2,2] and [2, 5, 2, 2], which are listed in Yc4 ]

5. Special affine rulings of the resolution

In this section we assume thaE#= 1, i.e. the exceptional divisor of the snc-
minimal resolutionS — S has a uniqgue component with self-intersection differeanth
(—2) (in terms of the list in Proposition 4.6 this holds in cagaey (b), (c1) and part
of (c4)). Under this assumption we will produce and analygecsl affine rulings of
S\ A (hence ofS).

We keep the notation§ D) for the unique snc-minimal smooth completion &f
Consider an affine ruling o6\ A (it exists by Corollary 4.5). There exists a modifi-
cation G, D) — (S, D) and aP*-ruling f: (Sf, DT + A) — P, which is a minimal
completion of the affine ruling. Clearlyi is horizonal, otherwises, is affine-ruled,
which contradictsc(S) = 2. It follows thatv = 0 and since £ = 1, we haveh = 2
and henceXs = 0 by Proposition 3.1 (vii). Thus every fiber df contains a unique
S-component and sincé is minimal, it is the unique-£1)-curve of the fiber in case
the fiber is singular. As we have seen in Definition 2.11, oneefiw a component
of F of multiplicity one, F can be uniquely described by a sequence of characteristic
pairs recoveringk from (the birational transform of) the component. In ouuatton
the default choice is the component Bfintersecting the horizontal component bff.

NoTATION 5.1. Let f be a completion of an affine ruling dd6\ A as above.
Let F be some fiber off and letH be the section contained iBf. Puty = —E?,
n=—-H?andd = E - F. Let h be the number of characteristic pairs Bf We write
ANF=A1+ -4+ Ak, k> 0 where A; are irreducible andAy is a tip of F. If
the fiber is singular then it follows that the last pair Bfis (;*;) =Y. fAa#£0

then E- Aj, = 1 for a unique 1<ig <Kk, becauseE is a tree. In case\NF = @ put
io = 0. DefineF’ as the image of after contraction of curves produced §) and

let the sequence of characteristic pairs forbe (g) withi=1,...,h—1(fh=1
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then (;11) = (})). Putc;, = ¢, —io and u = e (C), whereC is the unique {1)-curve
of F. We define

k=cC-E+¢c, and p=«kC-E+¢,C-E+c,.

If f has exactly two singular fibers, we write the analogous duesitfor the second
fiber with ('): &, C, i, €, etc. If f has more singular fibers then insteadkofC, pi,
¢y, etc. we writex(F), Cg, pi(F), c,(F), etc.

It follows from the definition that; = ¢;/c, and p; = pi/Ch, SO gcdi, pi) = Ciy1
fori =1,...,h—1 and gcdé 1, pr-1) = 1 if h > 1. The multiplicities ofC and A,
in F are u = ¢1¢y and ¢i¢y,, SO

d=E-F=gE-C+acE-Aj =cx«.

Note thatc;, = 0 if and only if ANF =@ if and only if ¢, = 1.
We denote the least common multiple of a 8&tof natural numbers by Icn\).

Proposition 5.2. With the notation as ifNotation 5.1the following equations hold
(cf. [13, 610, 611]):

h(F)-1
(5.1) dn+2)+y—2=Y «x(F)c(F)+ > p(F)),
F i=1
h(F)—1

(5.2) nd®+y=>)" ("Z(F) > a(Fp(F) + p(F)>,

F i=1
(5.3) d-[Hi(S, 2)| = [T eu(F),

F

(5.4) d = lem{cu(F),

where F runs over all singular fibers of f.

Proof. First we derive the equations (5.1) and (5.2). Forp8city we assume
that there is a unique singular fiber, the general case felldle havexXs = 0. Con-
sider the sequence of blow-downs

S gm I gmen M%)

SO a Hirzebruch surface, which contradésto a smooth 0-curve without touchinig.
Denote byK () and E() the canonical divisor ofS1) and the birational transform of
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E on S respectively. Denoting the multiplicity of the center @f on EU~ by p;
we have

KO . ED — KU EGD = ) and @I7D)2 — (ED)? = 12,

j=1,...,m We haveE@ = d(nF© + H), where F© is some fiber of the induced
P-ruling of S® andd = E@.F©® = E.F. We compute

KM.gM _KO.EO =K.E+dn+2)=y—-2+dn+2)

and
(EO)? — (EM)? =nd® + y,

which gives left sides of the above equations. We thus neecbitopute ij and
ZM,Z- Let F'.ci, pi,x be as defined above. Let us first consider the aasd= = @. We
then havex = C-E and the sequence of characteristic pairs Fois (;11)(;';:11) ().
The sequence of blow-downs; is divided into groups described by these pairs. The
set of indicesj, for which the blow-upo; is a part of the group of blow-downs deter-
mined by the characteristic pa(f;) will be denoted byl;. In casex = C-E =1 we

get by Lemma 2.10

> uj=c+p—gedc, p) and » u?=cp.

jeli jeli

Now for C - E = « > 1 the multiplicity of each center ig times bigger, hence in
general we get

> =« +p —ged@, p)) and Y pd =kcip.

j€li jel

We havec;, = 0 andc, = 1, so this gives

h h h—1
D wj=x) (6 + p —gcd@, Pi))=f<<91+ZPi —1) =K<91+Zpi>
i=1 !

i=1

and
h h-1
Youi=k*) cp =K2<Z§ipi +1),
i=1 i=1

as required.
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We now consider the case N F # @. Let E’ be the image ofE after contracting
F to F'. It follows from the above arguments that

h—1 h-1
K.-E -KO.EOQ = K<gl +> p- 1) and E9)?-(EY =«*) ap,

i=1 i=1

so we need to computk - E—K’-E’ and E’>— E2. We are now left with the last pair
(g';) which groupsch = ¢;, + ip blow-ups. The proper transform d& after making
first ¢, blow-ups isE™M-9). The multiplicity of the center of each of these blow-ups

isSC-E=C-E+1, so
K(M=lo) . (M=) _ K’ E' = ¢/ (C-E+1) and E?—(EM9)2 =/ (C-E + 1)%

Now E(™-9) may intersect the fiber in more than one point. The multiplicf the
center of each of the remainirg blow-ups isC - E, hence

K-E—KM.gM) —j,c.E and E™)2 - E2=iy(C-E)>.

This gives (5.1) and (5.2).
We now derive (5.3). PuQ(F) = """ ¢i(F)pi(F) and

&(F) = d(F N A = Aigr))/c(F) = ch(F)(e(F) — cy(F))/cn(F).

Then, as in [12, 3.4.6b(F) = «(F)?/cn(F) + e(F), so we can rewrite (5.2) as:

nd® +y = " e(F) = «*(F)(Q(F) + 1/c(F)),
F F

which by 3.5.5 loc. cit. gives

(5.5) nd® + d(E) / [T en(F) = D> «*(F)(Q(F) + 1/cn(F)).
F F

PicSis a free abelian group with generatofs(general fiber)H and vertical com-
ponents not intersectingl. Let G(F) be the component of intersectingH. Then
PicS is a generated byf and S-componentCg with defining relations coming from
E ~ 0 andG(F) ~ 0 for any singular fibef=. The latter givesf ~ u(Cg)Cg. Expand
E in terms of the above generators, ek be the coefficient oCg and leta,b be the
coefficients of f and H. Intersecting withf and then withH we getb=d =E. f
and a = bn = dn, hence the relation coming frork ~ 0 is > ¢ keCg ~ dnf. In
the proof of 3.6 loc. cit. it is shown thdte = «(F)(ch(F)Q(F) + 1), so taking the



84 K. PALKA AND M. KORAS

determinant of the defining relations we obtain

+|Pic so|/]_[ u(Cg) = —nd + > k(F)/u(Ce)(cn(F)Q(F) + 1).
F F

Multiplying both sides byd we have

nd’ + d|Pic S| / [T r(Cer) =" di(F)en(F)/in(Ce)(Q(F) + 1/cn(F)).
F F

Since
don(F)/u(Cr) = c1(F)x(F)en(F)/(Ca(F)en(F)) = «(F),

left sides of the above equation and of (5.5) are the sameshwiives

d-|Pic S| = d(E) - [ [ ca(F).
F

Now (5.3) follows from by Proposition 3.1 (viii).

We haver1(S) = 71(S) by Proposition 3.1 (iv). Note that the greatest common
divisor of S-components of a fiber equats(F). Then by [5, 4.19, 5.9%(S) is gen-
erated byog, where F runs over singular fibers of, and the defining relations are
(0e)*F) = 1 and[Jor = 1. HenceH:(S, Z), which is the abelianization of(S),
is the quotient ofP Z, ) by the subgroup generated by (1., 1). We obtain

|H1(S,2Z)| = ([Tg c2(F))/m, wherem = lcmg{c1(F)}, i.e. m is the least common mul-
tiple of all ¢;(F)’s. Plugging into (5.3) gives (5.4). ]

DEFINITION 5.3. Letrn: X — C be a dominating morphism of a normal surface
to a complete curveC. We say thatr is pre-minimalif for some normal completion
(X, X\ X) it has an extensiomw : X — C, such that the boundary divisof \ X can
be made snc-minimal using only subdivisional blow-downkef we will say also that
7: (X, X\ X) = C is pre-minimal.

Corollary 5.4. Let#E =1 and let f be a minimal completion of an affine rul-
ing of S\ A. Then f has at least two singular fibers and if it has two theimgis
Notation 5.1one has
() ¢ =k-[Hi(S,Z)| and & =« - [Hi(S, Z)|,

(i) h,h>2,
(i) d(D) = —d(E) - gcde, &)
(iv) if f is pre-minimal then hth=n+1+¢+ K -E.
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Proof. Note that by Proposition 3.1 (ig)(F) > 2 for every fiberF. If f has only
one singular fiber then (5.3) gives

¢ =d-[Hi(S, Z)| = cix - [Hi(S, Z)],
so k = 1, a contradiction. Assumé has two singular fibers. (i) By (5.3) we have
c161 = d - [Hy(S, Z)| = &k - [H(S, Z)|,

soc, =« - |Hy(S, Z)| and analogouslg; = « - |H1(S, Z)|. (i) If, say, h = 1 then by
definition ¢; = 1, so agairk = 1, a contradiction. (iii) By (5.3) and (5.4)

|H1(S, Z)| = ¢161/lcm(cy, €1) = ged(y, G1),

so (i) follows from Proposition 3.1 (iv).
(iv) Since f is pre-minimal, contractions ip: St — S are subdivisional with
respect toD*, hence

Ks -(Kg + D) =K-(K+D)=3-¢—K-E.

Contract singular fibers to smooth fibers without touchidg denote the image ob
by D and the resulting Hirzebruch surface By We have

Ks-(Ks+D)=KZ+Kg-H+2Kg-F=8+n-2-4=n+2.
A blow-down which is sprouting for a divisof increaseK - (K + T) by one, so
K- (KT + D' +C+C+A)+h+h=Kg-(Kg+ D)
and we get (iv). []

We will see that in case B = 1 one can always find a pre-minimal affine ruling
of S\ A, often having additional good properties. We follow thegoral notation of
[12, 5.3].

NOTATION 5.5. Assume & = 1. Let f: (S, DT + A) — P! be a minimal com-
pletion of an affine ruling ofS\ A. We haveXg =h+v—-2 = v =0 by Propos-
ition 3.1 (vii), becauseE is irreducible and horizontal. Leti? = —n, whereH is the
horizontal component oDf. If Bpi(H) > 2 then &, D) = (S, D) and the ruling is
pre-minimal. Assumépi(H) < 2. If n =1 then DT is not snc-minimal. In any case
by successive contractions of exceptional curveDin (and its images) we obtain a
morphismg;: St — S. Let F be a singular fiber off, such thatF N D' is branched.
Denote the component & meetingH by G. Let Z be the chain consisting of curves
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F H F
G G<
g, )12,
— J 21 Z, e
N C
A 3
/ v Z, \ /A A

Fig. 1. Notation for affine rulings oS5\ A.

produced by the first characteristic pair Bfand let Z; be the curve of highest multi-
plicity in Z. Let Z, and Z, (upper, lower) be the connected componentsZot Z;
with Z, meetingG (see Fig. 1). LetZ;, be the component oZ, meetingZ; andC
the unique £1)-curve of F. Let h be the number of characteristic pairs Bfand ©
the multiplicity of C. If there is another singular fiber denote it I Analogously
for F defineG, Zy, h, etc. PutH" = Z, + G+ H + G + Z,. DefineA’ = ANF and
A=ANF.

DEFINITION 5.6. In the situation as abové is almost minimalif ¢; does not
touch vertical S -components.

REMARK. By Corollary 5.4 f has at least two singular fibers. If it has more
than two thensp: (H) > 2 because each singular fiber contain®facomponent, hence
Dt = D is snc-minimal, sop; = id and f is almost (and pre-) minimal. Iff is
almost minimal with two singular fibers two theém h > 2 by Corollary 5.4 and the
contractions ing¢ take place withinHT. It follows that an almost minimal ruling is
pre-minimal.

Proposition 5.7 (Koras—Russell, [12, 5.3]). Let C be a(—1)-curve inS, such that
k(Kgs+ D + A+ C) = —oo. Then there exists a pre-minimal affine ruling of 8 with
C in a fiber such that either
(i) f is almost minimal or
(i) f has exactly two singular fibers\ = 0 and ¢ contracts precisely H+ Z;. If
Z; is touched x times in this process therrx and V2 =2—x, whereV C D is the
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birational transform ofZ,,.

Having the results established so far the proof of the abaepgsition and of
all preliminary results (except 5.3.3 (i) loc. cit., which hot necessary) goes with-
out modifications as in loc. cit. The proposition impliestthige have a good control
over curves that are contracted when minimalizing the bagndNote that in case (i)
72 =1-x (asZy, is touched once in the contraction procegs)pas two characteristic

pairs and the second ig).

Corollary 5.8. If #£ = 1 then there exists a pre-minimal affine ruling of\ &
with properties as inProposition 5.7

Proof. Consider a minimal completion of some affine rulingf A. Since at
least one of the branching componentsf remains branching irD, there exists a
singular fiberF, such that its§-componentC is not touched by the minimalization of
Df to D. By Lemma 2.13 we have

k(Ks+D+C+A)=k(Kg+D+C+ANF),

becauseA — A NF has a negative definite intersection matrix and its comptsnierter-
sectKg+ D + C + AN F trivially. The snc-minimalization of a divisor or adding &
divisor a (~1)-curve intersecting it transversally in one point do niohrege the Kodaira
dimension of the divisor, hence

k(Ks+ D+ C+ANF)=«k(Kg+ D) = —o0c.
Thus we can apply Proposition 5.7. []

6. The boundary is a fork
Lemma 6.1. If e =2then K-E =1

Proof. Supposee = 2 and K - E # 1, then E = [4] by Corollary 4.3. Let
f: (Sf, Df) — P! be a pre-minimal affine ruling oS\ A (we use Notation 5.5).
Let Fy,..., Fy be the singular fibers. PWd = H + F; +-- -+ Fy. We haveXg =0
and by Corollary 5.4N > 2. Let h; = h(F) be the number of characteristic pairs of
F. By Proposition 4.2D consists of £2)-curves andA = @. In particular, h; > 2.
SupposeN > 2. Then Df = D. If we contract all Fi's to smooth fibers without
touching H we makeh; + h, + - - - + hy sprouting blow-downs insidé&J. Let D and
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K be the image ofD and the canonical divisor of the resulting Hirzebruch stefa
We have

K- (K+U)=K-(K+D)—N=-1—N

and
K-(K+D)=8+K-H—2N=8-2N.

We obtain—1—N +h;+---+hy = 8—2N. ThereforeN = 3 andh; = h, = hz = 2,
henceD has three maximal twigs and, sind® consists of {2)-curves, they are all
equal to [2, 2, 2]. By (5.4x(F1) -ci(F1)) =d =1Ilcm(2, 2, 2)= 2, sok(F) =1, a
contradiction with Proposition 3.1 (ii). Thus = 2.

Supposef is not almost minimal. Them = 1 andh = 2, soh = 4. By Propos-
ition 5.7 ¢1: St — S contracts preciselyH f + Z; and Z; is touched exactly 2 V2 = 4
times, hencezf = —6. D consists of £2)-curves, so the second branch ef(see the
definitions after Lemma 2.10) is now necessarily [(5)] and third [1, 2] (the first
component, [1], is a tip of). We have alsaz, = [(k)] and Z; = [(m), 3] for some
non-negative integerk, m, henceG = [k + 1] andG = [m+ 2]. If k # 1 thenG is
contracted beforegs, som = 0 and we see thafZ; is touched at most once, a con-
tradiction. Thereforek = 1 and thenm = 1. ThenD has two branching components
meeting each other3; and B,, such thatD — By — B, = Ty 4+ T + T3 + T4, with
T,-Bi=T-B1=1T1=[2,2], T =[2], Ts=[2] and T4 = [2, 2, 2, 2]. We compute
d(D) = —25, which contradicts Corollary 5.4 (iii). Thuf is almost minimal with two
singular fibers.

We have nowz, = [(k)] and Z, = [(m)] for some positive integerk, m, so Z, =
Z,=0,G =[m+ 1] and G = [k + 1]. Supposen = 1. Then §, h) = (2, 4) or
(h, h) = (3, 3). Consider the casé,(h) = (2, 4). Note thatZ? = -2, so G is not
contracted byg¢, hencem > 1. If k # 1 theng¢ contracts onlyH, som =k = 2
and the second branch &f is [1, 2, 2]. In this casel(D) = —9, a contradiction with
Proposition 3.1 (iv). Therefor& = 1. We getm = 3 and Z? = —3 and we infer
that the second branch &f is [2, 2] and the third is [1,2]. Thu® has two branching
componentsB; and By, andD — By — By = T1 + To + Tz + T4 with Ty = [(5)], T2 = [2],
Tz =[2] and T4 = [2]. We getd(D) = —16 and gcdf, ¢1) = 4, a contradiction with
Corollary 5.4 (jii). Consider the casé,(h) = (3, 3). We can assumie>m. If m=1
andk = 2 then the second branch &fis [2,2,2] and the second branch Bfis [2, 2],
gcd(Cy, ¢1) = 6 andd(D) = —36, a contradiction with Corollary 5.4 (iii). Iin=1 and
k = 3 then the second branch &f is [2, 2] and the second branch & is [1, 2],
gcd@y, ¢1) = 4 andd(D) = —16, a contradiction with Corollary 5.4 (iii). It follows
thatm = k = 2. Then second branches &f and F are both [1, 2], sad(D) = -9,
again a contradiction with Corollary 5.4 (iii).

We have nown = 2, so fi,h) = (2,5) or (,h) = (3,4). NowZ,, Z;, G and G are
irreducible (2)-curves. If f, h) = (2, 5) then gcd, ¢;) = 2 and the second branch
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of F is [1,2,2,2], hencal(D) = —4. If (h,h) = (3,4) then gcdiy, ¢;) = 2, the second
branch ofF is [1, 2] and the second branch &f is [1, 2, 2], sod(D) = —4. In both
cases we get a contradiction with Corollary 5.4 (iii). []

To prove thatD is a fork we need the following lemma. Recall theats the num-
ber of maximal twigs ofD.

Lemma 6.2. Assume#E = 1.
(i) If no twig of D of length> 2 contains a(—2)-tip then there exists an affine ruling
of S\ A with no base points orS.
(i) If s=4 and A is connected then D has a twig of length2.

Proof. (i) Letf:(Sf,Df4+ A)— P! be a minimal completion of a pre-minimal
affine ruling of S\ A. SupposeD’ # D. Then f has two singular fiberss and F, and
n =1 (cf. Notation 5.5). By Proposition 5.7 (ii) we can assumat tthe components of
Z, are not contracted by:. Sinceh > 2, by our assumption about maximal twigs of
D either Z; = [2] or Z, has a< (—3)-tip, in any caseG = [2]. Analogous argument
holds for F, henceH meets two {2)-curves inDt. ThereforeD contains a non-
branching component with non-negative self-intersec¢tmrcontradiction with Propos-
ition 3.1 (v).

(i) Suppose thas = 4 and all maximal twigs oD are tips. ThenD' = D by
the first part of the lemma. From the geometry of the ruling we thatH does not
intersect a branching component Bf, so it cannot be a maximal twig ob. If H
is non-branching inD then D has at least two branching components, which being
contained in fibers, cannot be-1)-curves, a contradiction with [20, 4.2]. Thu$ is
branching inD, so there are at least three singular fibers. Two of them 6at)edo
not contain a branching component Bf, hence contain uniqu®-components by our
assumption. Then they both contain a componenf\pfo A is not connected. [

Proposition 6.3. D is a fork.

Proof. SupposeD is not a fork. We first show thakE = [5], ¢ = 1 ands = 4
and then we eliminate this case in several steps. We prowessige statements.

(1) #E =1 ande =1 or 2.

We havee # 0 by Proposition 4.4 (i). To proveEBf= 1 we can assume = 1 by
Corollary 4.3. ThusE is a chain by Proposition 4.4 (i) and it satisfies

(s—4)d(E) + d(E)+ d'(E') < 7

by Lemma 3.3 (iii). Using < K - E < 3 this gives only two cases for whichE#£ 1:
s=4andE =[3,3] ors =4 and E = [3, 4]. By Lemma 3.2 (iv) in both cases
e+ 8§ < 3, which is impossible by Lemma 3.3 (iv).
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(2) If K-(K 4+ D)#0 thenE =[5], ¢ = 1 ands = 4.
AssumeK - (K + D) # 0. Fore =2 we have

K-(K+D)=3-¢—-K-E=0
by Lemma 6.1, s& = 1 by (1). Again by Lemma 3.3 (iii)
(s—4)d(E) + d'(E) + d'(E") <7,

so sinceK - E = 3 and # = 1, we obtains = 4 andE = [2,5] or s <5 andE = [5].
In the first case we have = § = 4/3 by Lemma 3.2 (iv) and Lemma 3.3 (ii), so
maximal twigs of D are tips, a contradiction with Lemma 6.2. Suppsse 5 in the
second case. Then similary= § = 9/5, which is impossible by Lemma 3.3 (iv).
We choose a minimal completion: (S, DT) — P! of a pre-minimal affine ruling
of S\ A. Subdivisional modifications ob do not changeK - (K + D), so KT (KT +
D) = K - (K + D), whereKT = Kg;. According to Corollary 5.4f has at least two
singular fibers.
(3) If Df N F is not a chain for some fibeF of f thenK . (K + D) # 0.
SupposeF N DT is branched ank - (K + D) = 0. Write F asF = FNDf+C+
A’, whereC is a (—1)-curve, andA’” C A. We contract the chai@ + A’ and successive
(=1)-curves inF as long as they are subdivisional f&x'. Denote the images oD,
E and F by D®, E® and F®. Let K® be the canonical divisor of the image of
S. In general, if after some sequence of contractions we ddiiffethen we denote
the respective images @&, F, etc. by E®), F® etc. and the canonical divisor on the
respective image o8 by K@), The contraction ofC+ A’ and contractions subdivisional
with respect to the image ob' do not changeK' - (KT 4+ Df) and E - (Kt + D)
(cf. Lemma 2.2), i.e.

K(l),(K(l) + D(l)) =K-(K+D)=0

and
E(l)-(K(l)—i- D(l)) =E-(K+D)=K-E.

Moreover, F&) N D@ is branched.
Let DY be the (1)-tip of DO, and letD@ be the image oD@ after the con-

traction of DY, Let Dél) be the uniqueD®-component intersectin®?). Note that
k(K@ 4+ D®) = ie(S\ (C U A)) = k(S) = —oo0,
so since by the Riemann—Roch theorem

ho%(—K®@ — D@) + %2k @ 4+ D) > K@ . (K@ + D@) =1,
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we get—K® —D® > 0. For every componen¥ of D® we haveV -(—K® - D®) =
2 — Bpoo(V). Sinces > 4, D@ is branched and every branching curve D, and
hence every component @@ which is not a tip, is in the fixed part ofK©@ — D®),
Supposefo) is not a tip of D@, then—K®@ - D@ — Dgz) >0, so—K®_pW_ Dfel) >
0. Clearly, E® is in the fixed part of the latter divisor, seK® — D® — ED >0, It
follows that —(KT + D + E) > 0, a contradiction withe(K™ + DT + E) = 2. Thus
DY is a tip of D®.

Let D® be the image ofD® after the contraction ngz). Since fo) is a tip,
D@ has the same number of branching component®@k (greater than one by our
assumptions aboub), hence D® is not a chain. MoreoverF® is not a 0-curve,
as no branching component @' N F has been contracted. We made two sprouting
blow-downs, so

K®. (K®+ D) =KD (KD + DY)+ 2=K-(K + D) +2=2.

Riemann—Roch’s theorem givé8(—K @) —D®) > 2. Since f has at least two singular
fibers, H is not a tip of D®. Since D® is not a chain,H is in the fixed part of
—K® DO, Let's write —K® —D® = H + R+ M, whereM is effective,h®(M) > 2

and the linear system d¥l has no fixed component. Intersecting with a general fiber
F'we have =1+ F -R+F'-M,soF'-M =F'-R=0 andR and M are vertical,
henceM ~ tF’ for somet > 0. We get that® + D® + H +tF’'+ R~ 0. Intersecting
with E® gives

0= E®-(K® + D® + F) = E@- (K@ + D - DF + F)
=ED. (KD 4+ D®) + EW . (F' —2DD — D‘(gl))
=K-E+E®. (Fél) _ ZDél) . Dél))’

which implies E® . (F® — 2D — D,E,l)) < 0. This is a contradiction, becaug€? is
branched, so the multiplicities dd® and D/(Sl) in it are greater than one.

(4) E=[5)], e=1ands=4

Suppose (4) does not hold. Then by (2) and KB)is the only branching curve in
DT, so D = D, every singular fibefF of f has at most one branching component and
FN D is a chain. In particular, there are exacslysingular fibers. Let be the number
of singular fibers which are chains. F is such a fiber thelF N A # @ andF N D
is a tip, so&F N D) < 1/2. Sinces > 4 and sinceA has at most three connected
components, we see that< s, so we have an inequality

c c
&D S—C+-=sS—-.

&D) < (s—0)+ 5 =5

Let's contract all singular fibers to smooth 0-curves withtauching H. The contrac-
tion of chain fibers does not affe&t-(K + D) and the contraction of any other singular
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fiber increaseX - (K + D) by one, so ifD and S are the images ob' and St after
contractions therD = H + sF for a general fibelr’ and

Ks-(Kg+D)=K-(K+D)+s—-c=s—c.

We get

s—c=Kg-(Kg+ D)=8-H?-2-2s
son = —-H? =3s—c— 6. By the Laplace expansion we have (cf. [13, 2.1.1)])
d(D) = dy - ---- ds(n — &D)), whered, are discriminants of maximal twigs, so by

Proposition 3.1 (iv)&D) > n. Thus
c
s— 5> &D) > 3s—c—6,

so 12> 4s—c¢ > 3s and thens < 3, a contradiction.

Recall thatT is the sum of maximal twigs oD.

(5) If RS D is a=< (—4)-tip of D then for every irreducible componekt of T
we have 0< V- (2K + R) <1 and for at most on&/ - (2K + R) # 0.

Let m be a maximal natural number, such tHat+ m(K + D) > 0. It exists by
Lemma 2.14 (iii) and is greater than one by (4) and Lemma 3.3Bf Lemma 2.14 (ii)
we can write

E+mK+D)=)Y C,

whereC; =~ P! andC? < 0. Moreover,C; # E, ask(K + D) = —oo. Multiplying both
sides byE + 2K + R we have

K-E-2+m@4-2—K-E+RD-R)=)» C-(E+2K+R),
i

s0) ;G -(E+2K + R) =1 by (4). Suppos€;, - (E + 2K + R) < 0 for someiy. If
Ci, - K = 0 then we geC;, = R and

0>R-(2K+R)=R-K =2,

which is impossible by our assumption dd ThusC;, - K < 0. Then Ciz0 = -1 and
Ci, - (E + R) = 1. SimultaneouslyyK + D + C;,| = 9 by the definition ofm, so by
Lemma 2.14 (i))D - C;, < 1. Thus eitherC;, is simple or it is a non-branching-()-
curve in D, a contradiction. Therefor€; - (E + 2K + R) > 0 for eachi. If V is a
component ofT then

V- (E+m(K + D)) = m(fo(V) - 2),
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so tips of D, and hence all components @f, appear among;’'s and we are done.

(6) There are no< (—4)-tips in D.

SupposeT; contains a< —4-tip of D, denote it byR. By (5) T — R consists of
(—=2)-curves and-5 < R? < —4. Maximal twigs of D other thanT; are tips, otherwise
e>1/5+1/2+1/2 + 2/3 > 9/5, a contradiction with Lemma 3.2 (iv). IR> = -5
thenV - (2K + R) = 0 for every component of — R, so R is a maximal twig, a
contradiction with Lemma 6.2. Thug, = [4, (k—1)] for some positive integek, hence
by Lemma 3.2 (iv) 95> e=3/2+ 1/(3+ 1/k), sok < 3. By Lemma 6.2 there is
an affine ruling ofS\ A which extends to @&%-ruling f of (S, D). If F is a singular
fiber of f then, sinceA = @, D N F contains at least four components, otherwise we
would haveF N D = [2,2, 2], which is impossible by the description of maximaigs.
Thus for every singular fibeF the divisor F N D is branched, so by Corollary 5.4
has two singular fibersh, h > 3 andh + h = n + 5. SinceZ and Z, are equal to
[4,(k—1)] or [2], G =[2] and G =[2], son > 1 by Proposition 3.1 (v). This implies
that one ofh or h, sayh, is at least 4, so the second branch of the respective singula
fiber contains at least tw®-components, hence contaifis. Let C be the uniqueSy-
component ofF. Now T; + C should contract to a smooth point. This is possible only
for k = 4, a contradiction.

(7) Maximal twigs of D are [2], [2], [3] and [3, 2].

We assume that; < d, < d; < ds. By Lemma 3.2 (iv) and Lemma 3.3 (iv) we
havee < 9/5 andé§ > 13/4—e> 13/4—9/5 = 29/20, sod; =2 and 2<d, < 3. If
d, = 3 then the lower bound oA givesd; = ds = 3, and since by Lemma 6.2 not
all maximal twigs are tipse > 1/2 4+ 1/3+ 1/3 4+ 2/3 > 9/5, a contradiction. Thus
d, = 2 and we have /d; + 1/d, > 9/20, sod; < 4. Since there are no-@)-tips in D
by (6), es > 1/3, so ford; = 4 we gete> 1+ 3/4+ 1/3 > 9/5, which is impossible.
Thus d; < 3. In fact T3 = [3], otherwisee > 3/2 4+ 1/3 > 9/5. We getd, < 8 and
e <9/5—-1-1/3 < 1/2, soT, contains a {3)-tip, henceT, = [3, 3] or T4 = [3, (K)]
for somek € {0, 1, 3. Only T4 = [3] and T4 = [3, 2] satisfy Lemma 3.3 (iv), so other
cases are excluded. The cakge= [3] is excluded by Lemma 6.2.

Now we see by Lemma 6.2 that there is an affine rulingf (S, D). As in (6)
we see thatf has two singular fibers and the second branch of one of thersisten
of an S-componentC and T,. Now againT, + C should contract to a smooth point.
But this is impossible fofT, = [3, 2], a contradiction. []

Lemma 6.4. Let P = (K + D + E)* and let B be the branching component of
D. Put b= —B2 Then
() be{l,2 and b< g
(i) § <1,
(iiiy P =((1-98)/(@-b)(B+ Y7, BKTY,
(iv) BK’E = —(1—8)?/(@—b) +e—1—e.
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Proof. (i) 0> d(D) = did,d3(b — &) > b — & by Lemma 2.4 (iv) and Propos-
ition 3.1 (iv). Now & < 1, sob < &< 3 and we geb € {1, 2} by Proposition 3.1 (v).

@iy P-V =0 for every componenV of T + E, becauseT + E C (K+D+
E)~. Components oD + E generate PiS® Q by Proposition 3.1 (vi), s®- B # 0,
otherwise? = 0, which contradictsc(S) = 2. We infer that

0<B-P=B-(K+D—BkD)=1-5.

(i) Both P and B + Ziszl Bk’ T! intersect trivially with all components of +

E, so they are linearly dependent in B Q. MoreoverP - B =1-6 and (B +

Y2 BKTY)-B=é—h.
(iv) We compute

1-5)2 3 -5y
Pzzgé_b;2< Z) Qo

=1

so since Bk D = —e, (iv) follows from Proposition 3.1 (ii). O

REMARK 6.5. If K- T is bounded (for example this is the case when we can
bound the determinantd, d;, ds) then there are only finitely many possibilities for the
weighted dual graphs dd and E. Indeed, by Proposition 4.2 and Lemma &% E +
€ <5 and by Lemma 6.4 (ipe {1, 2, soK:-E + K -D is bounded. It is therefore
enough to bound B + #D. This is possible using Noether formula (Lemma 3.2 (iii)).

Lemma 6.6. If b = #E = 1 then every affine ruling of § A has two singu-
lar fibers.

Proof. Let f: (Sf, Df + A) — P be a minimal completion of an affine ruling
of S\ A. We haveXg = 0, because B = 1. By Corollary 5.4 f has more than
one singular fiber. Suppose it has more than two singularsfibEach singular fiber
contains aD-component, so we infer thad! = D, B is horizontal andf has three
singular fibersFy, F2, F3. Let Cj and A for i = 1,2,3 be respectively th&-component
and the connected component &f contained inF (it is possible thatA; = 0). By
Lemma 2.14 (iii) there exists a maximal integer such thatB + m(K + D) > 0. By
Lemma 2.14 (i)m > 1, becauseB-D =3 —b > 1. Write B+ m(K + D) ~ L with
L effective. Multiplying by a general fibeF’ we get - m=F' -L >0, som=1
and L is vertical. Denote theD-component ofD intersectingB by D;. Denote the
number of characteristic pairs df by h; and assumé; < h; < hs. Note that for
any componenDg of D we haveDg - (K + D) = —2 + Bp(Dy), so all components of
D—-B—D;—D,— D3 are contained ir.. Now if h; # 1 thenC; + A; € L. Indeed, if
hi # 1 thenC; - (K + D + B) = 0 and theD-component intersectin@; is contained in
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L, hence so i€C; and then by induction all components af. By Proposition 3.1 (ii)
E-(Ci + Aj) = 2 for eachi, soh; = 1, otherwise

3
K-E=E-(K+D+B)=E-L>) E-(G +A4)=>86,
i=1

which contradicts Corollary 4.3. It follows that # @, hencee # 0 by Proposition 4.4.
Then K - E < 3 by Corollary 4.3, so as above we infer that = 1. By Propos-
tion 5.2(4)d = ¢;(F3), Sokz = 1 andCjz is simple on §, D), a contradiction. [

Corollary 6.7. If A has three connected components thea b = 2.

Proof. If A has three connected components tlefs a fork, soe = 2 by Prop-
osition 4.4 (ii) and # = 1 by Lemma 6.1. Each connected componentAofs con-
tained in a different singular fiber of a minimal completioham affine ruling ofS\ A.
By Lemma 6.6 and Lemma 6.4 (B = 2. O

7. Some intermediate surface containing the smooth locus

Recall thatT = D — B, where B is the branching component db. We define
W = S—T —E. Clearly, S = W\ B and hencex (W) = x(S) + x(C**) = —1. Since
W is constructed fron, by including B into the open part, the Kodaira dimension of

W might drop, even te-co. In this section we show that this does not happen, i.e. that

k(W) = 2. This takes a lot of work but allows later to strongly redtpossible shapes
of E using the logarithmic Bogomolov—Miyaoka-Yau inequalitye \fifst prove couple
of lemmas. We also need to rely on results of a computer pnogra

Lemma 7.1. Let R be an ordered admissible chain and debe such that

o
(%) eR) + m =1

Then

) R=[2,...,2,2]or R=0if and only ifa = 1,

(i) R=[2,...,2,3]if and only ifa = 2,

(i) R=[2,...,2,3,2]or R=1[2,...,2,4]if and only ifaea = 3.

Proof. Note that by Lemma 2.1 we have a recurrence formula

d((a, @, ..., &l) = ad([a, ..., al) —d([as, . .., &l).

Using it we see thaR = [2, ay, . . ., &] satisfies €) if and only if [a, ..., a] does,
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SO we may assume th&® = [ay, .. ., a] with a; > 3. If the equation holds then
d(R) + « = d(R) = a;d’'(R) — d"(R),

SO
2d'(R) < (a1 — 1)d'(R) = d"(R) + « < d'(R) + a,

henced'(R) < « <3 andk < 2. Ford'(R) =2 we getR = [3, 2], for d'(R) = 1 we
get R=[4] or R=[3] and for d’(R) = 0 we getR =0. O

Lemma 7.2. If R=[(k),c, a,-.., ay] is admissible then

k(c—1)+1 kc—2)+1
kc—1)+c =e&R) < kc—2)+c—1

Proof. For a chairR = [u,...] we haved(R) = ud'(R)—d”(R) and hencex(R) =
1/(u — €(R)). Since 0< €(R) < 1, we get ¥c < e(R) < 1/(c —1). The formula for
k # 0 follows by induction. ]

Lemma 7.3. (i) W is almost minimal and K- T + E = AP + Bk T + BK E,
wherer =1—(€—b)/(1-9).
(i) If ©(W)>0theniP = (K + T + E)*.
(i) If k(W)>0thené+s§<b+1,6+1/|G|>1ande # 0. The inequalities are
strict if k(W) = 2.
(iv) If ©(W) # 2 thenk(W) <0, &+ > 2 and b= 1. The inequality is strict if
k(W) = —o0.
(v) If K-T, =0 for some i then (2K + T + E) > 3—b—e.

Proof. (i) Recall that BK; = BK' T; + Bk’ T'. Using Lemma 6.4 (iii) we have

K+T+E=P—-B+BkD+BKE

3 3
=P-B-) BKT'+) BkT +BkE
i=1 i=1
é—b N
={1-——)P+BKT+BkE.
1-5
SupposeW is not almost minimal. Then by [16, 2.3.11] there exists—d )tcurve C,
such thatC + Bk E + Bk T has negative definite intersection matrix. Since the suppor
of BKE4+BkT is EUT, (K + T+ E)~ has at least & + #E + 1 = by(S) numeri-

cally independent components (cf. Proposition 3.1 (vi)yoatradiction with the Hodge
index theorem.
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(i) From (i) and from the definition of Bk we see th@t intersects trivially with
every component off + E. If k(W) > 0 then by the properties of Fujita—Zariski de-
composition the same is true foK(+ T + E)*. Since PicS ® Q is generated by
the components oD + E, we get K + T + E)* = P for somea € Q. We have
P-B=1-4§ and

(K+T+E)T-B=(K+T+E)-B—BkT-B=b+1—-8&—35,

hencea = A.

(i) We have x (W) = —1, s08+1/|G| > 1+ (1/3)+?P? by Proposition 2.15 (ii).
By (ii) and [5, 6.11]x(W) > 0 (x(W) = 0) if and only if A > O (respectivelyr = 0),
which is equivalent tdo+ 1 > €+ § (respectivelyb+ 1 = &+ ). Supposes = 0. Then
E = [|G|] by Proposition 4.4 (i), so by Lemma 3.2 (\¥)+ 1/|G| < e+ 1/|G| < 1.
Together with the inequality above this implies= §, so maximal twigs ofD are tips,
a contradiction with Lemma 3.2 (jii).

(iv) Supposec(W) = 1. Then by (ij)A?P? =0, sor =0 and henceK + T +
é)+ = 0 and«x(W) = 0 by [5, 6.11], a contradiction. Thug(W) < 0. Note that if
k(W) = —oo thenk(K + D + T) = —oo and by rationality ofW the divisor K +
T + E cannot be numerically equivalent to an effective divisen¢ei < 0. Thus for
k(W) <0 we haveb+ 1 < &+ 4§ and the inequality is strict fok(W) = —oco. Suppose
b =2. Sinceg + 1/d <1, we get§ + 1/d; = 1 for eachi, so D consist of (2)-
curves by Lemma 7.1()). By Lemma 6.4 (V):0BKk’E =1—¢, soe =2, E is a
chain by Lemma 2.4 (v) and’(E) + d’(E') + 2 = d(E). By Lemma 7.2 ifA is not
connected them(E), &E) > 1/2, sod'(E) + d’(E!) > d(E). Thus A is connected and
by Lemma 6.1E = [3, (k)] for somek > 0. Thend'(E) + d'(E') + 2—d(E) = k + 1,
a contradiction.

(v) AssumeK - T; = 0. Riemann—Roch’s theorem gives

hO(—K — T, — Ts— E) + h°(2K + T, + T3 + E)

1 ~ A
> K+ T+ T+ E) (2K + T+ To+ B) +1=3-c—b.
If —K —T,—Tz;—E > 0 thenB, and henceTy, is in the fixed part, se-K —D—E >0,
which contradictsc(S) = 2. Thush®(2K + T, + Ts+ E) > 3—b—e. O

Proposition 7.4. If D contains[2,1,2] or [3,1,2,2]then#E > 1 and k(W) = 2.

Proof. AssumeD containsF,, =[2, 1, 2] or F, = [3, 1, 2, 2]. SinceD is snc-
minimal, the ¢1)-curve of F, is B, the branching component d@. The divisor Fy,
snc-minimalizes to a 0-curve, hence give®&ruling p: S— P! with F., as a fiber.
E is vertical becausd-. - E =0, so Yy =h+v—-2=h-1=<2. Denote the fiber
of p containingE by Fe. We haveFg - D <5 because.(B) < 3. Note that for every
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S-componentL we havel - E < 1, becauseFe is a tree, so by Proposition 3.1 (ii)
#L N D > 2. There are no-{1)-curves inD other thanB, so all vertical £1)-curves
are S-components. We prove successive statements.

(1) If (W) # 2 thenE = [3].

Supposeix(W) # 2. By Lemma 7.3 (iv)k(W) <0,é&+ 38 >0 andir <0. We
first show that allS-components are exceptional. For af+componentL we have
L-(K+T#*+E" =AL-P. By Lemma 6.4 Sup® = D, soL -P > 0 because
L-D > 0. SupposeL? < —2. ThenL - (T# + E#) < AL - P, which, sincer < 0, is
possible only ifA = L-T#=L-E* =0. If L intersects at least two twigs dd, say,
Ti and T then L - T# = 0 implies thatT = T} = 0, soT; and T, are (2)-chains
and theni = 0 gives& + 1/d3 = 0, which is impossible. Thug-T; = L-T, =0 and
#L N T3 > 2, which implies thatT; contains the multiple section dd and, as before,
that it consists of £2)-curves. We ge& + 1/d; = 1 and nowx = 0 givesé; + & < 1.
However, by Lemma 7.2 in cask,, = [3, 1, 2, 2] we haved +& >1/3+2/3=1
and in caseF,, = [2, 1, 2] we haved, + & > 1/2 + 1/2 = 1, a contradiction.

Let Dy and D, be respectively the divisor of horizontal componentsDofand the
divisor of D-components contained iRg. Let D; be the multiple section contained in
Dn. Denote theS-components ofFg by Ly, Lo, ..., Lyrg). Clearly, D, has at most
three connected components and they are chains. We prav®gheontains a section
and D, # 0. SupposeDy, does not contain a section. In this cadg is irreducible, so
Yg =0 ando(Fg) = 1. We have nowFg-D < 3 andu(L1) > 2, so since #,ND > 2,
Dy, intersectsL; in exactly one point and, # 0. This gives

(L) +1<Fg-Dn=3,

sou(L1) = 2 and we geE =[2], a contradiction. SupposB, = 0. Since #£;ND > 2
for eachi, o(Fg) < 2. As Dy contains a section, th&-component intersecting it, say
L, has multiplicity one, s@(Fg) = 2. Thenu(L,) = 1, otherwiseL, could intersect
no other component oD than D;, which would imply

Fe-Di> u(Lo)D1- Lo > 4.

This shows thatFe = [1, (k), 1] for somek > 0, which contradict - E # 0.

Let « > 1 be the number of connected componentsDef We can assume that
L, intersectsE and D,, becauseFg is connected. In particulan(L;) > 2. Note that
every vertical £1)-curve intersects at most two other vertical componemsice each
L; meetingé intersectsDy,, otherwise it would be simple. Moreover, if su¢h does
not intersectD,, which happens for example ii(L;) = 1, then #&; N D, > 2. We
consider two cases.

SupposeL,; - E =0 for i # 1, i.e. Ly is the only §-component intersectin@.
Consider the contraction of()-curves inFg different thanL, (if there are any) until
L, is the unique exceptional component in the imdgeof the fiber. This contraction
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does not touchE + L, so E is one of the connected componentskf — L;. Since

L.- Dy > 0, we haveu(L,) < 3, otherwiseD;, would have to contain an-section for

somen > 3. It follows that eitherF; = [2, 1, 2] or F£ = [3, 1, 2, 2], henceE = [3].

We have alsqu(L;) = 3, so Dy, contains a 3-section, which implids,, = [3, 1, 2, 2].
Now supposeE intersects more than onle, sayL,- E > 0. We have

5> Fg-Dp > (D, + u(L1)L1 + u(L2)L2) - D

and u(Lo)Lo - Dp > 2, soa 4+ u(Ly)Ly - Dy < 3, hencew = 1 and u(L1) = 2. This
givesFg-D =5, soFy =[3, 1, 2, 2] andD contains three horizontal components.
particular, no maximal twig oD is contained inF,,. We have nowL,- D, = 0 and
#L,ND > 2, sou(Ly) = 1. Moreover, there are no more-{)-curves inFg. Defining
F¢ as the fiberFg with L, contracted we find thaFL has at most two-{1)-curves
and they are of multiplicity one. Hence all componentsFgf have multiplicity one,
so F£ = [1, (k), 1] for somek > 0. It follows that Fg = [1, (k — 1), 3, 1, 2], hence
E = [3] and we are done.

(2) If #E = 1 then B, T, T2, Ts, E) = ([11,[(5)]. [3].[2. 2, 3],[3]) and (W) = —cc.

Suppose £ = 1 (and (W) any). By Corollary 5.8 there exists a pre-minimal
affine ruling of S\ A, let f be its extension as in Notation 5.5. We use Notation 5.5.
In general f need not be defined o8, but at least the components & — Z; — Z,
are not touched by (F is the fiber of f, not of p). In particular, the divisor oD-
components of the second branch fefand Z, are maximal twigs ofD, denote them
by T; and T, respectively. The unique—)-curve C contained inF is not touched by
¢, SO it is exceptional or§ and satisfielC- D = 1, C- B = 0 and, since it is not
simple, #£ N E > 2. Now let us look at howC behaves with respect tp. Fibers ofp
cannot contain loops, so singe is connected and vertical fgu, C is horizontal forp
andFy-C =Fg-C > 2. We haveC.-D =1, soC intersectsF,, — B in a component
Do € Ty of multiplicity greater than one, hencE,, = [3,1, 2, 2], Dp- B =1 and
Dg = —2. In particular, we may assume thBt does not contain [2, 1, 2].

We now look back at the fibeF of f and we find that sincdd3 = -2, A’ =
and T; consists of {2)-curves. Note that iff is almost minimal then applying the
above argument t€ instead ofC we get thatC intersectsDo, which contradicts the
fact thatC and C intersect different maximal twigs ob. Thus f is not almost min-
imal. Contraction ofT; + C touchesZ; preciselyx = #T; times, sto =-x-1,
henceg; touchesZ; preciselyx times, becausd = 1. We haveZFu =1-—x. The
proper transform o, on Sis not a (-2)-curve, otherwised would contain the chain
[2, 1, 2], which was already ruled out. Therefore by Proposit.7 (i) we getx > 5
and A = 0.

Note that at least one df,, Tz, contains a {2)-tip, otherwise we get a contradic-
tion as in Lemma 6.2. We check now that this implig&V) = —co and E = [3]. In-
deed, ifc(W) > 0 then by Lemma 7.8+45 <2 and8+1/d(|§) > 1, so if, say,T, con-
tains a (-2)-tip thend, > 5 and we get Ad; 4+ 1/d(E) > 1—1/6—1/5 = 19/30, hence

n
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dy = d(E) = 3. But thenT, = [2, 3] and Tz = [3], S0 €+ 8 = 1 + (3/5) + (2/3) > 2,
a contradiction. By Lemma 7.3 (v) we infer that= 2, henceE = [3].

Supposes, + 1/d, > 1/2 and writeT; = [c] + R. We havec > 3, becauseD does
not contain [2, 1, 2]. The inequality givesd(R) — d’(R) < 2d(R) + 1, hence

(c—2)d(R) < d'(R) + 1 < d(R).

Thusc =3 ande(R) + 1/d(R) = 1, soR = [(y)] for somey > 0 by Lemma 7.1. We
have nowz, = T, = [(y), 3], so Z, = [2], G = [y + 2] and, sincef is pre-minimal,
G+Zy =](y),4,x—3)] and henceZ; = [y +2,2,x—1]. We getTz = [y+2,2,x—2],
and the inequality+ § > 2 reduces now tx(3 + 5y + 2y?) < 9y? + 27y + 20. Since
x > 5, we get K,y) € {(6,0),(5,3),(5,2),(5,1),(5,9) By Corollary 5.4 (iii) —(1/3)d(D)
should be a square, which happens only fory) = (5,0), i.e. in the case listed above.
Thus we can assun® + 1/d, < 1/2. Sincek(W) = —oo, by Lemma 7.3 (iv) we
geté + 1/d3 > 1/2. As before, this is possible only iF; = [(y), 3] for somey > 0.
It follows that Z, = [(y), 4], becauseZ,, is touched once by;. ThenZ, = [2, 2] and
G = [y + 2], so since the ruling is pre-minima6G + Z, = [(y)] and hencel, = 7, =
[y + 1]. Now Z; = [x + 1] and Z;, which is a proper transform oB, is touched 5
times by ¢;, sox = 5. Now the inequalityé + § > 2 yieldsy < 3. We check that
—(1/3)d(D) is a square only foly = 2, which again gives the case listed above.
We are therefore left with the casB,(T1, T2, Ts, E) = ([1], [(5)], [3],[2, 2, 3], [3]). To
exclude it we look more closely at the rulinginduced byF., =[3, 1, 2, 2] contained
in D (the case is quite difficult to rule out, as one can check thaha equalities and
inequalities derived so far in this paper are satisfied). \&& the notation from (1). In
fact there are two different chains [3, 1, 2, 2] containedDinwe consider the one not
containingT,. We have therefordz- D = 5. By (1) we know thatFg = [1, 3,1, 2] or
[3, 1, 2, 2] F¢ = Fe becauseD, consists of {2)-curves), but in the second case the
1-section contained iff3 would have to intersedt;, which is impossible, ag(L1) =
3. ThusFg =11, 3, 1, 2] and, as above, we denote thel)-curve intersectindd, by
L, and the second one bl,. Let D’ denote the divisor of vertical components of
D not contained inF,, U Fg. Clearly, D’ = [2, 2] € T;. Let F’ be the singular fiber
containingD’. SinceF’, which satisfiesd(F’) = 0, consists ofD’ and some number of
(—1)-curves, we necessarily ha¥ =[1,2,2,1]. Denote the<{1)-curves ofF’ by My,
M,, where M; intersectsTs. A fiber of p other thanF,,, Fg and F’ consists only of
S-components, hence is smooth, becablsg= 2. Let¢: S— S be the contraction of

B+FoNTi+My+F NTy+Lo+L1+TsN Foo-i-Té,

whereT; is the section contained ifs. Since the contracted divisor consists of disjoint
chains of type [1,%)], Sis smooth, henc& = P2. As u(L1) = 2, we haveT,-L; =1,

S0 Tp-L, =1. The contractions 0B+ FoNTy, Lo+ L1 +TsNFo+ T3 and My +F'NTy
touch T, respectively 3, 4 and 3% - M,)? times. The curve; (T,) has degree 3, which
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yields T2 + 3+ 4+ 3(T2 - M2)2 = 9, so 302 - Mp)? = 5, a contradiction. O]
Lemma 7.5. If x(W) < 0thene = 2 and one of the maximal twigs of D equ§?§.

Proof. By Lemma 7.3 (ivb = 1. By Proposition 7.4D does not contain [2, 1, 2]
or [3,1,2,2] and by Lemma 7.3 (iv) we haéet § > 2. We explore intensively these
facts. Note tha® + 1/d; < 1 for eachi. Assume thatd; < d, < d3 and write Ty =
[....t, 6] with t' = @ if #T; = 1. Recall that by our convention the last component of
Ti, the one with self-intersectiofy, intersectsB. We prove successive statements.

(1) Ty = [3] ort; =2.

Supposet; = 3. Then (3, to), (3, t3) # (2, 2) by Proposition 7.4 and if, = 2
(or t3 = 2) thents # 2 (t, # 2), so using Lemma 7.2 we g& < 1/2, & + & <
2/3+ 1/2, henceé < 5/3. We use continuously this type of argument below having
in mind Proposition 7.4 and the inequali®+ § > 2. Supposd; > 4. If some othet;
equals 3 theré < 1/3+1/2+ 2/3 = 3/2 and if not thené < 1/3+ 1/3+ 1 =5/3.
Thus in any casé; # 2 implies 3d; >§ >2—-é>2-5/3=1/3, sod; < 8. By
Lemma 2.6 we have to consider the following possibilities Ta: [4], [5], [6], [7],
[8l, I2, 3], [2, 4], [2, 2, 3], [3, 3].

Case 1. Ty is one of [2, 4], [5], [6], [7] or [8]. In each cas& + 1/d; < 3/7.
If (13, t3) = (2, 2) (or similarly ¢, t2) = (2, 2)) then& < 1/3 and we get id, > 2 —
3/7—-1-1/3, sod, < 4, a contradiction withd, > d;. In other cases + 1/d; <
3/7+2/3+1/2,s0 2d, > 1/dp, + 1/d3 > 2—&—1/d; > 17/42 and agaird; < 4,
a contradiction.

CAase 2. Tpis[2,2,3] or[3,3]. Theng + 1/d; <4/7 and& + & < 1/2+ 2/3,
so 2/d; >2—-&—1/d; > 1/4 andd, < 7. Sinced; < d, we getT; = [2, 2, 3] and
d; = d, = 7. By renamingT; and T, we can assume thd # 2. In fact we can
assume thafl, = [2, 2, 3] because other cases ([7] and [2, 4]) were excludexveab
Thus& +1/d3 > 6/7. We haveg; < 2/3, becausetf, t3) # (2, 2), so ¥dz > 6/7—-2/3
and thend; <5 < dy, a contradiction.

CAse 3. Ti =[4]. We have& +1/d; =1/2, so Yd,+1/d3 > 3/2—& —&. We
havet, +1t3 > 5. If t;, > 4 (or similarly tz > 4) then Yd, > 3/2—&—1> 1/6, sod, <5.
If t, = 3 (or similarly t3 = 3) then 2d, > 3/2—-2/3—1/2 = 1/3, so againd, < 5.
Note that sinceg&s +1/d3 <1, &+ 1/d> > 1/2, soT, # [5] (and similarly Tz # [5]). If
T, is one of [2,3], [3,2] or [2,2,2,2] then we have respectively 1/d, = 3/5,4/5,1
and using Proposition 7.4 we bourgg from above respectively by/3, 1/2 and 13,
which givesd; = 5. However, we check easily that foh = d; = 5 the inequality
1/d, + & + 1/d3 + & > 3/2 cannot be satisfied. Thus = 4. By renamingT; and T,
we can assume thdb # [2, 2, 2], soT, = [4]. Then& + 1/d3 > 1 so Tz = [2, 2, 2]
by Lemma 7.1 and after renaming and T3 we are done.

Case 4. T, =[2,3]. We have&, +&+1/d>+1/d3 > 7/5 and& +& < 2/3+1/2,
so d, < 8. Supposed, = 5. We can assume thdb = [2, 3], because the cash =
[5], T» = [2, 3] was considered above and in other cases 2, so after renaming;
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and T, we are done. Ifd; # 5 then& > 4/5—1/d3 > 3/5, hence g, t3) = (2, 2), a
contradiction. Thereforel; =5 and again we can assume tfigt=[2, 3], so& + &+
1/d, + 1/d3 = 6/5, a contradiction. Thus & d; < 8. If T, = [dy] then 1/d;3 + & >
7/5—2/5 =1, a contradiction. It follows thal, is one of [2, 2, 3], [2, 4], [3, 3], [4, 2]
or [2, 3, 2] (in particulard, > 6). By Proposition 7.48; < 2/3 in first three cases and
& < 1/2 in the latter two cases. In each case we ob&in & + 1/d, < 5/4, hence
d; < 6 < dy, a contradiction.

(2) Ti=[3]or T =[2]

Suppose # # 1. We have&, + &+ 1/d, + 1/d3 > 1. By (1) ty = 2, sotp, t3 # 2,
hence&, + & < 1/2+1/2 =1 and from the inequalitg+ 3 > 2 we geté + 3/d; > 1.
This givesd'(T}) = d(T})—1 or d'(T}) = d(T}) — 2, so T, = [(k)] or [3, (k)] for some
k>0 by Lemma 7.1.

Supposek > 2. In this casey, tz3 > 4, s0 &, & < 1/3. Then ¥d, + 1/d3 > 1/3
and we getd; < d, <5, which is possible only ifT, is a tip andT,; = [(k)] for some
ke{2,3,4. Since now ld3 >1—8& —2/d, > 2/3—1/2, we see thatl; <5, soT;
is also a tip. Therd, = 1/d, and& = 1/d3, so 1/d, + 1/d3 > 1/2 and we conclude
that T, = T3 = [4] and T; = [(k)] for somek € {2, 3}. It follows thaté + § = 2,
so k(W) =0 and by Lemma 7.3 Ak + 1) + 1/|G| = 1/2. Then|G| <6, soG is
abelian, because it is a small subgroup Gif(2, C). However, by Lemma 3.2 (iii)
#E = 7+ K - E + ¢ —k > 7, a contradiction.

We are left with the casf; = [3, 2], for which & + 1/d, + & + 1/d; > 6/5.
Now t, t3 # 2, S0&, & < 1/2. Supposd;, > 4 ortz > 4. Then& + & < 1/2+ 1/3,
so 1/d; + 1/d; > 1/3 and we getd, = 5, henceT, = [5] or T, = [2, 3]. If T, =[5]
then Yd; > 4/5—1/2 = 3/10. If T, = [2, 3] then, sincetz > 4, & < 1/3 and Yd3 >
3/5—1/3 = 4/15. In both cases we geb < 3, a contradiction. Thu$, = t3 = 3,
S0& + & < 1 and we getd, < 9. However, all admissible chains with discriminant
5 < d <9 which end with a £3)-curve satisfyé + 1/d < 3/5 (cf. Lemma 2.6), the
equality occurs only for [2, 3]. Hence/d; > 3/5— & > 1/10, sods < 9 too. This
implies T, = T3 = [2, 3], so &+ § = 2, which givesk(W) = 0. By Lemma 7.3 (iii)
1/|G| = 2/5, a contradiction.

@) T.=[2]

SupposeT; = [3]. We have& + & + 1/d; + 1/d3 > 4/3, so since& + & <
2/3+1/2, we get ¥d; + 1/d, > 1/6, which givesd, < 11.

Case 1. Supposerl, # [3] or (t5,t3) # (3,2). We prove that; < 42. Ford, > 6
the inequality ¥d; + 1/d, > 1/6 givesds < 42. We can therefore assume tltat< 6.
If T, =[3,2] then& +1/d, = 4/5 andt; # 2, so ¥d3 > 4/3—4/5—1/2 andd; < 29.
If T, =1[4], [5], [6] or [2,3] then&, +1/d, < 3/5 and sinced; < 2/3, we getd; < 14.
We are left with the casd, = [3], where we geté&; + 1/d3 > 2/3. If t3 > 3 then
1/d3 > 2/3—1/2, sod; < 5. If t3 =2 andt, > 3 then ¥d3 > 2/3—3/5, sod; < 14
and we are done.
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Now note that wheneveds is bounded, by Remark 6.5 there are finitely many
possibilities for the weighted dual graphs &f and E. Using a computer program
we checked that the conditiordy < 11, d3 < 42, Lemma 3.2 (iii)—(iv), Lemma 3.3,
Proposition 4.6, Lemma 6.4 and Proposition 3.1 (iv) (whioiplies that—d(D)/d(E)
is a square) are satisfied only in two cases:

() T1=1[3, 2=[3], Ts=[3,(6)] and E = [2, 3, 4],

(i) T.=1[3], . =[4], Tz =1(2,2,2] andE is a fork with a (2)-curve as a branching
component and maximal twigs [2], [2], [2, 2, 3].

In both casedD contains [3, 1, 2, 2], a contradiction.

CASE 2. Supposel, = [3] and (3, t3) = (3, 2), write T3 = To + [3, 2]. Using
Lemma 2.1 we check that the inequaliéy 1/d; > 2/3 is equivalent tod'(T}) + 3 >
d(T¢), so by Lemma 7.1T3 = [(k), 3, 2], [3, k), 3, 2], [4, k), 3, 2] or [2, 3, K), 3, 2]
for somek > 0. We conclude thak - T < 5, hence Remark 6.5 again reduces the
problem to checking finitely many cases (here Noether foanmoipliesk < 9, which
gives d3 < 102). We checked that each of them leads to a contradictioh ee of
the conditions as in Case 1.

It remains to prove that = 2. By (3) and Lemma 7.3 (v) we can assur@V) =
0. For convenience we put formally [3;1), 3] = [4], then we havel([3, (k—2),3]) =
4k for any k > 1. Supposes < 1. By Lemma 7.3 (v) K5+ T + E) > 0, so by
Lemma 2.13 (ii) [2Ks+ T#+ E*)] ~ U for some effective). ThenKs+T#*+E* =0
implies U + {2(Ks 4+ T# + E*)} = 0, hence 2 BK; and 2 BKE are Z-divisors. Since
T,, T3, E do not consist only of{2)-curves, we obtain 2 BE = E and 2 BKT; = T,
for i = 2, 3. The latter equality holds only i, and Tz are of type [3, k), 3] for
somek > —1. Using Lemma 6.4 (iv) we compute BE = —¢, hence by 2.5 and
Lemma 2.4 (v)e = 1 and E is a chain. Then we can write = [3, (z— 2), 3] with
z>1. By Lemma 3.2 (ii)x +y+z =11, hence X,y <9 and

1 1 1

St >2

X y 1l1-x—-y—
by Lemma 7.3 (iii). This inequality is satisfied only foxk,(y) = (1, 1) and &, y) =
(1, 9). However, in the first casé(D) = 0, so &, y) = (1, 9) and we gefl, = [4],
T; = [3,(7),3] andE = [4]. By Lemma 6.2 there exists an affine ruling 8fextending

to aPl-ruling of S. Since B2 = —1, B is horizontal and the ruling has three singular
fibers. This contradicts Lemma 6.6. O

Proposition 7.6. k(W) = 2.
Proof. Suppose&(W) < 1. By Lemma 7.3¢c(W) <0 andb = 1. By Lemma 7.5

one of the maximal twigs oD is [2]. We have alsax = 2, which givesE = [3].
Denote the coefficient of in Bk E by we. We prove successive statements.
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(1) If wg > 1/2 thenE is a chain andA is connected. Ifwg = 1/2 then either
E is a fork with maximal twigs [3], [2], [2] orE = [2, 3, 2]

SupposeE is a fork. By Proposition 4.4 (iii) we know thah does not contain
a fork and by Corollary 6.7 is not the branching component &, so E is of type
(b1) (cf. Proposition 4.6) and the maximal twig éfcontainingE is equal to [k), 3]
for somek > 0. Using Lemma 2.3 (ii) and the definition of a bark of an adibiss
fork it is a straight computation to check that < 1/2 in each case and the equality
occurs only for a fork with maximal twigs [3], [2], [2]. IfE is a chain thenE =
[(m—-1), 3, (h— 1)] for somem, m> 1 and

_ m+ m _ 1
Comm4+m4m 1+1/m+1/m’

WE

sowg > 1/2 if and only if I/m+ 1/m > 1, hence (1) follows.

By Corollary 5.8 there exists a pre-minimal affine ruling®f A, let f: (Sf, DT +
A) — P! be its minimal completion. Sinc&s, = 0, every singular fiber off has a
unique S-component and this component is -alj-curve. We use Notation 5.5. Since
b=1 and Zf <—2,n=1 and by Corollary 5.4/, h) = (2, 3). Write A’ = [(m—1)],
A = [(m — 1)] for somem, m > 1. The maximal twig of D' contained in the first
branch of F, call it T, and the one contained in the second branchH-pfcall it Ty,
are not touched by;, hence they are maximal twigs @.

Fibers of P1-rulings cannot contain branching-1)-curves, so sincd = 1, ¢

touches the birational transform &. Let St — S5 S be the factorization ofps,
such that the birational transform & is touched byj exactly once. Letr: S — U
and7: S— U be the contractions of; + C + A’ on respective surfaces.

The centers ofy and# are different, so there exists a birational morphismJ —
U, such thatp o # = 7 o 5. Denote the birational transform & contained inU by
B. By definition B2 = 0. Consider theP!-ruling n: U — P! induced byB. Denote
by T3, E € U the reduced total inverse image ® and the birational transform df
respectively. PutD = T, + B + T3. Let D, € T, and D3 € T3 be the sections of
contained inD and letF’ be a general fiber. SincEg = 1 for the rulingn o7, there
exists a unique singular fibef; with o(F;) = 2. Let My, My be its §-components.

(2) Mj; and M, are (1)-curves. Ifn has more than one singular fiber thEp=
Mi+ A + My.
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Suppose there is another singular fidgr Note that vertical £1)-curves areS-
components. We have(Fp) = 1, soFg is a chain intersected in tips by, D3, other-
wise there would be a loop in Sufip. Then Fy containsTz — D, + T, — D, so Fy
does not contairD-components. Sincd/; - D = M; - (D, 4+ Ds), both M; intersect
D, + D3, hence both have multiplicity one. It follows th&y = [1, (M — 1), 1], so
we are done. We can therefore assume fhats the unique singular fiber af. Sup-
pose F; has only one {£1)-curve. ThenD, and D3 intersect tips offF; belonging to
the first branch ofF;, so when we contracE; to a smooth fiber we touclD, + D3
at most once. This gives two disjoint sections oP&ruling of a Hirzebruch surface,
one negative and one non-positive, which is a contradiction

The morphismz contracts the fiber consisting @i + C + A’, so sinceh = 3, we
can write

T = [Pp0020 P00,

where p1, p2 are sprouting blow-ups (with respect to the image of the Yilzerd o;
are compositions of sequences of subdivisional blow-dowsste thatp; o o7 is the
contraction ofC + A’. Puto = o0 pyooz and letR for i = 1, 2 be the exceptional
divisors of p;. We now analyze the contractioh and singular fibers off more closely.

(3) E-(Kg+D)+E-0c*Ry=1.

Let us use the common lett& for the birational transforms dE. Using Lemma 2.2
we check how the quantit{’ - (K’ + D’), where D’ is the reduced total transform of
D and K’ the canonical divisor on a respective intermediate surkmtereenS andU,
changes under subsequent blow-downs. Sifide subdivisional with respect t®, at
the beginning we have

E-K'+D)=E-(K+D+C+A)=1+E-(C+A).
Undero it decreases bYE'- Ry = E-ofRy = E-(C + A’) and underp; it decreases
by E - R, =E-0o*Rs.
(4) There is a unique—{1)-curve L, such thatL - D > 1. It satisfiesKj + D +
L=0.
We have
Kg-(Kg+D)=Ky-(Ky +7D)=K-(K+D)+1=1,
so by Riemann—Roch’s theorem
h%(—Kg — D) + h°2K + D) > Ky - (K + D).

If 2Ky + D > 0 then

0<k(Kg + D) = k(Ky +7.D) = k(K + D + C + A") = (K + D),
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where the last equality follows from Lemma 2.13 (i), and tbamtradictsc (K + D) =
©(S) = —oo. We get—Kg —D > 0. Write —Kj —D = 3" C; for some irreducibleC;’s,
such thatC? < 0 (cf. Lemma 2.14 (ii)). For a fibeF’ of n we haveF’-(K; + D) =0,
so Ci’s are vertical.

Each S-component_ of a singular fiber intersectd and by (2) it is a £1)-curve.
Suppose each satisfiés- D = 1. ThenF; is the only singular fiber of). Indeed, if
F’ # F, is a singular fiber them (F’) = 1 and since Supp does not contain a loop,
F’ is a chain, so its exceptional component does not satisfyassumption.F; N D
has two connected components (which may be points)RI€tM1+ A + M, be a chain
connecting them. By assumptidf# M1, M,, so R contains bothM;. It follows that R
contains a divisor with zero discriminant, which is possibhly if F; =[1, (h—1), 1],
henceT, = D, and T3 = D3. If we now look at the pre-minimal ruling 0§\ A then
we see tha?Z; and z; are irreducible, s&G and G are (-2)-curves, which implies that
D contains a component with non-negative self-intersectooontradiction. Thus there
is an exceptiona&-componentL, such thatL - D > 1.

Note that if for soméa € {2, 3} the sectionD; intersectsL then D; is a maximal
twig of D, becauseD; - F = 1. It follows thatL - D = 2. Since (Kj —D)-L =
1-D-L <0, L appears among;’s. However,—Kj — D — L is vertical and satisfies

(-Kg—D-L)?>=Kg-(Kg+D)—1=0

so —Kyj — D — L = «F for somea > 0. Multiplying by D;j for i = 2, 3 we get
Bs(Di) + L-Dj =2—«a. Fora > 0 we would obtaings(D2) = B5(D3) = 1 and
L-D, = L-Ds =0, which is impossible, at - D > 0. ThusKz + D +L =0. If L’
is another {1)-curve, such that’-D > 1, then—L’-L = L’- (K + D) > 0, hence
L'=1L.

(5) 2<E-0"Ry=1+E-L=<3.

IntersectingK; + D + L = 0 with components oD + A we see that. - A = 0
and L intersectsD only in tips, each tip once. It follows that and = do not touch
L. Intersecting

K+T+E=AP+BkT+BKE

with L we get
E-L(1—wg) <(BkT,+BkTs)-L—1.

We have (BKT; + Bk T3) - L < 2, otherwiseT, and T3 would be 2)-chains, which is
impossible by Proposition 7.4. Thus- L < 1/(1 — wg). By (3) we get

~ ~ 1
E-0*Rp=1-E-(Kj+D)=1+E-L <1+ .
1—wE
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By (2) eitherwg < 1/2 or E = [3, (n — 1)] for somen > 1 and then (1 — wg) =
2+1/n<3. Inany caseE - 0*R, < 3.

Consider the rulingy o 7 : S— PL Let uc and ua be the coefficients in* R,
of C and respectively of a component af intersectingE (put ux = 0 for A" = 0).
Clearly, o does not touchl; + C + A"+ E. We haveE -0*Ry, = ucC- E + ua and
ua < uc. Note thatE - 0*R, > 2, otherwiseE - (C + A’) < 1, a contradiction with
Proposition 3.1 (ii).

(6) T1=[(Kk), 3] for somek > 1. E = [3, 2].

Suppose first that® = 1. ThenE-oc*R, = E-F’ for a generic fiber’ of no7.
By (5) we have

2<E-L+1=E-F =pucC-E+us <3.

SupposeL & F; (cf. (2)). The fiber containind- haso = 1, sou(L) > 2 and since
wW(L)E-L<E-F <3, wegetE-F =E-L+1=2. ThenF;=M;+ A+ M; by
(2), becausd. is contained in some singular fiber. Since bath intersectD, we have

By Proposition 3.1 (i))E - My, E- M, > 2, soA # 0 and then
E-A=E-(F —M;—M,) <0,

a contradiction. Thereforé € Fy, sayL = My. By (4) D-M, <1, SOE- M, > 2 by
Proposition 3.1 (ii). We have

E-M,<E-(F—L)=1,

so 0# A C F; and
E-M,<E-(F,—L—-A)<0.

Then

A

E-My=A-M,<1,

a contradiction. Thus® > 1.

Supposeupr = 0. ThenA’ =0, soC-E > 2. SinceucC-E + ua <3, we
get uc =1, soT; = [(kK)] for somek > 0. Since #; > 1, D contains [2, 1, 2] by
Lemma 7.5, a contradiction with Proposition 7.4. Thus > 0. We getuc > 1 and
thenuc = 2, ua =1 andC-E = 1. As #1; > 1, it follows that T; is [(k), 3] or
[3, (k)] for somek > 1. However, in the latter case the equality= 3 does not hold.
Thus T; = [(k), 3] for somek > 1. We conclude that\’ = [2] and E-0*R, = 3, so
E-L =2. SinceE-L < 1/(1— we) (cf. (5)), we getA =0 by (1).
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(1) T=[2]
Recall thatT, is the maximal twig ofD contained in the first branch df (a fiber
of f). SupposeT, # [2]. By (6) and Lemma 7.5T3 = [2], so since #3 =1, f is
not almost minimal. Thus by Proposition 5.7 the morphigm St — S minimalizing
Dt contracts preciselyHT + Z1 and touchesZ; at least four times. However, since
A =0, G+ Z, + Z; consists of {£2)-curves, hencep; touchesZ; at most once,
a contradiction.
From (7) we see thaF is produced by the following sequence of characteristic

. . . 4k+4 2k+2 2 i i
pairs (cf. Definition 2.9 and Notation 5.1)375), (*77), (7). so the pa|rs(:;) are

(2, (41). By (6) C-E =1 andx = 2C- E + 1= 3. The second fibeF of f is

produced by the sequend§), (}) for somec, p = 1. We have
kc=d = k¢, = 6k + 6.
By 5.1) d+1=«(2k+2+k+1+1)+k(c+ p), hencekp =3k + 1. Then
k = gcdkc, kp) = gecd(&K + 6, K + 1) =gcd(4, K + 1),
sok € {2, 4 (C would be simple for = 1). On the other hand (5.2) gives
d? +3=i/%cp+i2+92k+1°+k+1)+3C-E+C-E +1,

hencek? = 3k + 1. Fork = 2 we getk = 1, so €, p) = (6, 2), which contradicts the
relative primeness of and p. Thusk =4 and we gek =5 and €, p) = (9,4). Then
G+Zy=[3,2,2,2] andZ, =[2,5], soTs = [2,4]. Thené+6§ =3/7+1+7/13< 1,
a contradiction with Lemma 7.3 (iv). O

Corollary 7.7. E is one of[2, 3], [3], [4], [5] and € € {1, 2}.

Proof. By Proposition 7.&(W) = 2, so by Lemma 7.3 (iii) and Lemma 6.4 (ii)
we havee # 0 and 1> § > 1 —1/|G|. Suppose|/G| > 7 and assumel; < d, < ds.
For d; > 3 we getd, = 3 andd; < 5. Ford; = 2 we haved, > 3 and the inequality
givesd, <5 and ¥d3 > 6/7—1/2—1/3 = 1/42, sod; < 41. By Remark 6.5 there
are only finitely many possibilities for the weighted duahpis of E and D. Using a
computer program we checked that with the above bounds ttomsliLemma 3.2 (iii),
Proposition 4.6, Lemma 6.4 and Proposition 3.1 (iv) can hisfeed only for E= [4],
which contradicts our assumption. We conclude tl@f < 6, so E is one of: [2, 3],
[3], [4], [5], [6]. However, [6] is ruled out by Corollary 4.3 ]

8. Special cases

By Section 7 we know that(W) = 2 and €, E) € {(2,[2,3]).(2.[3]).(1.,[4]),(1,[5]).
We will rule out these cases now. Lét (Sf, D) — P! be a minimal completion of a
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pre-minimal affine ruling ofS\ A (see Fig. 1). We use Notation 5.5. Let, §, z) with
X <y < z be the ordering ofd, dz, d3), where as before = d(T;) are discriminants
of maximal twigs of D. By Lemma 7.3 we have + § > 1 - 1/|G| > 2/3, where
|G| = d(é), soXx <4 andy < 11.

Lemma 8.1. One of the following cases occurs
@ (x.y)=(3 3)andE =3
(i) (x,y)=(2,3)and E € {[2, 3], 3], [4]. [3]},
(i) (x,y) =(2,4)and E is either[3] or [4],
(iv) (x,y) €{(2, 5), (2, 6) and E = [3].
In particular, the two maximal twigs of D corresponding to x and y belonglte=
{212, 2], 12,2, 2], [2, 2,2, 2], [2, 2, 2, 2, 2], [3], [4], [3][6]. [2, 3], [3, 2]

Proof. Suppose < 41. Given an upper bound farthere are finitely many pos-
sible weighted dual graphs @. We used a computer program, which showed that for
X <4,y <11,z <41 conditions Proposition 3.1 (iv), Lemma 3.2 (iii)—(iv)einma 3.3,
Lemma 6.4 and Lemma 7.3 (iii) are satisfied only in three cases
() b=1Ti=[2], . =[4], Ts=[(8), 4] andE = [4],

(i) b=2Ti=[2], T =2, 2], Ts = [4, (6)] and E = [4],

(i) b=2 T =[2], . =[2,2, 2], Ts =[3, 3, (4)] andE = [4].

These are included above, so we are done. Now suppasé2. Forx > 4 we get
1/z>1-1/|G|-1/2 > 1/6, which is impossible. Fox = 3 we have 1y + 1/|G| >
2/3 —1/42, which gives|G| = y = 3. Since§ < 1, for x = 2 we havey > 3 and
1/y+1/|G| > 1/2—-1/42, hencey < 6 and the bounds okt follow. O

Corollary 8.2. The ruling f has two singular fibers arful = 2.

Proof. By Corollary 5.4f has more than one singular fiber and it has at most
three becaus® is a fork. Each contains a uniqu&-component. Suppose it has three.
Then D = D and sincex < 3, for one of the singular fibers, sd, F1 N D has at
most two components, hendg is a chain andA N F, # @. Then E = [2, 3] and
A CFp=12,1,2]. It follows that the maximal twigs contained in othengular fibers
of f have more than two components, a contradiction with Lemria 8ssumeh < h.
Since D is a fork, h < 2. By Corollary 5.4h = 2. O

Let T1, T, be the maximal twigs oD contained respectively in the second and in
the first branch ofF. (The role ofTi’s is not symmetric because of this, that is exactly
why we do not assume; < d, < ds, but usex, y, z instead.) Clearly, they are also
maximal twigs of DT and ¢+ contracts the chait + Z; + Z, to Ts.

We rewrite the equations of Propostion 5.2 for two fibers. Pein+e¢+K-E—4,

thenh =34+« and 0<« <n. Put (;11) = (g) (;11) = (;) and (g;fl) = (;) SinceT; is
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a chain, we havd®) = () =---= (52) = (). Recall thatp = kC-E +¢},C-E +¢}.
We havep = «? for A’ =0 andp = (1/2)(x? + 1) for A’ = [2], analogously fors.

In any casep < «? and 5° < &2 (in fact these bounds hold in general, which can be
shown by a straightforward computation). Recall thak > 2 by Proposition 3.1 (ii).

We haved = cxk = €k, so we can write (5.1) as:

(8.1) dn+y —-2=«(p+ac + p)+«p.
Multiplying the above equation by and subtracting (5.2) we obtain:
(8.2) d(y —2)—y =«*(c—C)ac + p)—p— 5.

REMARK. Knowing the dual graph o, it is easy to determine/c’ and p/c'.
One hasc/c’ = d(G + Z,) = d(Z) and p/c’ = d(Z,) = d(Z) —d(Z — Z) (cf. Ap-
pendix of [12]).

REMARK 8.3. For a fixed weighted dual graph Bf there are finitely many pos-
sible weighted dual graphs df + H.

Proof. If the (weighted) dual graph ¢ is known then we knove, p,c/, p’. The
equation (8.1) gives

K

el

2
n(c—c’)+”T= P+(e+K-E—4)¢ +p +

d

son(c—c) < p+ p' +c¢<2c, hencen < 2+2c'/(c—c’) < 4. Since now is bounded,
it is enough to bound, because thed, p, and hence, p, «, p are bounded. We have
Ck = ¢k, SOk | c-gcd, k). By (8.1) gcdg, k) | y —2 and sincey —2 € {1, 2,3, we
getk | c(y —2) and thenk < 3c. Thereforex and p are bounded. The coefficient of
k in (8.2) does not vanish, so (8.2) is a nontrivial polynonggliation forx of degree
at most two, so we are done. O

Lemma 8.4. d; <6 if and only if ¢ > 6.

Proof. By Lemma 8.1d; <6 ord, <6. Supposeal; <6 andd, < 6. Clearly, hav-
ing the dual graph off;, there are only finitely many possibilities for the dual drap
of T, + C + A/, in each casezf is determined. On the other handl, = Z, and
(G + Z,)! are adjoint chains(cf. [5, 4.7]), i.e.e(G + Z,) = 1 — &(Z)), so the dual
graph of G + Z, is determined byT,. Then by Remark 8.3 there is finitely many pos-
sibilities for the dual graphs oF + H. We use a computer program which for given
F (in terms of €, p, ¢/, p’)) computes possibley( n, «, p, &, €, P, p) using the algo-
rithm sketched in Remark 8.3 and checks whether (8.1) ar) (&n be satisfied. In
each case (there may be many solutions) the maximal Twigs determined and the
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program returns only these, for which conditiohs- 1/|G| > 1, Lemma 3.2 (iii)—(iv),

Lemma 6.4,,/—d(D)/d(E) € Z and Lemma 3.3 hold, these are:
M (yed)=0442(9)=D() =00 =@:b=2Ti=[2, .=(E),
T =[3,3, (4)], ~
@) (ny o) =0442)=0.)=0.)=0:b=1T=[2, =4,
Ts = [(8), 41, _
(i) (n,7,,7) = 2,4,4,2(9) = (.(5) = (). )
Ts = [4, (6)] )

In cases (i) and (ii) we have-d(D)/d(E) = 4 and gcd¢, €) = 4, in case (iii)
—d(D)/d(E) = 1 and gcd¢, &) = 2. By Corollary 5.4 (iii) this is a contradiction. [J

¢ b=2Ti=[22] T.=[2],

We are ready to finish the proof of our main result.

Proof of Theorem 1.1. As before, I8t be a singulaQ-homology plane and le&
be its smooth locus. SuppogéS) = —oco andi(S) = 2. With the notation as above by
Lemmas 8.4 and 8.T3 € L. We first prove thatf is almost minimal. Suppose not. Then
by Proposition 5.7A = 0 andg; contractsH ' + Z;, whereHt = Z,+ G+ H + G + Z,,.
Furthermoreg; touchesZ; once andZ; x times, wherex = 1— Z2, > 4. It follows that
n=1,272=-2andz? = Z%, — b— 1. For a given weighted dual graph & the dual
graph ofG + Z, is determined uniquely. Indee@ + Z, and Z{ are adjoint chains, so
e(G + Z,) = 1—e(Z). Similarly, &G + Z,) = 1—e(Z)). By the properties o the
chainC + Z; + HT has zero discriminant, so the snc-minimalization®f+ Z, + C
is adjoint to G + Z,)!, and hence has the same weighted dual graph agherefore
Z, determines the weighted dual graphtéf + Z; + Z,. Note that sinceZ; is touched
more than onceZ; + Z, cannot consist of{2)-curves, so # > 1. We now rule out
the remaining cases.

Casel. T3=13,2].

We haveZ, = [3, 3], so G + Z, = [2, 3, 2] and hencel(T,) = d([2, 3, 2, 2, 1])=
d([2, 2]) = 3. Then &, y) = (3, 5) by Lemma 8.4 and this contradicts Lemma 8.1.

Case 2. T, =12,3].

We haveZ, = [2, 4], so G + Z, = [3, 2, 2] and henceT is a minimalization of
[3, 2, 2, 2, 1], which is [2]. ThenX, y) = (2, 5), SOE = [3] by Lemma 8.1. We have
(5) = (3) and (%) = (%), sox | d = 7% and gcdé, %) | y —3, hencec = 7 andi = 2c',
However, (8.1) gives @ = ¢ + 1 and then (8.2) implies that 8> —7¢ —46=10, a
contradiction withc’ € N.

Case 3. T; =[(k)] for somek € {2, 3, 4, 5.

We haveZ, = [(k—1),3], soG + Z, = [k+1,2] and hencd, is a minimalization
of [k+1, 2,2, 1], which is k]. Then by Lemma 8.41; ¢ L, so &, y) = (k,k+ 1) and
we getk = 2 by Lemma 8.1. We hav) = () and (%) = (%). Then & =d = 2k,
so by (8.1)kc' (¢ —1) =y —2—«kp — 2¢. The left hand side is negative, 0= 0,
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i.e. K-E+¢€ = 3. Supposer = 3. By (8.1) gcdg,x) =1, sok =5. We getc’ =5p'—1
and then (8.2) impliesc()? —5¢' +3—p = 0. Forx = 5 we getp = 25 or p = 13,
a contradiction withc’ € Z. Thusy = 4 and now gcd(, «) | 2, sok € {2, 5, 1Q.
We check that (8.1) and (8.2) lead to a contradiction #o 2 and forx = 2 give
(;’,) = (%). ThenTy = [(3), 7, (6)] andb = 2, henced(D) = —25, a contradiction with
Corollary 5.4 (iii).

Thus f is almost minimal. Suppose > 1. ThenD' = D andh > 2, so f3 > 5
and in factT; = [(5)] becauseTs; € £. We getG + Z, = [2] and G + Z, = [2], so
() = (*) and (;) = (5), hencek = d/¢ = c'x. By (8.1) we get 1< k | y — 2, SO
y # 3 and henceA = 0. Then by (8.2) | y, sok =2 andE = [4]. We geta =1
and then (8.1) givep’ = ¢ + 1, which contradictgy’ < ¢’

Since f is almost minimal,¢ does not contracZ,, so #;3 > 2. Moreover, if
#T; = 2 then #, = 1, soG + Z, consists of {2)-curves and since; has to contract
G, we see thatZ; is touched at least twice by:. The latter shows that if B = 2
then Zf < —4, which contradicts & < 1. ThereforeT; = [(k)] for somek = 3, 4, 5.

By Lemma 8.1E = [4] or E = [3]. In particular,a = 0 and A = 0. The latter
yields Z2 = —2. Now Z, consists of {2)-curves, soZ, = 0. Let's write Z; = [(3)]
and G = [s + 1] for somes > 1. Sinceg; does not contracZ,, it cannot contract
G. This givess > 2, asn = 1. SupposeG # [2]. Then #3 < 5 implies s = 2,
Z,=0andG =[3], sod, = 3. By Lemma 8.4 we getx(y) = (3, 6), a contradiction
with Lemma 8.1. ThusG = [2], so ¢; touchesG at least twice, which gives > 3.

Now k <5 impliess = 3 and Z, = 0. By Lemma 8.1E = [3]. We have(§) = (})

and (j) = (*). Then & = d = 2¢x and gedg, &) = 1, sox = 2. Now (8.1) gives
¢ =2p —1, so by (8.2) ¢)?— 2¢ = 1, a contradiction. O]
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