ON THE DADE CHARACTER CORRESPONDENCE AND ISOTYPIES BETWEEN BLOCKS OF FINITE GROUPS

ATUMI WATANABE

(Received April 20, 2009)

Abstract

In [3] Dade generalized the Glauberman character correspondence. In [13] Tasaka showed that the Dade correspondence induces an isotypy between blocks of finite groups under some assumptions. In this paper we obtain a generalization of [13], Theorem 5.5.

1. Introduction

Let p be a prime and (K, \mathcal{O}, k) be a p-modular system such that K is a splitting filed for all finite groups which we consider in this paper. Let S denote \mathcal{O} or k. For a finite abelian group F, we denote by \hat{F} the character group of F and by \hat{F}_q the subgroup of \hat{F} of order q for $q \in \pi(F)$ where $\pi(F)$ is the set of all primes dividing the order |F| of F. Let G be a finite group and N a normal subgroup of G. We denote by Irr(G) the set of ordinary irreducible characters of G and $Irr^G(N)$ be the set of G-invariant irreducible characters of G. For $\phi \in Irr(N)$, we denote by $Irr(G|\phi)$ the set of irreducible characters χ of G such that ϕ is a constituent of the restriction χ_N of χ to N.

HYPOTHESIS 1. G is a finite group which is a normal subgroup of a finite group E such that the factor group F = E/G is a cyclic group of order r. λ is a generator of \hat{F} . $E_0 = \{x \in E \mid \bar{x} \text{ is a generator of } F\}$ where $\bar{x} = xG$. E' is a subgroup of E such that E'G = E, $G' = G \cap E'$ and $E'_0 = E' \cap E_0$. Moreover $(E'_0)^{\tau} \cap E'_0$ is the empty set, for all $\tau \in E - E'$.

Under the above hypothesis, in [3], E.C. Dade constructed a bijection between $\operatorname{Irr}^E(G)$ and $\operatorname{Irr}^{E'}(G')$ which is a generalization of the cyclic case of the Glauberman correspondence in [4].

²⁰⁰⁰ Mathematics Subject Classification. 20C20.

Theorem 1 ([3], Theorems 6.8 and 6.9). Assume Hypothesis 1 and $|F| \neq 1$. For each prime $q \in \pi(F)$, we choose some non-trivial character $\lambda_q \in \hat{F}_q$. There is a bijection

$$\rho(E, G, E', G')$$
: $\operatorname{Irr}^{E}(G) \to \operatorname{Irr}^{E'}(G') \quad (\phi \mapsto \phi' = \phi_{(G')})$

which satisfies the following conditions. If r is odd, then there are a unique integer $\epsilon_{\phi} = \pm 1$ and a unique bijection $\psi \mapsto \psi_{(E')}$ of $\operatorname{Irr}(E|\phi)$ onto $\operatorname{Irr}(E'|\phi')$ such that

(1.1)
$$\left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \psi\right)_{F'} = \epsilon_{\phi} \prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \psi_{(E')},$$

for any $\psi \in \operatorname{Irr}(E|\phi)$. If r is even, and we choose $\epsilon_{\phi} = \pm 1$ arbitrarily, then there is a unique bijection $\psi \mapsto \psi_{(E')}$ of $\operatorname{Irr}(E|\phi)$ onto $\operatorname{Irr}(E'|\phi')$ such that (1.1) holds for all $\psi \in \operatorname{Irr}(E|\phi)$. In both cases we have

$$(\lambda \psi)_{(E')} = \lambda \psi_{(E')}$$

for any $\lambda \in \hat{F}$ and and $\psi \in Irr(E|\phi)$. Furthermore, the resulting bijection is independent of the choice of the non-trivial character $\lambda_q \in \hat{F}_q$, for any $q \in \pi(F)$.

Assume Hypothesis 1. If |F|=1, then E=E'. We call $\rho(E,G,E',G')$ the Dade correspondence, where $\rho(E,G,E',G')$ denote the identity map of $\operatorname{Irr}^E(G)$ when |F|=1. Following [13], for $\phi' \in \operatorname{Irr}^{E'}(G)$, we set $\phi'_{(G)}=\rho(E,G,E',G')^{-1}(\phi')$, and for $\psi \in \operatorname{Irr}(E|\phi)$ and $\psi' \in \operatorname{Irr}(E'|\phi')$, we set $\psi'_{(E)}=\psi$ if $\psi'=\psi_{(E')}$. From (1.1) ψ' is a constituent of $(\lambda\psi)_{E'}$ for some $\lambda \in \hat{F}$, hence $\phi_{(G')}$ is a constituent of $\phi_{G'}$. In particular if ϕ is the trivial character of G, then $\phi_{(G')}$ is the trivial character of G'. From the above theorem we have the following also.

Proposition 1. Assume Hypothesis 1. Let $\phi \in \operatorname{Irr}^E(G)$ and $\phi' \in \operatorname{Irr}^{E'}(G')$. Then $\phi' = \phi_{(G')}$ if and only if there exist $\psi \in \operatorname{Irr}(E|\phi)$, $\psi' \in \operatorname{Irr}(E'|\phi')$ and $\epsilon = \pm 1$ such that

$$\psi(x) = \epsilon \psi'(x) \quad (\forall x \in E'_0).$$

THE GENERALIZED GLAUBERMAN CASE Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $(|C_G(A)|, |A|) = 1$. We set $E = G \rtimes A$, $G' = C_G(A)$ and $E' = G' \times A \leq E$. By [3], Lemma 7.5, E, G, E' and G' satisfy Hypothesis 1. Moreover by [3], Proposition 7.8, in the Glauberman case, that is, if (|A|, |G|) = 1, then the Glauberman correspondence coincides with the Dade correspondence.

In the generalized Glauberman case, suppose that $p \nmid |A|$ and $p \nmid |G: C_G(A)|$. Then in [8], H. Horimoto proved that there is an isotypy between b(G) and $b(C_G(A))$ induced by the Dade correspondence where b(G) is the principal block of G. Isotypy is a notion defined in [1].

HYPOTHESIS 2. Assume Hypothesis 1. (p, r) = 1. b is an E-invariant block of G covered by r distinct blocks of E.

Assume Hypothesis 2 and that r is a prime power. Moreover let b' be a block of G' containing $\phi_{(G')}$ for some $\phi \in \operatorname{Irr}(b)$. In [13], F. Tasaka proved that if r is odd, or r=2 or b=b(G), and if b' is covered by r blocks of E', then there is an isotypy between b and b' induced by the Dade correspondence ([13], Theorem 5.5). In this paper we prove that the arguments in [13] can be extended to the general case (see Theorem 6 in §5). Theorem 6 is a generalization of Theorem 5 in [16]. We also show that the Brauer correspondent of b and that of b' are Puig equivalent (see Theorem 8 in §6).

NOTATIONS. We follow the notations in [13], [12] and [15]. Let G be a finite group. We denote by $G_0(\mathcal{K}G)$ the Grothendieck group of the group algebra $\mathcal{K}G$. If L is a $\mathcal{K}G$ -module, then let [L] denote the element in $G_0(\mathcal{K}G)$ determined by the isomorphism class of L. For $\phi \in \operatorname{Irr}(G)$, we denote by $\check{\phi}$, e_{ϕ} and L_{ϕ} , the dual character of ϕ , the centrally primitive idempotent of $\mathcal{K}G$ corresponding to ϕ and a $\mathcal{K}G$ -module affording ϕ respectively. We also denote by ω_{ϕ} the linear character of the center $Z(\mathcal{K}G)$ of $\mathcal{K}G$ corresponding to ϕ . Let H be a subgroup of G. We denote by $(\mathcal{S}G)^H$ the set of H-fixed elements of $\mathcal{S}G$. We denote by Pr_H^G the \mathcal{S} -linear map from $\mathcal{S}G$ to $\mathcal{S}H$ defined by $\operatorname{Pr}_H^G(\sum_{x \in G} a_x x) = \sum_{h \in H} a_h h$ and by Tr_H^G the trace map from $(\mathcal{S}G)^H$ to $Z(\mathcal{S}G)$. For $\alpha \in \mathcal{O}$, we denote by α^* the canonical image of α in k. For $a \in \mathcal{O}G$, we denote by a^* the canonical image of a in a i

Let b be a block of a. We denote by $\mathcal{R}_{\mathcal{K}}(G,b)$ the additive group of generalized characters belonging to b, by $\mathrm{CF}(G,b;\mathcal{K})$ the subspace with a basis $\mathrm{Irr}(b)$ of the \mathcal{K} -vector space of the \mathcal{K} -valued central functions of $\mathcal{K}a$, and by $\mathrm{CF}_{p'}(a,b;\mathcal{K})$ the subspace containing the elements of $\mathrm{CF}(a,b;\mathcal{K})$ which vanish on b-singular elements of b, where $\mathrm{Irr}(b)$ is the set of ordinary irreducible characters belonging to b. Let b be a b-Brauer element. We denote by b denote by denote by denote by b and b decomposition map from b control b be a b-Brauer element. We denote by b the decomposition map from b control b be a b-Brauer element. We denote by b and b control b and b denote by b and b control b be a denote by b and b denote by b the central character of b and by b by b the set of blocks of b denote by b associated with b where b is a b-subgroup of b. Let b be a normal subgroup of b. For b e b for b, we denote by b denote by

2. Preliminaries

In this section we assume Hypothesis 1. For $x \in E$ (resp. $x \in E'$), we denote by C(x) (resp. C(x)') the conjugacy class of E (resp. E') containing x. For $X \subseteq E$, we set $\hat{X} = \sum_{x \in X} x \in SE$.

Lemma 1. Let $s \in E'_0$ and let Q, R be subgroups of G' centralized by s. Let $a \in G$. If $Q^a = R$, then $a \in C_G(Q)G'$. In particular $N_G(Q) = C_G(Q)N_{G'}(Q)$.

Proof. By the assumption, $s^a \in C_E(R) \cap E_0$. By [13], Lemmas 3.9 and 2.4, there exists $y \in C_E(R)$ such that $s^{ay} \in C_{E'}(R)$. Since s^{ay} , $s \in E'_0$, $ay \in E'$. Set z = ay. Then $Q^z = R$, hence $a = (zy^{-1}z^{-1})z \in C_E(Q)E'$. Since $C_E(Q) = C_G(Q)\langle s \rangle$ and $E' = \langle s \rangle G'$, $a \in C_G(Q)G'\langle s \rangle$ and hence $a \in C_G(Q)G'$.

Proposition 2 (see [13], Proposition 3.7). Let $x \in E'_0$, $\phi \in \operatorname{Irr}^E(G)$ and $\phi' \in \operatorname{Irr}^{E'}(G')$. Then we have the following.

- (i) $\operatorname{Pr}_{E'}^{E}(\widehat{C(x)}e_{\phi}) = \widehat{C(x)'}e_{\phi(G')}$.
- (ii) $\operatorname{Tr}_{E'}^{E}(\widehat{C(x)'}e_{\phi'}) = \widehat{C(x)}e_{\phi'_{(G)}}$

Proof. Let ψ be an extension of ϕ to E. $\widehat{C(x)}e_{\phi}$ is a \mathcal{K} -linear combination of the elements in xG. Hence we have

$$\widehat{C(x)}e_{\phi} = \frac{|C(x)|}{|E|} \sum_{y \in xG} r \psi(x) \psi(y^{-1}) y.$$

From Theorem 1, (1.1), $\psi(z) = \epsilon_{\phi} \psi_{(E')}(z)$ for any $z \in E'_0$. Therefore we have

$$\widehat{C(x)'}e_{\phi_{(G')}} = \frac{|C(x)'|}{|E'|} \sum_{z \in xG'} r \psi_{(E')}(x) \psi_{(E')}(z^{-1}) z$$
$$= \frac{|C(x)'|}{|E'|} \sum_{z \in xG'} r \psi(x) \psi(z^{-1}) z.$$

From [13], 2.4, we have (i) and (ii).

3. The Dade correspondence and blocks

Assume Hypothesis 1 and $p \nmid r$. If an element $s \in E'_0$ centralizes a Sylow p-subgroup of G, then the principal block b(G) satisfies Hypothesis 2.

HYPOTHESIS 3. Assume Hypothesis 1. (p, r) = 1. b' is an E'-invariant block of G' covered by r distinct blocks of E'.

Assume Hypotheses 2 and 3 and assume that $\phi_{(G')} \in Irr(b')$ for some $\phi \in Irr(b)$. In this section we show the Dade correspondence $\rho(E, G, E', G')$ induces a bijection between Irr(b) and Irr(b'), and the Brauer categories $\mathbf{B}_G(b)$ and $\mathbf{B}_{G'}(b')$ are equivalent.

Theorem 2 (see [13], Proposition 3.5, (1) and (2)). (i) Assume Hypothesis 2. Then $\{\phi_{(G')} \mid \phi \in Irr(b)\}$ is contained in a block $b_{(G')}$ of G'.

(ii) Assume Hypothesis 3. Then $\{\phi'_{(G)} \mid \phi' \in Irr(b')\}\$ is contained in a block $b'_{(G)}$ of G.

Proof. (i) Let $\phi_1, \phi_2 \in \operatorname{Irr}(b)$ and set $\phi'_i = \phi_{i(G')}$ for i = 1, 2. We show ϕ'_1 and ϕ'_2 belong to a same block of G'. We may assume at least one of these characters is of height 0. Let \hat{b} be a block of G covering b and for i = 1, 2, let $\hat{\phi}_i$ be a unique extension of ϕ_i to E belonging to \hat{b} recalling Hypothesis 2. Note \hat{b} and b are isomorphic by restriction. Set $(\hat{\phi}_i)' = (\hat{\phi}_i)_{(E')}$ for i = 1, 2. By [12], Chapter III, Lemma 6.34, we have the following for a non-trivial linear character λ of F,

(3.1)
$$\sum_{x \in E_{p'}} \hat{\phi}_1(x) \hat{\phi}_2(x^{-1}) \neq 0, \quad \sum_{x \in E_{p'}} \hat{\phi}_1(x) \lambda(x^{-1}) \hat{\phi}_2(x^{-1}) = 0.$$

For each $q \in \pi(F)$, let λ_q be a non-trivial linear character in \hat{F}_q . Set $(E_0)_{p'} = E_0 \cap E_{p'}$ and $(E'_0)_{p'} = E'_0 \cap E_{p'}$. We have

$$\begin{split} & \sum_{x \in E_{p'}} \hat{\phi}_1(x) \Biggl(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi}_2 \Biggr) (x^{-1}) \\ & = \sum_{y \in (E_0)_{p'}} \hat{\phi}_1(y) \Biggl(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi}_2 \Biggr) (y^{-1}) \end{split}$$

by [13], Lemma 2.4,

$$= \frac{|E|}{|E'|} \sum_{z \in (E_0')_{p'}} \hat{\phi}_1(z) \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi}_2 \right) (z^{-1})$$

by Theorem 1,

$$\begin{split} &= \epsilon_{\phi_1} \epsilon_{\phi_2} \frac{|E|}{|E'|} \sum_{z \in (E'_0)_{p'}} (\hat{\phi}_1)'(w) \Biggl(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot (\hat{\phi}_2)' \Biggr) (w^{-1}) \\ &= \epsilon_{\phi_1} \epsilon_{\phi_2} \frac{|E|}{|E'|} \sum_{u \in (E')_{p'}} (\hat{\phi}_1)'(u) \Biggl(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot (\hat{\phi}_2)' \Biggr) (u^{-1}), \end{split}$$

that is,

(3.2)
$$\sum_{x \in E_{p'}} \hat{\phi}_{1}(x) \left(\prod_{q \in \pi(F)} (1 - \lambda_{q}) \cdot \hat{\phi}_{2} \right) (x^{-1})$$
$$= \epsilon_{\phi_{1}} \epsilon_{\phi_{2}} \frac{|E|}{|E'|} \sum_{u \in (E')_{p'}} (\hat{\phi}_{1})'(u) \left(\prod_{q \in \pi(F)} (1 - \lambda_{q}) \cdot (\hat{\phi}_{2})' \right) (u^{-1}).$$

From (3.1) there exists $\lambda \in \prod_{q \in \pi(F)} \hat{F}_q$ such that

$$\sum_{u \in (E')_{p'}} (\hat{\phi}_1)'(u) (\lambda(\hat{\phi}_2)')(u^{-1}) \neq 0.$$

Then $(\hat{\phi}_1)'$ and $\lambda(\hat{\phi}_2)'$ belong to a same block of E'. Hence ϕ_1' and ϕ_2' belong to a same block of G'. (ii) follows from (3.2) and the above arguments.

Assume Hypothesis 2. We denote by \hat{b}_0 a block of E covering b. For each $\phi \in Irr(b)$, we denote by $\hat{\phi}$ a unique extension of ϕ which belongs to \hat{b}_0 . For any $i \in \mathbb{Z}$, we denote by \hat{b}_i the block of E which contains $\lambda^i \hat{\phi}$ where $\phi \in Irr(b)$. For the block b, \hat{b}_i is fixed throughout this paper. Let $\hat{b}_0 = \sum_{x \in E} \alpha_x x$. Then $\hat{b}_i = \sum_{x \in E} \lambda^i (x^{-1}) \alpha_x x$. Moreover we note that for any $t \in E$, $\sum_{x \in Gt} \alpha_x^* x \neq 0$ because $\{(\hat{b}_0)^*, (\hat{b}_1)^*, \dots, (\hat{b}_{r-1})^*\}$ are linearly independent. This fact is used implicitly in the proof of Proposition 5 below.

Proposition 3 (see [13], Proposition 3.5, (3)). Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$ using the notation in Theorem 2. Then there exists a block $(\hat{b}_0)_{(E')}$ of E' such that $\operatorname{Irr}((\hat{b}_0)_{(E')}) = \{(\hat{\phi})_{(E')} \mid \phi \in \operatorname{Irr}(b)\}$. If r is odd, then $(\hat{b}_0)_{(E')}$ is uniquely determined, and if r is even, we have exactly two choices for $(\hat{b}_0)_{(E')}$.

Proof. Let $\phi_1, \phi_2 \in \operatorname{Irr}(b)$ and suppose that ϕ_1 is of height 0. Assume $(\hat{\phi}_1)_{(E')}$ belongs to a block $(\hat{b}_0)_{(E')}$ of E'. Here we note that we have two choices for $(\hat{\phi}_1)_{(E')}$ when r is even by Theorem 1, and hence we have two choices for $(\hat{b}_0)_{(E')}$. By the proof of Theorem 2 and by our assumption, there is a unique linear character $v \in \hat{F}$ such that $v(\hat{\phi}_2)_{(E')}$ belongs to $(\hat{b}_0)_{(E')}$ and that v = 1 or v is a product of some elements of $\{\lambda_q \mid q \in \pi(F)\}$. Hence if r is odd, then v = 1 because λ_q can be replaced by another non-trivial linear character in \hat{F}_q . If r is even, v = 1 or $v = \lambda_2$, hence $(\hat{\phi}_2)_{(E')}$ belongs to $(\hat{b}_0)_{(E')}$ by replacing ϵ_{ϕ_2} by $-\epsilon_{\phi_2}$ if necessary. This combined with Theorem 1 completes the proof.

With the notation in the above proposition, we denote by $(\hat{b}_i)_{(E')}$ the block of E' containing $\lambda^i(\hat{\phi})_{(E')}$ ($\phi \in \operatorname{Irr}(b)$) for $i \in \mathbf{Z}$. Moreover, when r is even, we fix one of two $(\hat{b}_0)_{(E')}$, and hence $(\hat{b}_i)_{(E')}$ are fixed.

Lemma 2 (see [13], Lemma 3.3). Assume Hypothesis 2. We have the following holds.

- (i) There exists $s \in E_0$ such that $(\omega_{\hat{b}_i}(\widehat{C(s)}))^* \neq 0$ for all $i \in \mathbb{Z}$.
- (ii) For s in (i), $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$, that is, $\widehat{C(s)}b$ is invertible in $Z(\mathcal{O}Eb)$.
- Proof. (i) By the assumption and [12], Chapter III, Theorem 6.24, for any $q \in \pi(F)$, there exists $s(q) \in E$ such that $(\omega_{\hat{b}_i}(\widehat{C(s(q))}))^* \neq 0$ and that s(q)G is a generator of the Sylow q-subgroup of F. Then $(\omega_{\hat{b}_i}(\bigcap_{q \in \pi(F)}\widehat{C(s(q))}))^* \neq 0$. This implies that there exists $s \in E_0$ such that $(\omega_{\hat{b}_i}(\widehat{C(s)}))^* \neq 0$.
- (ii) From (i) $\widehat{C(s)}\widehat{b_i} \in Z(\mathcal{O}E\widehat{b_i})^{\times}$ for any i because $Z(\mathcal{O}E\widehat{b_i})$ is local. Hence $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$.

Assume Hypothesis 2. By the above lemma and [13], Lemma 2.4, there exists an element $s \in E'_0$ such that $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$. Hence there exists a defect group D of b centralized by s, and hence contained in G' (see [13], Lemma 3.10). Let $P \leq D$. Then by [13], Lemma 3.9, $C_E(P)$, $C_G(P)$, $C_{E'}(P)$ and $C_{G'}(P)$ satisfy Hypothesis 1. Moreover we note $F \cong C_E(P)/C_G(P)$. Let $e \in Bl(C_G(P), b)$. Then we see that $Br_P^{\mathcal{O}E}(\widehat{C(s)}b)e^* \in (Z(kC_E(P)e^*))^{\times}$. This implies that e is covered by e blocks of e blo

Theorem 3 (see [13], Proposition 3.11). *Using the same notations as in* Theorem 2 we have the following.

- (i) Assume Hypothesis 2. Let D be a defect group of b obtained in the above and let $P \leq D$. Let $e \in Bl(C_G(P), b)$. Then $e_{(C_{G'}(P))} \in Bl(C_{G'}(P), b_{(G')})$. In particular, $b_{(G')}$ has a defect group containing D.
- (ii) Assume Hypothesis 3. Let D' be a defect group of b' and let $P' \leq D'$. Let $e' \in Bl(C_{G'}(P'), b')$. Then $e'_{(C_G(P'))} \in Bl(C_G(P'), b'_{(G)})$. In particular, $b'_{(G)}$ has a defect group containing D'.

Proof. See the proof of [13], Proposition 3.11. \Box

Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$ where $b_{(G')}$ is the block determined by Theorem 2. We have

$$\operatorname{Irr}(b') = \{\phi_{(G')} \mid \phi \in \operatorname{Irr}(b)\}\$$

by Theorem 2. Let D be a common defect group of b and b', and let $P \leq D$. Such a defect group exists by the above theorem. Let (D, b_D) be maximal b-Brauer pair and let (P, b_P) be a b-Brauer pair contained in (D, b_D) . By the above theorem, $(D, (b_D)_{(C_F(D))})$

is a maximal b'-Brauer pair and $(P, (b_P)_{(C_{F'}(P))})$ is a b'-Brauer pair. We set

$$(b_P)' = (b_P)_{(C_{E'}(P))}$$

and

$$(b_P^*)' = ((b_P)')^*.$$

For any $u \in C_{E'}(P)$, we denote by $C(u)_{(P)}$ the conjugacy class of $C_E(P)$ containing u, and by $C(u)_{(P)}'$ the conjugacy class of $C_{E'}(P)$ containing u.

Theorem 4 (see [13], Theorem 5.2). Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$ where $b_{(G')}$ is the block determined by Theorem 2. Then the Brauer categories $\mathbf{B}_{G}(b)$ and $\mathbf{B}_{G'}(b')$ are equivalent.

Proof. Our proof is essentially the same as the proof of [13], Theorem 5.2. Let D be a common defect group of b and b', and let $P \leq D$. There is an element $t \in C_E(P) \cap E'_0$ such that $\widehat{C(t)_{(P)}}b_P^* \in (Z(kC_E(P))b_P^*)^\times$. By Lemma 2, such an element exists. For any $a \in G'$ we have the following using Proposition 2 and Theorem 2.

$$\widehat{C(t^a)'_{(P^a)}}((b_P^*)')^a = \Pr_{C_{E'}(P^a)}^{C_E(P^a)}(\widehat{C(t^a)_{(P^a)}}(b_P^*)^a) \neq 0.$$

In fact we have

$$\begin{split} \widehat{C(t^a)'_{(P^a)}} &((b_P^*)')^a = \widehat{(C(t)'_{(P)}} (b_P^*)')^a \\ &= \left(\Pr_{C_{F'}(P)}^{C_E(P)} \widehat{(C(t)_{(P)}} b_P^*) \right)^a = \Pr_{C_{F'}(P^a)}^{C_E(P^a)} \widehat{(C(t^a)_{(P^a)}} (b_P^*)^a) \neq 0. \end{split}$$

In particular, if $(P, b_P)^a = (P, b_P)$, then $(P, (b_P)')^a = (P, (b_P)')$.

Now for $P \leq R \leq D$, we prove $(P, (b_P)') \leq (R, (b_R)')$. We may assume $P \subseteq R$. From (3.3) R fixes $(b_P)'$ because R fixes b_P . Now let $s \in E'_0$ be such that $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$. Then $\widehat{C(s)} \cap \widehat{C_{E'}(P)}(b_P)'$ is fixed by R. Moreover $\widehat{C(s)} \cap \widehat{C_E(P)}b_P^*$ is invertible in $(Z(kC_E(P)b_P^*))^R$. Hence $\operatorname{Br}_{R/P}^{kC_E(P)}(\widehat{C(s)} \cap \widehat{C_E(P)}b_P^*)b_R^*$ is invertible in $Z(kC_E(R))b_R^*$ where $\operatorname{Br}_{R/P}^{kC_E(P)}$ is the restriction to $(kC_E(P))^R$ of the Brauer homomorphism Br_R^{kE} . In particular it does not vanish. Hence we have from Proposition 2

$$\begin{split} & \operatorname{Br}_{R/P}^{kC_{E'}(P)}(\widehat{C(s) \cap C_{E'}(P)}(b_P^*)')(b_R^*)' \\ & = \operatorname{Br}_{R/P}^{kC_{E'}(P)}\left(\operatorname{Pr}_{C_{E'}(P)}^{c_E(P)}(\widehat{C(s) \cap C_E(P)}b_P^*)\right)(b_R^*)' \\ & = \operatorname{Pr}_{C_{E'}(R)}^{c_E(R)}\left(\operatorname{Br}_{R/P}^{kC_E(P)}(\widehat{C(s) \cap C_E(P)}b_P^*)\right)(b_R^*)' \\ & = \operatorname{Pr}_{C_{E'}(R)}^{c_E(R)}\left(\operatorname{Br}_{R/P}^{kC_E(P)}(\widehat{C(s) \cap C_E(P)}b_P^*)b_R^*\right) \neq 0. \end{split}$$

The last inequality follows from [13], Lemmas 3.9 and 2.4. Therefore

$$\operatorname{Br}_{R/P}^{kC_{E'}(P)}((b_P^*)')(b_R^*)' \neq 0.$$

This implies $(P, (b_P)') \leq (R, (b_R)')$.

For a subgroup T of D and $a \in G$, suppose that $(P, b_P)^a \leq (T, b_T)$. We show that there is an element $e \in C_G(P)$ such that $ea \in G'$ and $(P, (b_P)')^{ea} \leq (T, (b_T)')$. By Lemma 1, we may assume $a \in G'$. Since we have $(P, b_P)^a = (P^a, b_{P^a}), (b_P)^a = b_{P^a}$. From (3.3), $((b_P)')^a = (b_{P^a})'$, hence $(P, (b_P)')^a = (P^a, (b_{P^a})') \leq (T, (b_T)')$. Conversely for $c \in G'$, suppose that $(P, (b_P)')^c \leq (T, (b_T)')$. Then we have $((b_P)')^c = (b_{P^c})'$. By (3.3) again, $b_{P^c} = (b_P)^c$, so $(P, b_P)^c = (P^c, b_{P^c}) \leq (T, b_T)$. This implies that the categories $\mathbf{B}_G(b)$ and $\mathbf{B}_{G'}(b')$ are equivalent. This completes the proof.

4. Perfect isometry induced by the Dade correspondence

In Sections 4, 5 and 6, we assume Hypotheses 2 and 3, and $b' = b_{(G')}$ using the notation in Theorem 2. In this section we show b and b' are perfect isometric in the sense of Broué [1]. Moreover we use notations in §3. In particular, we recall that $\operatorname{Irr}((\hat{b}_i)_{(E')}) = \{\lambda^i(\hat{\phi})_{(E')} \mid \phi \in \operatorname{Irr}(b)\}$. Now we have $b = \sum_{i=0}^{r-1} \hat{b}_i$, and $b' = \sum_{i=0}^{r-1} (\hat{b}_i)_{(E')}$, and hence we have

$$b'b = \sum_{i=0}^{r-1} \sum_{l=0}^{r-1} (\hat{b}_l)_{(E')} \hat{b}_{l+i}.$$

We put

(4.1)
$$b_{i} = \sum_{l=0}^{r-1} (\hat{b}_{l})_{(E')} \hat{b}_{l+i} \quad (\forall i \in \mathbf{Z}).$$

Then $(b_i)^2 = b_i$ and $b_i \in (\mathcal{O}Gbb')^{E'}$ for each i because

$$b_{i} = \sum_{y \in E'} \sum_{x \in E} \sum_{l=0}^{r-1} \lambda^{l} (y^{-1}) \lambda^{l} (x^{-1}) \lambda^{i} (x^{-1}) \beta_{y} \alpha_{x} y x \in \mathcal{O}G$$

by the orthogonality relations where $\hat{b}_0 = \sum_{x \in E} \alpha_x x$ and $(\hat{b}_0)_{(E')} = \sum_{y \in E'} \beta_y y$ $(\alpha_x, \beta_y \in \mathcal{O})$. For each prime $q \in \pi(F)$, let $\lambda_q \in \hat{F}_q$ be a non-trivial character as in Theorem 1. Set $l = |\pi(F)|$. Of course we may assume l > 0 for our purpose. Moreover we can write for t $(t \le l)$ distinct primes $q_1, q_2, \ldots, q_t \in \pi(F)$

$$\lambda_{q_1}\cdots\lambda_{q_t}=\lambda^{m_{\{q_1,\ldots,q_t\}}}\quad (m_{\{q_1,\ldots,q_t\}}\in\mathbf{Z})$$

recalling λ is a generator of \hat{F} . Then we have

(4.2)
$$\prod_{q \in \pi(F)} (1 - \lambda_q) = 1 + \sum_{t=1}^l (-1)^t \sum_{\{q_1, \dots, q_t\} \subseteq \pi(F)} \lambda^{m_{\{q_1, \dots, q_t\}}}$$

where $\{q_1, \ldots, q_t\}$ runs over the set of t-element subsets of $\pi(F)$.

Proposition 4 (see [13], Proposition 4.4). With the above notations we have

$$\begin{aligned} [b_0 \mathcal{K}G] + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \dots, q_t\} \subseteq \pi(F)} [b_{m_{[q_1, \dots, q_t]}} \mathcal{K}G] \\ = \sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi} [L_{\phi_{(G')}} \otimes_{\mathcal{K}} L_{\check{\phi}}] \end{aligned}$$

in $G_0(\mathcal{K}(G' \times G))$.

Proof. Our proof is essentially the same as the proof of [13], Proposition 4.4. Let $\phi \in Irr(b)$. In $G_0(\mathcal{K}E')$ we have the following from (4.1), (4.2) and (1.1)

$$\begin{split} [b_{0}\mathcal{K}E\otimes_{\mathcal{K}E}L_{\hat{\phi}}] + \sum_{t=1}^{l}(-1)^{t} \sum_{\{q_{1},\ldots,q_{t}\}\subseteq\pi(F)}[b_{m_{\{q_{1},\ldots,q_{t}\}}}\mathcal{K}E\otimes_{\mathcal{K}E}L_{\lambda^{m_{\{q_{1},\ldots,q_{t}\}}\hat{\phi}}}] \\ &= [b_{0}(L_{\hat{\phi}})_{E'}] + \sum_{t=1}^{l}(-1)^{t} \sum_{\{q_{1},\ldots,q_{t}\}\subseteq\pi(F)}[b_{m_{\{q_{1},\ldots,q_{t}\}}}(L_{\lambda^{m_{\{q_{1},\ldots,q_{t}\}}\hat{\phi}}})_{E'}] \\ &= [(\hat{b}_{0})_{(E')}(L_{\hat{\phi}})_{E'}] + \sum_{t=1}^{l}(-1)^{t} \sum_{\{q_{1},\ldots,q_{t}\}\subseteq\pi(F)}[(\hat{b}_{0})_{(E')}(L_{\lambda^{m_{\{q_{1},\ldots,q_{t}\}}\hat{\phi}}})_{E'}] \\ &= (4.2), (1.1) \epsilon_{\phi}\left([(\hat{b}_{0})_{(E')}L_{(\hat{\phi})_{(E')}}] + \sum_{t=1}^{l}(-1)^{t} \sum_{\{q_{1},\ldots,q_{t}\}\subseteq\pi(F)}[(\hat{b}_{0})_{(E')}L_{\lambda^{m_{\{q_{1},\ldots,q_{t}\}}(\hat{\phi})_{(E')}}]\right) \\ &= \epsilon_{\phi}[L_{(\hat{\phi})_{(E')}}]. \end{split}$$

This implies that in $G_0(\mathcal{K}G')$

$$[b_0\mathcal{K}G\otimes_{\mathcal{K}G}L_{\phi}]+\sum_{t=1}^l(-1)^t\sum_{\{q_1,\ldots,q_t\}\subseteq\pi(F)}[b_{m_{[q_1,\ldots,q_t]}}\mathcal{K}G\otimes_{\mathcal{K}G}L_{\phi}]=\epsilon_{\phi}[L_{\phi_{(G')}}].$$

Since $b_i b = b_i$ for any $i \in \mathbb{Z}$, the proof is complete.

Theorem 5 (see [13], Theorem 4.5). Assume Hypotheses 2 and 3, and that $b' = b_{(G')}$. Set $\mu = \sum_{\phi \in Irr(b)} \epsilon_{\phi} \phi_{(G')} \phi$. Then μ induces a perfect isometry $R_{\mu} \colon \mathcal{R}_{\mathcal{K}}(G, b) \to \mathcal{R}_{\mathcal{K}}(G', b')$ which satisfies $R_{\mu}(\phi) = \epsilon_{\phi} \phi_{(G')}$.

Proof. We note that $b_j\mathcal{O}G$ is projective as a right $\mathcal{O}G$ -module and as a left $\mathcal{O}G'$ -module if $b_j \neq 0$. Hence by [1], Proposition 1.2, μ is perfect. This and the above proposition imply the theorem.

5. Isotypy induced by the Dade correspondence

In this section we show that b and b' are isotypic. Here we set

$$\hat{b}_i' = (\hat{b}_i)_{(E')} \quad (i \in \mathbf{Z}).$$

Then D is a defect group of \hat{b}'_i since $p \nmid r$. Let $P \leq D$ and let $(\hat{b}_P)_i$ be a block of of $C_E(P)$ such that it covers b_P and it is associated with \hat{b}_i . By our assumption and Lemma 2, $(\hat{b}_P)_i$ is uniquely determined. Similarly there exists a unique block of $C_{E'}(P)$ such that it covers $(b_P)'$ and it is associated with \hat{b}'_i . By applying Proposition 2 for $C_E(P)$, $C_G(P)$ and b_P , let $((\hat{b}_P)_i)_{(C_{E'}(P))}$ be a block of $C_{E'}(P)$ such that $\mathrm{Irr}(((\hat{b}_P)_i)_{(C_{E'}(P))}) = \{\lambda^i(\hat{\phi}_P)_{(C_{E'}(P))} \mid \phi_P \in \mathrm{Irr}(b_P)\}$, where $\hat{\phi}_P \in \mathrm{Irr}((\hat{b}_P)_0)$ is an extension of ϕ_P . Recall that we have two choices for $((\hat{b}_P)_0)_{(C_{E'}(P))}$ when r is even (Proposition 3). Here we set

$$(\hat{b}_P)'_i = ((\hat{b}_P)_i)_{(C_{E'}(P))}$$

and

$$(\hat{b}_P^*)_i' = ((\hat{b}_P)_i')^* \quad (i \in \mathbf{Z}).$$

Proposition 5 (see [13], Lemma 5.4). With the above notations, for a subgroup P of D, $(\hat{b}_P)'_i$ is associated with \hat{b}'_i for $i \in \mathbb{Z}$, if we choose appropriately $(\hat{b}_P)'_0$ when r is even.

Proof. Our proof is essentially the same as the proof of [13], Lemma 5.4. Let $s \in E'_0$. We have

$$\widehat{C(s)}\widehat{b}_i = \frac{1}{|C_{E'}(s)|} \sum_{\phi \in \operatorname{Irr}(b)} \left(\sum_{x \in E_0} (\lambda^i \widehat{\phi})(s)(\lambda^i \widehat{\phi})(x^{-1})x + \sum_{y \in E - E_0} (\lambda^i \widehat{\phi})(s)(\lambda^i \widehat{\phi})(y^{-1})y \right)$$

since $C_E(s) = C_{E'}(s)$. Similarly we have

$$\widehat{C(s)'}\widehat{b}'_{i} = \frac{1}{|C_{E'}(s)|} \sum_{\phi \in Irr(b)} \left(\sum_{x \in E'_{0}} (\lambda^{i}(\widehat{\phi})_{(E')})(s)(\lambda^{i}(\widehat{\phi})_{(E')})(x^{-1})x + \sum_{y \in E' - E'_{0}} (\lambda^{i}(\widehat{\phi})_{(E')})(s)(\lambda^{i}\widehat{\phi})_{(E')})(y^{-1})y \right).$$

Recall that $\hat{\phi}(x) = \epsilon_{\phi}(\hat{\phi})_{(E')}(x)$ for $x \in E'_0$. The above equalities, the fact $E'_0 = E' \cap E_0$ and [13], Lemma 2.4 imply the following.

(5.1)
$$\operatorname{Pr}_{E'}^{E}(\widehat{C(s)}\widehat{b}_{i}) - \widehat{C(s)'}\widehat{b}'_{i} \in \mathcal{O}[E' - E'_{0}]^{E'}$$

where $S[E'-E'_0]^{E'}$ is the S-submodule of Z(SE') which is spanned by $\{\widehat{C(t)'} \mid t \in E'-E'_0\}$.

In order to prove the proposition, it suffices to show that $(\hat{b}_P)'_0$ is associated with \hat{b}'_0 , if we choose $(\hat{b}_P)'_0$ appropriately when r is even. Suppose that $(\hat{b}_P)'_j$ is associated with \hat{b}'_0 for some j $(0 \le j \le r - 1)$. We have

$$\begin{aligned} & \text{Pr}_{C_{E'}(P)}^{E}(\widehat{C(s)}\hat{b}_{0})^{*}(b_{P}^{*})' \\ & = \text{Pr}_{C_{E'}(P)}^{E'}[\text{Pr}_{E'}^{E}(\widehat{C(s)}\hat{b}_{0})]^{*}(b_{P}^{*})' \end{aligned}$$

from (5.1),

$$\begin{split} &= \mathrm{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}\hat{b}'_{0} + c)(b_{P}^{*})' \\ &= \mathrm{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}b'\hat{b}'_{0} + c)(b_{P}^{*})' \\ &= [\mathrm{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}b')\,\mathrm{Br}_{P}^{\mathcal{O}E'}(\hat{b}'_{0}) + \mathrm{Br}_{P}^{\mathcal{O}E'}(c)](b_{P}^{*})' \\ &= \mathrm{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}b')(\hat{b}_{P}^{*})'_{j} + \mathrm{Br}_{P}^{\mathcal{O}E'}(c)(b_{P}^{*})' \end{split}$$

where c is some element of $\mathcal{O}[E'-E'_0]^{E'}$. On the other hand, we can see

$$\begin{split} & \text{Pr}_{C_{E'}(P)}^{E}(\widehat{C(s)}\hat{b}_{0})^{*}(b_{P}^{*})' \\ & = \text{Pr}_{C_{E'}(P)}^{C_{E}(P)}[\text{Pr}_{C_{E}(P)}^{E}(\widehat{C(s)}\hat{b}_{0})]^{*}(b_{P}^{*})' \\ & = \text{Pr}_{C_{E'}(P)}^{C_{E}(P)}[\text{Pr}_{C_{E}(P)}^{E}(\widehat{C(s)})^{*} \text{ Br}_{P}^{\mathcal{O}E}(\hat{b}_{0})](b_{P}^{*})' \end{split}$$

from the argument in the above of Theorem 3 and (5.1) for $C_E(P)$

$$= \Pr_{C_{E'}(P)}^{C_{E}(P)} [\Pr_{C_{F}(P)}^{E}(\widehat{C(s)})^{*}] (\hat{b}_{P}^{*})_{0}' + d(b_{P}^{*})'$$

and by Theorem 3

$$= \operatorname{Br}_{P}^{\mathcal{O}E'}[\operatorname{Pr}_{E'}^{E}(\widehat{C(s)})] \operatorname{Br}_{P}^{\mathcal{O}E'}(b')(\hat{b}_{P}^{*})_{0}' + d(b_{P}^{*})'$$

$$= \operatorname{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}b')(\hat{b}_{P}^{*})_{0}' + d(b_{P}^{*})'$$

where d is some element of $k[C_{E'}(P) - C_{E'_0}(P)]^{C_{E'}(P)}$. Now we choose an element $s \in C_{E'_0}(P)$ such that

$$\operatorname{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'}b') \in (kC_{E'}(P)\operatorname{Br}_{P}^{\mathcal{O}E'}(b'))^{\times}.$$

Note that $\operatorname{Br}_P^{\mathcal{O}E'}(\widehat{C(s)'b'})$ is a k-linear combination of elements in $sC_{G'}(P)$ because $\widehat{C(s)'b'}$ is an \mathcal{O} -linear combination of elements in sG'. By the above equations

$$\operatorname{Br}_{P}^{\mathcal{O}E'}(\widehat{C(s)'b'})((\hat{b}_{P}^{*})_{i}'-(\hat{b}_{P}^{*})_{0}') \in k[C_{E'}(P)-C_{E_{0}'}(P)]^{C_{E'}(P)}.$$

Set $\upsilon=(\hat{b}_P^*)_j'-(\hat{b}_P^*)_0'$. The coefficient of any element of $s^{-2}C_{G'}(P)$ in υ is zero. Hence $\lambda^j(s^2)=\lambda^{2j}(s)=1$. Therefore if r is odd, then j=0. If r is even, j=0 or j=r/2. Therefore by replacing ϵ_{ϕ_P} by $-\epsilon_{\phi_P}$ for all $\phi_P\in {\rm Irr}(b_P)$ if j=r/2, we have $(\hat{b}_P)_0'$ is associated with \hat{b}_0' . This completes the proof.

Let $P \leq D$. We note again that for any integer i, $(\hat{b}_P)_i$ covers b_P and it is associated with \hat{b}_i . Moreover $(\hat{b}_P)_i$ contains $\lambda^i \hat{\phi}_P$ $(\hat{\phi}_P \in \operatorname{Irr}((\hat{b}_P)_0))$. Let R^P be the perfect isometry between $\mathcal{R}_K(C_G(P), b_P)$ and $\mathcal{R}_K(C_G(P), (b_P)')$ obtained by

$$\rho(C_E(P), C_G(P), C_{E'}(P), C_{G'}(P))$$

(see Theorem 5). Also let $R_{p'}^P$ be the restriction of R^P to $CF_{p'}(C_G(P), b_P; \mathcal{K})$, where R^P is regarded as a linear isometry from $CF(C_G(P), b_P; \mathcal{K})$ onto $CF(C_{G'}(P), (b_P)'; \mathcal{K})$. We set

$$(b_P)_i = \sum_{l=0}^{r-1} (\hat{b}_P)'_l (\hat{b}_P)_{l+i} \in (\mathcal{O}C_G(P)b_P(b_P)')^{C_{E'}(P)}.$$

For $u \in D$ we set

$$b_u = b_{\langle u \rangle}, \quad (b_u)' = (b_{\langle u \rangle})', \quad (\hat{b}_u)'_0 = (\hat{b}_{\langle u \rangle})'_0, \quad (b_u)_i = (b_{\langle u \rangle})_i.$$

Theorem 6 (see [13], Theorem 5.5). Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$. With the above notations, b and b' are isotypic with the local system $(R^P)_{\{P(\text{cyclic}) \leq D\}}$.

Proof. Our proof is essentially the same as the proof of [13], Theorem 5.5. Let $\gamma \in CF(G, b; \mathcal{K})$, $u \in D$ and let $c' \in C_{G'}(u)_{p'}$. Let S(u) be the *p*-section of *G* containing u. We remark that if $v \in S(u)$, then $\widehat{C(v)}b$ is an \mathcal{O} -linear combination of elements of

S(u) by [12], Chapter V, Theorem 4.5. We can see from Proposition 4

$$\begin{split} & [(d_{G'}^{(u,(b_{u})')} \circ R^{\langle 1 \rangle})(\gamma)](c') \\ &= \frac{1}{|G|} \sum_{g \in G} \left[\sum_{\phi \in \operatorname{Irr}(b)} \left(\phi(uc'(b_{u})'b_{0}) + \sum_{t=1}^{l} (-1)^{t} \sum_{\{q_{1},...,q_{t}\} \subseteq \pi(F)} \phi(uc'(b_{u})'b_{m_{\{q_{1},...,q_{t}\}}}) \right) \phi(g^{-1}) \right] \gamma(g) \\ &= \frac{1}{|G|} \sum_{g \in G} \left[\sum_{\phi \in \operatorname{Irr}(b)} \left(\hat{\phi}(uc'(b_{u})'b_{0}) + \sum_{t=1}^{l} (-1)^{t} \sum_{\{q_{1},...,q_{t}\} \subseteq \pi(F)} \hat{\phi}(uc'(b_{u})'b_{m_{\{q_{1},...,q_{t}\}}}) \right) \hat{\phi}(g^{-1}) \right] \gamma(g) \end{split}$$

from (4.1) and the fact $\hat{\phi} \in Irr(\hat{b}_0)$

$$\begin{split} &= \frac{1}{|G|} \sum_{g \in G} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_{0})} \left(\hat{\phi}(uc'(b_{u})'\hat{b}'_{0}) + \sum_{t=1}^{l} (-1)^{t} \sum_{\{q_{1}, \dots, q_{t}\} \subseteq \pi(F)} \hat{\phi}(uc'(b_{u})'\hat{b}'_{-m_{\{q_{1}, \dots, q_{t}\}}}) \right) \hat{\phi}(g^{-1}) \right] \gamma(g) \\ &= \frac{1}{|G|} \sum_{g \in G} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_{0})} \left(\hat{\phi}\left(1 + \sum_{t=1}^{l} (-1)^{t} \sum_{\{q_{1}, \dots, q_{t}\} \subseteq \pi(F)} \lambda^{m_{\{q_{1}, \dots, q_{t}\}}} \right) \right) (uc'(b_{u})'\hat{b}'_{0}) \hat{\phi}(g^{-1}) \right] \gamma(g) \end{split}$$

from (4.2)

$$= \frac{1}{|G|} \sum_{g \in G} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi} \right) (uc'(b_u)' \hat{b}_0') \hat{\phi}(g^{-1}) \right] \gamma(g)$$

by applying [12], Chapter V, Theorem 4.5 for E and \hat{b}_0

$$\begin{split} &= \frac{1}{|G|} \sum_{x \in S(u)} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi} \right) (uc'(b_u)' \hat{b}'_0) \hat{\phi}(x^{-1}) \right] \gamma(x) \\ &= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi} \right) (uc'(b_u)' \hat{b}'_0) \hat{\phi}(y^{-1} u^{-1}) \right] \gamma(uy) \end{split}$$

by using (1.1) twice, and by Brauer's second main theorem on blocks ([12], Chapter V, Theorem 4.1) and Proposition 5

$$\begin{split} &= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot (\hat{\phi})_{(E')} \right) (uc'(b_u)') \hat{\phi}(y^{-1}u^{-1}) \right] \gamma(uy) \\ &= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{\hat{\phi} \in \operatorname{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot (\hat{\phi})_{(E')} \right) (uc'(\hat{b}_u)_0') \hat{\phi}(y^{-1}u^{-1}) \right] \gamma(uy) \end{split}$$

$$= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{\hat{\phi} \in \text{Irr}(\hat{b}_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\phi} \right) (uc'(\hat{b}_u)_0') \hat{\phi}(y^{-1}u^{-1}) \right] \gamma(uy)$$

from [12], Chapter V, Theorem 4.11

$$= \frac{1}{|C_G(u)|} \sum_{\mathbf{y} \in C_G(u)_{p'}} \left[\sum_{e \in \mathrm{Bl}(C_E(u), \hat{b}_0)} \sum_{\rho \in \mathrm{Irr}(e)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \rho \right) (c'(\hat{b}_u)_0') \rho(\mathbf{y}^{-1}) \right] \gamma(u\mathbf{y})$$

from (1.1) for $C_E(u)$

$$= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{e \in \text{Bl}(C_E(u), \hat{b}_0)} \sum_{\rho \in \text{Irr}(e)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \rho_{(C_{E'}(u))} \right) (c'(\hat{b}_u)_0') \rho(y^{-1}) \right] \gamma(uy)$$

recalling $(\hat{b}_u)'_0 = ((\hat{b}_{\langle u \rangle})_0)_{(C_{E'}(u))}$

$$= \frac{1}{|C_G(u)|} \sum_{y \in C_G(u)_{p'}} \left[\sum_{\hat{\xi} \in \operatorname{Irr}((\hat{b}_u)_0)} \left(\prod_{q \in \pi(F)} (1 - \lambda_q) \cdot \hat{\xi} \right) (c'(\hat{b}_u)_0') \hat{\xi}(y^{-1}) \right] \gamma(uy)$$

from (4.2)

$$= \frac{1}{|C_G(u)|} \sum_{y} \left[\sum_{\hat{\xi} \in Irr((\hat{b}_u)_0)} \left(\hat{\xi}(c'(\hat{b}_u)_0') + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \dots, q_t\}} \hat{\xi}(c'(\hat{b}_u)_{-m_{\{q_1, \dots, q_t\}}}') \right) \hat{\xi}(y^{-1}) \right] \gamma(uy)$$

from (4.1)

$$= \frac{1}{|C_G(u)|} \sum_{y} \left[\sum_{\xi \in Irr(b_u)} \left(\xi(c'(b_u)_0) + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \dots, q_t\}} \xi(c'(b_u)_{m_{\{q_1, \dots, q_t\}}}) \right) \xi(y^{-1}) \right] \gamma(uy)$$

and from [12], Chapter V, Theorem 4.7

$$= \frac{1}{|C_G(u)|} \sum_{y} \left[\sum_{\xi \in Irr(b_u)} \left(\xi(c'(b_u)_0) + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \dots, q_t\}} \xi(c'(b_u)_{m_{\{q_1, \dots, q_t\}}}) \right) \xi(y^{-1}) \right] \times (d_G^{(u, b_u)}(\gamma))(y)$$

$$= [(R_{p'}^{\langle u \rangle} \circ d_G^{(u, b_u)})(\gamma)](c')$$

recalling the definition of the perfect isometry $R^{\langle u \rangle}$, where y runs over $C_G(u)_{p'}$ and $\{q_1, \ldots, q_t\}$ runs over the set of t-element subsets of $\pi(F)$. This and Theorem 4 complete the proof.

Corollary 1 ([8]). Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $(|C_G(A)|, |A|) = 1$. If $p \nmid |A|$ and $p \nmid |G : C_G(A)|$, then the Dade correspondence induces an isotypy between b(G) and $b(C_G(A))$.

Proof. Let s be a generator of A. Let $E = G \rtimes A$, $G' = C_G(A)$ and E' = G'A. Then E, G, E' and G' satisfy Hypothesis 1 by [3], Lemma 7.5. By the assumption $\widehat{C(s)}b(E)$ is invertible in $Z(\mathcal{O}Eb(E))$. Also sb(E') is invertible in $Z(\mathcal{O}E'b(E'))$. Hence the corollary follows from Theorem 6.

EXAMPLE. Suppose p=5, and let $G=Sz(2^{2n+1})$, the Suzuki group, $A=\langle\sigma\rangle$ where σ is the Frobenius automorphism of G with respect to $GF(2^{2n+1})/GF(2)$. Set $G'=Sz(2)=C_G(A),\ E=G\rtimes A,\ E'=G'\times A.$ Suppose that $5\nmid 2n+1$. Then (2n+1,|G'|)=(2n+1,20)=1. Moreover a Sylow 5-subgroup of G has order 5. By the above corollary, the Dade correspondence gives an isotypy between b(G) and b(G').

6. Normal defect group case

In the Glauberman correspondence case if the defect group D is normal in G, there is a Puig equivalence (splendidly Morita equivalence) between b and b' which affords the Glauberman correspondence on the character level ([6], [14]). In the Dade correspondence case we show that b and b' are Puig equivalent if D is normal in G. By our assumption, there exist a defect group D of b and b', and an element $s \in E'_0$ such that $s \in C_E(D)$ and $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$. Let $\phi \in Irr(b)$ be of height 0. From [13], Lemma 2.4 and (1.1) in Theorem 1, we have

$$0 \neq (\omega_{\hat{\phi}}(\widehat{C(s)}))^* = \left(\epsilon_{\phi} \frac{|E|\phi_{(G')}(1)}{|E'|\phi(1)} \omega_{(\hat{\phi})_{(E')}}(\widehat{C(s)'})\right)^*.$$

Since b and b' have the same defect,

$$\left(\omega_{(\hat{\sigma})_{(E')}}(\widehat{C(s)'})\right)^* \neq 0.$$

Hence $\widehat{C(s)'}b' \in Z(\mathcal{O}Eb')^{\times}$. The element s is used in the next lemma.

Lemma 3. Let E_1 be a subgroup of $N_E(D)$ containing $C_E(D)$ and set $G_1 = G \cap E_1$, $E'_1 = E' \cap E_1$, and $G'_1 = G' \cap E_1$. Then E_1 , G_1 , E'_1 and G'_1 satisfy Hypothesis 1. Moreover $(b_D)^{G_1}$ satisfies Hypothesis 2, $((b_D)')^{G'_1}$ satisfies Hypothesis 3 and

(6.1)
$$((b_D)^{G_1})_{(G_1')} = ((b_D)')^{G_1'}.$$

Proof. By our assumption E = G(s), hence we have $E_1 = G_1(s) = E'_1G_1$, $G'_1 = G_1 \cap E'_1$. Also $E_1/G_1 \cong E'_1/G'_1 \cong F$. Hence the former is clear. On the other hand,

since $\operatorname{Br}_{D}^{\mathcal{O}E}(\widehat{C(s)}b)b_{D}^{*} \in Z(kE_{1}(b_{D})^{*})^{\times} = Z(kE_{1}((b_{D})^{G_{1}})^{*})^{\times} \text{ and } \operatorname{Br}_{D}^{\mathcal{O}E'}(\widehat{C(s)'}b')(b'_{D})^{*} \in$ $Z(kE'_1((b_D)')^*)^{\times} = Z(kE'_1(((b_D)')^{G'_1})^*)^{\times}, (b_D)^{G_1}$ satisfies Hypothesis 2, and $((b_D)')^{G'_1}$ satisfies Hypothesis 3. By applying Theorem 3, (i) for E_1 , G_1 and $(b_D)^{G_1}$, we have (6.1).

In the above lemma, we set $E_1 = N_E(D)$. Then $(b_D)^{G_1} = (b_D)^{N_G(D)}$ is a Brauer correspondent of b, and $((b_D)')^{N_G(D)}$ is a Brauer correspondent of b'. From now we assume D is normal in G. Then D is normal in E.

Lemma 4. With the notations in Lemma 3, suppose that E_1 is normal in E. Let $\xi \in Irr((b_D)^{G_1})$ and $x' \in E'$. We have $(\xi^{x'})_{(G'_1)} = (\xi_{(G'_1)})^{x'}$ and $(((b_D)^{G_1})^{x'})_{(G'_1)} = (\xi_{(G'_1)})^{x'}$ $(((b_D)')^{G_1'})^{x'}$. In particular $I_E(\xi) \cap E' = I_{E'}(\xi_{(G_1)})$ and $I_E((b_D)^{G_1}) \cap E' = I_{E'}(((b_D)')^{G_1'})$.

Proof. Note that $(b_D)^{G_1}$ and $((b_D)^{G_1})^{x'}$ respectively satisfy Hypothesis 2. Let $\hat{\xi} \in$ $Irr(E_1|\xi)$ and $\xi' = \xi_{(G_1)}$. By Theorem 1 and (1.1),

$$\left(\prod_{q\in\pi(F)}(1-\lambda_q)\cdot\hat{\xi}\right)_{E_1'}=\epsilon_{\xi}\prod_{q\in\pi(F)}(1-\lambda_q)\cdot(\hat{\xi})_{(E_1')}$$

where $\epsilon_{\xi} = \pm 1$. Hence we have,

$$\left(\prod_{q\in\pi(F)}(1-\lambda_q)\cdot(\hat{\xi})^{x'}\right)_{E_1'}=\epsilon_{\xi}\prod_{q\in\pi(F)}(1-\lambda_q)\cdot((\hat{\xi})_{(E_1')})^{x'}.$$

Therefore by Theorem 1 we have $(\xi^{x'})_{(G'_1)} = \xi'^{x'}$ because $((\hat{\xi})^{x'})_{G_1} = \xi^{x'}$ and $(((\hat{\xi})_{(E'_1)})^{x'})_{G'_1} = \xi'^{x'}$ $\xi'^{x'}$. This implies the lemma because the Dade correspondence $\rho(E_1,G_1,E_1',G_1')$ induces the bijection between $Irr((b_D)^{G_1})$ and $Irr(((b_D)')^{G_1})$ by Lemma 3.

By Lemma 4 we have $I_E(b_D) \cap E' = I_{E'}((b_D)')$. By Lemma 3 $I_E(b_D)$, $I_G(b_D)$, $I_{E'}((b_D)')$ and $I_{G'}((b_D)')$ satisfy Hypothesis 1. Moreover $(b_D)^{I_G(b_D)}$ satisfies Hypothesis 2, and $((b_D)')^{I_{G'}((b_D)')}$ satisfies Hypothesis 3. Also we have

$$((b_D)^{I_G(b_D)})_{(I_{G'}((b_D)'))} = ((b_D)')^{I_{G'}((b_D)')}.$$

By Lemma 3, $DC_E(D)$, $DC_G(D)$, $DC_{E'}(D)$ and $DC_{G'}(D)$ also satisfy Hypothesis 1. Set $K = DC_G(D)$ and $K' = DC_{G'}(D)$. Then $(b_D)^K$ satisfies Hypothesis 2, and $((b_D)')^{K'}$ satisfies Hypothesis 3. Moreover we have

$$((b_D)^K)_{(K')} = ((b_D)')^{K'}.$$

Now suppose that b_D is G-invariant for a while. Then $(b_D)^K$ is G-invariant. Note that as elements of $\mathcal{O}G$, $b = b_D = (b_D)^K$. By Lemma 4, $((b_D)')^{K'}$ is G'-invariant. Since

b is covered by r blocks of E and since $(b_D)^K$ is covered by r blocks of $DC_E(D)$, any block of $DC_E(D)$ covering $(b_D)^K$ is E-invariant. Let $\widehat{(b_D)^K}$ be a block of $DC_E(D)$ covering $(b_D)^K$. In fact the block idempotent of a block of E covering b belongs to $\widehat{ODC_E(D)}$. If $\xi \in \operatorname{Irr}^G((b_D)^K)$ and $\hat{\xi}$ is an extension of ξ to $DC_E(D)$ belonging to $\widehat{(b_D)^K}$, then G fixes $\hat{\xi}$ and hence E fixes $\hat{\xi}$ because $(b_D)^K$ and $\widehat{(b_D)^K}$ are isomorphic by restriction. Similarly if $\xi' \in \operatorname{Irr}^G(((b_D)')^{K'})$ and $\hat{\xi}'$ is an extension of ξ' to $DC_{E'}(D)$, $\hat{\xi}'$ is E'-invariant. We note that if $\xi \in \operatorname{Irr}^G((b_D)^K)$ then $\xi_{(K')} \in \operatorname{Irr}^G(((b_D)')^{K'})$ by Lemma 4. The following is proved by the analogous way to that of the proof of [10], Lemma 3.2.

Lemma 5. Suppose that b_D is G-invariant. Let $\xi \in \operatorname{Irr}^G((b_D)^K)$. Then the factor set α of G/K defined by ξ and the factor set α' of G'/K' defined by $\xi_{(K')}$ are cohomologous when G/K and G'/K' are identified.

Proof. At first we note again that G = KG' by Lemma 1, $E = DC_E(D)E'$, $E = DC_E(D)G$ and $E' = DC_E(D)G'$. Moreover we have

$$G/K \cong E/DC_E(D) \cong E'/DC_{E'}(D) \cong G'/K'$$
.

We may assume $G \neq K$. Let t be a prime dividing |G:K| and let E_t be a subgroup of E containing $DC_E(D)$ such that $E_t/DC_E(D)$ is a Sylow t-subgroup of $E/DC_E(D)$. Set $G_t = G \cap E_t$, $E'_t = E' \cap E_t$ and $G'_t = G' \cap E_t$. By Lemma 3, E_t , G_t , E'_t and G'_t satisfy Hypothesis 1. Moreover $(b_D)^{G_t}$ satisfies Hypothesis 2, $((b_D)')^{G'_t}$ satisfies Hypothesis 3 and that $((b_D)^{G_t})_{(G'_t)} = ((b_D)')^{G'_t}$. Now by a theorem of Gaschütz (see [5], Theorem 15.8.5), we may assume $E = E_t$.

Let $\hat{\xi} \in Irr(DC_E(D)|\xi)$. From Theorem 1 and (1.1),

$$\left(\left(\prod_{q\in\pi(F)}(1-\lambda_q)\cdot\hat{\xi}\right)_{DC_{F'}(D)},(\hat{\xi})_{(DC_{E'}(D))}\right)=\pm 1,$$

where the left hand side is the inner product. Hence there exists an extension $\tilde{\xi}$ of ξ to $DC_E(D)$ such that $(\tilde{\xi}_{DC_{E'}(D)}, (\hat{\xi})_{(DC_{E'}(D))})$ is relatively prime to t. As we stated in the above $\tilde{\xi}$ is E-invariant, and $(\hat{\xi})_{(DC_{E'}(D))}$ is E'-invariant because $\xi_{(K')}$ is G'-invariant. By [2], Theorem 4.4, the factor set of $E/DC_E(D)$ defined by $(\hat{\xi})_{(DC_{E'}(D))}$ are cohomologous when $E/DC_E(D)$ and $E'/DC_{E'}(D)$ are identified. Similarly by [2], Theorem 4.4, since $\tilde{\xi}$ is an extension of ξ , α and the factor set of $E/DC_E(D)$ defined by $\tilde{\xi}$ are cohomologous when G/K and $E/DC_E(D)$ are identified. Further α' and the factor set of $E'/DC_{E'}(D)$ defined by $(\hat{\xi})_{(DC_{E'}(D))}$ are cohomologous when G'/K' and $E'/DC_{E'}(D)$ are identified, because $(\hat{\xi})_{(DC_{E'}(D))}$ is an extension of $\xi_{(K')}$. Hence α and α' are cohomologous.

In the above lemma we can take as ξ the canonical character of b belonging to $(b_D)^K$. Then $\xi_{(K')}$ is the canonical character of (b') because $\xi_{(K')}$ is a constituent of $\xi_{K'}$,

and hence D is contained in the kernel of $\xi_{(K')}$. Moreover $\alpha, \alpha' \in Z^2(G/K, \mathcal{O}^\times)$ since ξ and $\xi_{(K')}$ are respectively characters of a G-invariant $\mathcal{O}K$ -lattice and a G'-invariant $\mathcal{O}K'$ -lattice. By Lemma 5, we see α and α' are cohomologous.

Generally let G be a finite group, b be a block of G with a normal defect group D, and let \mathbf{b} be a G-invariant block of $C_G(D)$ covered by b. Set $K = DC_G(D)$ and let i be a primitive idempotent of $\mathcal{O}C_G(D)\mathbf{b}$. Then we see that i is primitive in $(\mathcal{O}G)^D$ because D is normal in G and i^* is primitive in $kC_G(D)$, and hence $i\mathcal{O}Gi$ is a source algebra of b. Set $B = i(\mathcal{O}G)i$. Let H be a complement of $DC_G(D)/C_G(D)$ in $G/C_G(D)$. Then H is isomorphic to a subgroup of Aut D. For each $h \in H$, we choose $x_h \in G$ such that $h = C_G(D)x_h$. We set $d^h = d^{x_h}$ for any $d \in D$. Moreover let α be a factor set of H defined by the canonical character α of α , where α and α are identified.

Theorem 7. With the above notations, B is isomorphic to a twisted group algebra $\mathcal{O}^{\alpha^{-1}}(D \rtimes H)$ of the semi direct product $D \rtimes H$ over \mathcal{O} with the factor set α^{-1} (considered as a factor set of $D \rtimes H$), as interior $\mathcal{O}D$ -algebras.

Proof. For any $h \in H$ we can choose $u_h \in (\mathcal{O}C_G(D)\mathbf{b})^{\times}$ such that $i^{x_h^{-1}} = i^{u_h}$. Put $v_h = u_h x_h i$. For any $d \in D$, we have

$$(6.3) v_h^{-1}(id)v_h = id^h$$

where v_h^{-1} is the inverse of v_h in B. Then we have

$$B = \bigoplus_{h \in H} i\mathcal{O}Kx_h i = \bigoplus_{h \in H} i\mathcal{O}Kiv_h = \bigoplus_{h \in H} (i\mathcal{O}Di)v_h.$$

Thus B is a crossed product of H over $i\mathcal{O}Di$. As is well known $i\mathcal{O}Di \cong \mathcal{O}D$. Since H is a p'-group, from (6.3) and the proof of Lemma M in [11], B is a twisted group algebra of $D \rtimes H$ over \mathcal{O} with a factor set $\gamma \in Z^2(D \rtimes H, \mathcal{O}^\times)$ which is the inflation of a factor set of H. In fact γ satisfies that

$$v_h v_{h'} = \gamma(h, h') v_{hh'} \quad (\forall h, h' \in H)$$

by replacing v_h by $v_h \delta_h$ for some $\delta_h \in i + iJ(Z(\mathcal{O}D))i$ if necessary. Here $J(Z(\mathcal{O}D))$ is the radical of the center of $\mathcal{O}D$.

For any $a \in \mathcal{O}G$, we denote by \bar{a} the image of a by the natural homomorphism from $\mathcal{O}G$ onto $\mathcal{O}(G/D)$. We set $\bar{G} = G/D$ and $\bar{K} = K/D \leq \bar{G}$. We have

$$\bar{i}\mathcal{O}\bar{G}\bar{i} = \bigoplus_{h \in H} (\mathcal{O}\bar{K}\overline{x_h} \cap (\bar{i}\mathcal{O}\bar{G}\bar{i})) = \bigoplus_{h \in H} \mathcal{O}\overline{v_h}.$$

Also we have

$$\overline{v_h} \, \overline{v_{h'}} = \gamma(h, h') \overline{v_{hh'}}.$$

Since \bar{i} is a primitive idempotent of $\mathcal{O}\bar{G}$ corresponding to χ , $\bar{i}\mathcal{O}\bar{G}\bar{i}$ is a twisted group algebra of \bar{G} over \mathcal{O} with factor set α^{-1} . This implies that γ and α^{-1} are cohomologous. This completes the proof.

Theorem 8. Assume Hypotheses 2 and 3, and $b' = b_{(G')}$. Further assume the defect group D of b and b' is normal in G. Then b and b' are Puig equivalent.

Proof. As is well known b and $(b_D)^{I_G(b_D)}$ are Puig equivalent. Hence by Lemma 4 and (6.2), we may assume that b_D is G-invariant. Then from Lemma 5 and Theorem 7, b and b' are Puig equivalent. This completes the proof.

By the above theorem, the Brauer correspondent of b and that of b' are Puig equivalent assuming Hypotheses 2 and 3, and $b' = b_{(G')}$.

Corollary 2. In the above theorem, let b = b(G). Then $a \in \mathcal{O}G'b(G') \mapsto ab(G) \in \mathcal{O}Gb(G)$ is an algebra isomorphism.

Proof. Since $\mathcal{O}Gb(G)$ is a source algebra of b(G), $\mathcal{O}G'b(G')$ are $\mathcal{O}Gb(G)$ are isomorphic. Therefore dim $\mathcal{K}Gb(G) = \dim \mathcal{K}G'b(G')$, and hence the Dade correspondence from Irr(b(G)) onto Irr(b(G')) coincides with restriction, that is, b(G) and b(G') are isomorphic. Hence by [9], Theorem 1 or [7], Theorem 4.1 completes the proof. \square

References

- [1] M. Broué: Isométries parfaites, types de blocs, catégories dérivées, Astérisque **181–182** (1990), 61–92.
- [2] E.C. Dade: Isomorphisms of Clifford extensions, Ann. of Math. (2) 92 (1970), 375–433.
- [3] E.C. Dade: A new approach to Glauberman's correspondence, J. Algebra 270 (2003), 583-628.
- [4] G. Glauberman: Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465–1488.
- [5] M. Hall Jr.: The Theory of Groups, Macmillan, New York, 1959.
- [6] M.E. Harris: Glauberman-Watanabe corresponding p-blocks of finite groups with normal defect groups are Morita equivalent, Trans. Amer. Math. Soc. 357 (2005), 309–335.
- [7] A. Hida and S. Koshitani: Morita equivalent blocks in non-normal subgroups and p-radical blocks in finite groups, J. London Math. Soc. (2) **59** (1999), 541–556.
- [8] H. Horimoto: The Glauberman-Dade correspondence and perfect isometries for principal blocks, preprint.
- [9] K. Iizuka, F. Ohmori and A. Watanabe: A Remark on the Representations of Finite Groups VI, Memoirs of Fac. of General Education, Kumamoto Univ., Ser. of Natural Sci., 18, 1983, (Japanese).
- [10] S. Koshitani and G.O. Michler: Glauberman correspondence of p-blocks of finite groups, J. Algebra 243 (2001), 504–517.
- [11] B. Külshammer: Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147–168.

- [12] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989
- [13] F. Tasaka: On the isotypy induced by the Glauberman–Dade correspondence between blocks of finite groups, J. Algebra 319 (2008), 2451–2470.
- [14] F. Tasaka: A note on the Glauberman–Watanabe corresponding blocks of finite groups with normal defect groups, Osaka J. Math. 46 (2009), 327–352.
- [15] J. Thévenaz: G-Algebras and Modular Representation Theory, Oxford Univ. Press, New York, 1995
- [16] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548–565.

Department of Mathematics Faculty of Science Kumamoto University Kumamoto, 860–8555 Japan