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Abstract

There are several types of equation of motion of elastic swirtn this paper,
we treat an equation taking account of the thickness of wiilee equation was in-
troduced by Caflisch and Maddocks on plane curves, and thesegrihe existence
of solutions. We will prove the existence of solutions fol atimensional Euclidean
space. Note that, in the case of plane, the equation can bieigxpvritten in terms
of polar coordinates. For higher dimensional case, we usarizmt differentiation on
the unit sphere.

1. Introduction and results

In the previous work [9], the first author considered the omotf a fixed length elas-
tic wire, governed by the elastic energy. Let= y(x) be a curve in theN-dimensional
Euclidean spac&" with arc length parameter € [0, 1], i.e.,|y’(x)| = 1. We denote its
motion byy = y (X, t). We denote by ¢ | =) (resp.| x|, {* | *), || *|) the pointwise
inner product (resp. pointwise norm, the-inner product with respect to the variable
the L,-norm with respect to the variabld. The potential energy of the elastic wipdx)
is defined by the square integal = | yx«||? of the curvature. Assuming that the wire is
infinitely thin, the kinetic energy of the motion of the wire defined byE = |||

By Hamilton’s principle, the equation of motion is given astical points of the
variational problem defined by the functional

T T
(1.1) F =/ E-U dt=/ 72l = lyxll® At
0 0

The equation turns out to be a coupled system of semi-lineiménsional plate equa-
tion, where the derivatives of unknown functions up to fouorder are involved.

In [9] and also in A. Burchard and L.E. Thomas [2], the exiserf a unique
short-time solution satisfying some initial data was prbverhe former used a per-
turbation to a composition of parabolic operators, ancetatised the contraction prin-
ciple and Hasimoto’s transformation in the 3-dimensiorsec A linear version of such
equation can be also found, for example, in R. Courant and ilbeH [4].
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We may replace Newton’s dynamics by the gradient flow eqoatidhere the equa-
tion turns out to be a coupled system of semi-linear parakedjuation. The gradient
flow equation is treated by the first author [7] and Y. Wen [10khe Euclidean space,
and in [8] in the Riemannian manifolds.

In this article, we consider the case when the wire is thickllowing the argu-
ment in R. Caflisch and J. Maddocks [5], we define the kinetiaggnef the motion
of the wire asE = ||||2 + Ilyxtl|l?, where the term|yy|> comes from the thickness
of the wire. See also [3]. Then the equation of the wire iswéerifrom the functional

T T
(12) F =/0 E—Udt=/0 I + el = vl dt

instead of (1.1). Such equation in the planer cade=(2) was derived by R. Caflisch
and J. Maddocks [5], and the global in time existence of thatmwls was established
under some kind of constrained conditions. The equation alao be obtained as a
planar version of the director rod theory due to Antman andri€y [1]. See also [6].

The objective of this article is to generalize the globalstemce results in [5] to
any space dimension. We remark that, in the case of planeedbation can be ex-
plicitly written in terms of trigonometric functions. Forigher dimensional case, it is
natural to introduce a geometrical aspect, and we use emtadiifferentiation on the
unit sphere. Exact expression of such equation will be glaéer in Section 2, but we
also remark here that it is a completely different equatiamf the one for infinitely
thin elastic wire case treated in [9] and [2].

We consider several boundary conditions for the minimizumgction y = y(x) of
the functional (1.2), abbreviating the time variableLet Py and P, be affine subspaces
of RN.

ConDITION 1.1. We assume that (B) the boundary pgiid) belongs to an affine
subspacePy of R" and the vector (1) — y(0) belongs to an affine subspafe. And,
we assume that (E) the boundary directigrf0) andyx(1) are free or fixed (4 types),
or (P) »x(1) = y«(0). We denote by (BE) the combination of (B) and (E), and bi?)B
the combination of (B) and (P).

The above condition includes the following special casesiedvVboth Py and P;
are point sets, the boundary point of the curve are fixed. Winth Py and P, areRN,
the boundary point of the curve are free. The motion of clos@tes are represented
by the condition (BP) withPy = RN and P, = {0}. [5] treats the plannerN = 2)
non-closed case (BE) with (1, = {0}, P1 = R?, 14(0) is fixed, yx(1) is free; and (2)
Py = {0}, PL = RY, 1%(0) and (1) are free.

We assume that the distance Bf and the origin O is less than 1. We denote by
PT the vector subspace given by translatifgto the origin, and byP* the orthogonal
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complement vector space @T. The projection toPT (resp. P1) is denoted bysxP’
(resp.xP").

The constrained condition 1.1 implies that the initial wajg(x) = y (X, 0), y1(X) =
1 (X, 0) have to satisfy the following conditions. We always assuthat the initial
value satisfies the condition.

CoNDITION 1.2 (constrained condition of initial value). (B)(0) € P, y1(0) €
Py 10(1) — %0(0) € P1, y1(1) —1(0) € P .
(E) v{(0) =0 if y4(0) is fixed. y;(1) = 0 if (1) is fixed.
(P) %5(2) = ¥5(0), ¥1(1) = {(0).

As we will see in Proposition 2.1, Conditions 1.1 (BE), (BRuire that the so-
lution y(x, t) have to satisfy the following compatibility conditions.

CoNDITION 1.3. (BE) yxx(0,t) = 0 if y«(0) is free. yxx(1,t) = 0 if y4(1) is free.
(Bp) VXX(la t) = VXX(Oa t)

These conditions corresponds to the compatibility coodinf initial value:

CoNDITION 1.4 (compatibility condition of initial value). (CEyy(0) = 0 if
vx(0) is free.yy'(1) = 0 if (1) is free.
(CP) v5 (1) = ¥4 (0).

To state our results, we prepare notations. CQ}, be the space of alC"! func-
tions {u(x)} such thatu(x) are piecewise continuous. L&, be the space of all
C"? functions {u(x, t)} which areC" outside of finite number of lines +t = ¢;. Let
Cpw be the space of alC"! functions {u(x, t)} which areC" outside of finite num-
ber of linest =t; andx € Z. Similarly, let Cwa+ be the space of alC"! functions
{u(x, t)} which areC" outside of finite number of lineg +t =¢,t =1t andx € Z.

We will get the following results. We always have short tingusions.

Theorem 3.13. If the initial value yp(X) and y1(x) satisfy Condition 1.2 ¢on-
strained conditioh and if yo(x), y1(X) € CSW, then even if they do not satisf¢on-
dition 1.4 compatibility conditiof, there exists a unique short time solutior(x, t)
such that bothyy(x, t) and y(x, t) are in G, .

And, the solution exists for infinite time, if the initial va satisfies the compati-
bility condition.
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Theorem 5.3. If the initial value yp(x) and y1(x) are C', and they satisfyCondi-
tion 1.1 onstrained conditionand Condition 1.3 ¢ompatibility conditiof, then there
exists a unique infinite time solutiop(x, t) such that (X, t) and yx (X, t) are
continuous.

Moreover, problems of the following types have infinite tim@usions, even if the
compatibility condition are not satisfied.

CoNnDITION 1.5. (a) P, = RN and P, = RN or (£(0) and&(1) are free)), or
(b) £(0) is free and P, = RN or £(1) is free), or
(c) Po=RN and P, = {0} and£(0) = £(1).

Theorem 5.4. Suppose that the constrained condition is one of the ().
Then the solutiony(x, t) of Theorem 3.13exists infinite time.

2. Derivation of equation

To derive the equation of motion, we rewrite the functiofdly) as a functional
of £ := y, € SN~L. Since the variablé always appear, we omit it. The term can be

express ay(x) = y(0) + [; £(y) dy.

2

() + / &(y) dy
(2'1) ’ 1 px X X
_ 2
— () +2(yt(0) L] a(y)dydx)+</0 a)ay| | st(z)dz>,
1 pXx 1 pr1
. /0/0 st(y)dydx=//Ofyfxﬂa(y)dxdw/O/y & (y) dx dy
1
- /0 (1 y)&(y) dy,
X X 1 X pX
</O aay| | a(z)dz>=/o/o/o(&(yﬂ&(z»dydzdx
=/// &) | &(2) dx dy dz
0<y,z=x=<1
2.3)

-/ wﬂ{ / :X{y,z}@‘(y) | 6(2) dx} dy dz

1 1
- / / (1— maxty, Z)(&(y) | &(2) dy dz
0JO
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We putx(X, y) := 1— maxXx, y}, and get

T 1
F=/O {|yt(0)|2+2(yt(0) /0(1—y)st(y)dy>

(2.4) 1
+ / / (%, Y)(EX) | () dx dy+ ||st||2—||sx||2}dt.
0J0

The first variation with respect to an infinitesimal variati¢y, £) is given by
(2.5)

T 1
5= [ {eomor+ (21 [a-vamay)
1 1 pr1
+(yt(0) / (1—y)§t(y)dy)+ [ w9 s dx gy
&) — sx>} dt
T 1
- {(Vtt(0)|y(0))(3/(0) / (1—Y)$tt(Y)dY)
1 1 pr1
+<yu(0) / (1—y)§(y)dy)+ | <t €00 1ty ax ay

+ (6 &) + G | 50T — ( | sxx>} dt

=—/0T<f(0)

T . 1
_ / <§(1—X))’tt(0)+ / K(x, y)sn(y)dy+sn—sxx>dt.
0 0

1 T
e (0) + /0 (1—Y)§tt(Y)dY) dt— /O G | 1L, dt

Since 7(0) can move inP; and y.(0) € Py, we have

1 Py
(2.6) y2(0) = —( /O (L= V)éu(y) dy)

by eliminating 7 (0), wherexP means the projection. Since the conditions concerning
to £ are € |£) =0 and [, £ dx e P/, we have

1
@27 (1=xr(0) +/O K(X, V)Ea(Y) dy + & — éxx = U§ +v, v e Pp

by eliminating&. Here,u = u(x,t) is an unknown function and = v(t) is an unknown
vector valued function. We consider the terng [(£)]1_, later.



792 N. Koiso AND M. SUGIMOTO
PUt(P = &t — &xx-
1 1 1
/ (1 y)ealy)dy = / (1 y)p(y) dy + / (1= y)eex(y) dy
0 0 0
1 1
(2.8) _ /0 (1= y)p(y) dy + [(A — YETE_o + /O £(y) dy
1
- /0 (1 - V)o(y) dy — £(0) + ],
1 1 1
/ (%, V)u(y) dy = / (%, Yo (y) dy + / (%, V)Ex(y) dy
0 0 0
1 1
(2.9) - /o (%, V)o(y) dy + [, V)0 + / E(y) dy
1
- /0 (%, Y)o(y) dy — (1 — X)&(0) + £(1) — &.
Therefore,

T
0

o+ [ e, Y)o(y) dy— { / -0 ey dy}P

= (U4 1 + v+ L= X&) — (L) + (L— X)[E]L™ .

(2.10)

We put

1 1 Py
@) La(h= [ «x y)f(y)oly—{/0 (1—x)(1—y)f(y)dy}

and¢ := ¢, wherex" means the tangential component to the unit sphere,d.e=
¢ — (¢ |§)¢. Then,
(2.12) ¢  +Lel) =v" =5 +1-X)EO) +[E157)

¢+ Lp(@) —v'

(2.13) A )
=—£(1)" + L =)&) + €157} + Ly (&1 — 1&7)8) .

The constrained conditiopr(0) € Py is eliminated. Under the condition for initial
value, the constrained condition(1) — y(0) € P; is equivalent tOfO1 & dx e P[, and

can be written as{fol Eut dx}Pll = 0. Therefore, using

1 1 1 1 1
2.14 dx = d o AX = dx — 2 _ & lPEd s,
( )/Osnx /0¢x+/os x /Oqsx /0(|st| &) dx + [5]3
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the constrained conditiop(1) — y(0) € P, is equivalent to

1 P 1 P K
(2.15) { / ¢dx} ={ / (|st|2—|sx|2)5dx} S

Hence, we have

(b + I—Po(d))T - UT
= —£Q)7 + 1 X){&O% + [E157)T + L (&2 - 161267,

1 P 1 P N
{/ ¢dx} ={/ (|st|2—|sx|2)5dx} s
0 0

Now, we consider the condition (] &)]3 = 0. If £(xo) = yx(Xo) (Xo = 0, 1) is
fixed, thené(xp) = 0 and we have no more equations (Dirichlet condition)z (o) is
free, then we have a new equatigg(X) = O (Neumann condition). If the condition
is periodic: £(1) = £(0), we have a new equatiofy(1) = &(0) (periodic condition).
Note that [ | &)]3 = O is required in all cases.

We proved the following

(2.16)

Proposition 2.1. The equation of motion defined by the functioffaP) is given
by (2.16) Corresponding to the constrained conditjothe boundary condition is
given by
(B) If »(X0) (Xo =0, 1) is fixed thens(xg) is fixed. If yx(Xo) is free then&y(xp) = 0.
(P) §(1) = §(0), &(1) = &(0).

3. Existence of solutions

We solve (2.16) by the successive approximation. We havelie s

P!

1
(3.1) b+ Le@) - =a, {/ ¢dx} b,
0

3.2) Vi& — Viéx = ¢, {boundary conditions at = 0, 1}.
Here,a(x, t), b(t) € P, c(x,t) are known functions, and(x,t), v(t) € P{, £(x,t) are
unknown functions. Note that the operater depends oré. V means the covariant

differentiation onSN~1, i.e., the tangential component of the derivatives.

3.1. Estimation for equation (3.1) of¢. To solve (3.1), we consider operator

(3.3) Lepp: (6, 0) > <¢> L) 0T, —{/Ol¢dx}Pll>,
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where ¢ is a tangential vector field along on SN~1, and v is a vector inPj:. We
decompose the kernel function of the integral operatgyinto P/ component andPy
component. The two components beconpés, y) := 1—max(X, y} —(1—x)(1—y) and
k(X,y) = 1—maxXx, y}, and they are symmetric and the ranges are contained in the
interval [0, 1]. Therefore, the operatdrp, is a self-adjoint Hilbert—Schmidt operator,
and satisfies|Lp,(¢)" || < [l¢].

We estimate the norm of the operatop,.

Lemma 3.1. The operator lp, is bounded from below
T 1 2
(La(@) | 9) = = lI6]>
Proof. We define two operators, using kernel functignand k.
1 1
@4 bt [ty Lhi f [ ktonfo)dy
The operatorlp, is decomposed intd.[ + L. Since

p(X, y) = 1—maxx, y} — (L - x)(1 - y) = min{x, y}(1 — maxXx, y})

(3.5) . ] 1
< min{x, y}(1 — min{x, y}) < 7
we have
1,1
LT | f>|=‘// PO, Y)(F(X) | f(y))dxd%
(3.6) 070

1,1
=2 [ [ reansmraxay= g1
And, sincex (X, y) = p(x, y) + (1 —x)(1 —vy), we have
1 p1
(LA(F) | ) =/0/0 KO, Y(FX) | F(y)) dx dy

1 p1
(3.7) = (LL(D)| f>+/0/0(1—x)(1—y)f(x)f(y)dxdy
1
> 2117

We have(Lp,(¢)" | ¢) = —(1/4)|¢|1?, by combining these two inequalities. []
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The operator’; p, p, is also self adjoint, because

1 Pi-
(@1 + Ley(¢)" —vf | ¢2) + (—{/0 ¢1dx}
= (¢1 ] 2+ Lp(92)") — (v ] ¢2) — (#1 | v2).

)

To see that the operatdi; p, p, is invertible, we prepare a lemma.

(3.8)

Lemma 3.2. For any non-negative number B 1 and positive number Cthere
exists a positive constant K with the following propertf the distance betweeniP
and the origin is less than D and if the elastic eneitfy||? is less than €, then all
eigenvalues. of Lg p, p, satisfy|r| > K1,

Proof. LetA (JA| < 1/4) be an eigenvalue of: p, p, and ¢, v) be an eigenvector
such that|¢|? + |v|?> = 1. Since¢ + Lp,(¢)" —v' = Ap, we see

A= (Lepp(® V) (@, 0) = (d+Lp@) |¢)— (v |§)+ v
1
(3.9) =<¢+Lpo(¢>f|¢>—(v /Oqs(x)dx>+x|v|2

= (¢ + Lp(®)" | ¢) + 22 [v|%.

Therefore, (¢ + Lpy(4)" | ¢) = A(1 - 2[v[?). Since(Lp,(¢)" | ¢) = —(1/4)ll¢ll*, we
have [A(1—2[v[?)| = [ll¢]* + (Lry(#)" | &) = (3/4)ll¢]1%.
Using this, the normjjv || is estimated by, as

4
I¢l1? < 31al < 212,
(3.10) 7
0717 = 1@ =2 + Le(@) "1 = 2+ 12D%lIel* < 1] =< 8JAl

Sincev’ = v —(v | £)&, we have
B1l) (W x=—(EE— (| 8)E 1Nl = 2v[PE* < 20&l%
maxv > < 2[uT[(Jo | + 10 )xl) < 2v/8IAIGBIA + V2|
< 16)A| +8C+/|A| < 8(1+ C)V/IAl,
(v 1&)7=[v =" P =1-427-8(1+C)V/]a|
>1—(9+8C)\/|7l.

It implies that if || < (9 + 8C)~? then @ | £) does not change its sign, and

/Olgdx> = ’/Ol(v|$)dx > \/1—(9+8c:)m.

(3.12)

(3.13)

(3.14) ‘ <v
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On the other hand, we know thav | folé dx)| < |v|- D < D, becausev € P}".
Therefore,|A| > {(1 — D?)/(9 + 8)|&|)}>. O

By this lemma, we can solve (3.1) with drp function.

Proposition 3.3. For any a€ L, and h equation(3.1) has a unique solution
(¢, v). Moreovey the norm of the solution is estimated as

ol vl = K(llall + [bl),

(3.15)
max¢| = K(maxal + [b),

where K is a positive constant depending only on the engégi?.

Proof. By Lemma 3.2, we sdkp||, |[v| < Ci(||la]l + |b]). Since the solution satisfies
¢ =—Lp(®)" +v' +a’, we have mak| < ||¢| 4 |v|+maxa| < 3Ci(maxal+|b]). [

Also, the solutiong is continuous in the following sense.

Lemma 3.4. In Proposition 3.3,if £(x) and ax) are continuous then ¢(x) is
continuous.

Proof. Put §f)(x) := f(x + &) — f(x).

d

X 1 POT
(3.16) &"Po(f)z—/o(l—y)f(y)dy— (/0 (1—y)f(y)dy> ,

8(f ") < Cafls ]+ |581). [

Proposition 3.5. Consider equations

1 P N
(3.17) b+ L) — v =a, { /0 @dx} _ P

where ="' means the orthogonal componentgo There exists a positive constant C
depending on|&||, sudal and |b|, such that

(3.18) 18¢| < C{I8&] + [18all + [sb] + 8§ + [sal},
whered means the difference of solutioresg, §¢ := ¢ — ¢1.

Proof. We know that sypi|, [vi] < Ci. We write XTi := X — (X | §)&. This is
an extension of the notation''. From

(3.19) X2 — X"t = (X | &2)62 + (X | §1)61 = —(X | 86)61 — (X | £1)86 — (X | 8588,
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we have|X 2 — XT1| < 4/§&| | X|. Therefore,

(3.20) HLpy(2) "2 — 132 —ay '} — {Lpy(¢p2) ™ — vyt — 3y} < Co|6E|.
And,
(3.21) 66 + Lp,(56) " — v ™| < Caf|68| + |52},

=< Ca{|8&| + |3bl}.

(3.22) H/Ol 3¢ dx}Pll

Since 8¢ is not orthogonal tot;, we decompose it a8¢p = 8¢ 't + (8¢ | £1)&r.
Then,

(3.23) 09 | &1) = (2 — 91| &1) = (92 | &1) = (92 | &2 — 88) = —(o2 | 68),
and |8¢ — 8¢ 1| < C3|8&|. Hence,

180T + Ly (80 ™)™ — suT| < Caflo5| + |52},

3.24 P
T e
0

Therefore we have

=< Cs{|88| + |8b[}.

(3.25) 801, 16v] < Ce{lld& || + llsall + [sbl},

and, from (3.21),

18] < Coll8&] + (5]} + L pysgy + 1607
(3.26) = Cof|8&| + [sal} + [8¢|l + |dv]
< Co{ll08| + llsall + [8b| + |8&| + |sal}. 0

Lemma 3.6. If & belongs to @WX, then the solutiory of (2.16)belongs to (§W+.

Proof. By Proposition 3.5, the variation @f with respect tot is bounded by
sugéal and supsb|, which are bounded byj6£|?, |£x(0)| and |&(1)|. Therefore, if
&(x, t) is continuous in neighbourhoods of ¢g) and (1,ty), then¢(x, t) is continu-
ous in a neighbourhoods of= t. O

3.2. Estimation for equation (3.2) ofé. Next, we consider equation (3.2} & —
Vy&x = . Here,c is a tangent vector field o8N—1. We have to extract only vector infor-
mation ofc and ignore point information, or this equation is meanisgleThe condition
thatc is a vector field along is recovered by (2.16).
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To do it, we use the stereographic projection SN~ — RN=1. We introduce a
new unknownu := o &, rewrite 7.C by ¢, and consider equation

(3.27) Uty — U + Tj (u)(uf uf — ulul) = ¢,

where T'j' is Christoffel's symbol of the Riemannian metric &' induced byr.
Note that we treat as anRN~1-valued function.

We have to choose the center of the stereographic projestiothat the distance
of the center and the curvg is bounded below by a positive constant.

Lemma 3.7. For any positive number Cthere exists a positive number r with
following property If the energy of the curvé on SV~ is less than K then there is
a point A on $-1 such that the distance(d, £) of A and¢ is greater than r.

Proof. Since|&| < K, the length|&||., is less thanK. Let B, be the set of
all points {A € SN-1} such thatd(A, £) < e. The (N — 1)-dimensional volume oB,
is less than X + 2¢)e. We choose so that 2K + 2r)r is less than the volume of
SN-1. Then the seSN~1\ B, is non-empty. O

To solve the wave equation (3.27), we extenadn R as follows.
(P) [periodic condition] If the boundary condition is(1) = u(0), we extendu as a
periodic function.
(N) [Neumann condition] Ifu(0) is free, we extends as an even functionu(—y) =
uly) 0=y=1).
(D) [Dirichlet condition] If u(0) is fixed we extendu as an odd functionu(—y) =
2u(0) —u(y) (0 <y <1). In this case, we also need revisibyi of [';'y. Put

(3.28) I(w) = —Tj(2u(0) — w),

Tj'k =Tj'k (0<x <1) andTj'y =T’y (-1 < x < 0). (Except this case, we put
r=r)

~ We define similar extension at = 1. The initial valuesa' (x) = u'(x, 0), b'(x) =
ui(x, 0) andc' are extended similarly:
(P) a(=y) =al—y), b(=y) =b(l-y), c(-y, t) =c(1-y.1),
(N) a(=y) = a(y), b(=y) = —=b(y), c(=y, t) = c(y, 1),
(D) a(=y) = —a(y), b(=y) = b(y), c(=y, t) = —c(y, 1).

Note that the regularity of the extended functions are lothen the original func-

tions. In particular,l’ andc are only piecewise continuous.
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We convert the extended differential equation
(3.29) Ul — Ul + Ty (x, u)(uf uf — ulul) = ¢

to an integral equation
. . , X+t '
u'(x, t)y={@ax+t)+ax—t)+ / b'(y) dy + W(f')(x, 1),
X—t

tpx+t-1)
(3.30) W(F)(x, 1) := /()/_(t_ ) f'(y, r) dy dr,

fl =@ (u)+d, @ u):=—Ikx uuluf —uiuk),

and will solve this equation. We denote by (@, b', f') the right hand side of the
first line.

Lemma 3.8. Letu=1(a,b, f) be the above integrawhere g b, f are extended
functions. Thenwe have

(3.32) m(uy, T) + m(ug, T) < 2m(uy, 0) + 2m(ug, 0) + 2m(f, T)T,
whereM(v, T) := SUR<x<1. o<t<TIV|-

Proof.

2uy = {@(x +t) +a'(x —t)} + {b(x +t) — b(x —t)}
—|—/t fx+@{t—-1),7)— f(XxX—(t —1), 7)dr,
0

(3.32)
2u; = {@'(x +t) —a'(x —t)} + {b(x +t) + b(x — 1)}

+/tf(X+(t—T),‘L’)+f(X—(t—‘L’),‘L’)d‘L’. O
0

Lemma 3.9. IfaeCg,, beCJ, and feCj,, ., then the integral u=1(a,b, f)
belongs to G, .

Proof. Putu* :=u, £ u;. From (3.32),
t
(3.33) uf(x,t) =a(x £t) £ b(x £t) £ / f(x + (t—1), 7)dr.
0
Therefore, it suffices to show that

(3.34) vE(X, 1) :i= uF(x Ft, t) = a(x) £ b(x) £ /t f(xFr,t)dr
0
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is continuous. Sincd is boundedy®(x, t) is continuous with respect tb To check
the continuity ofvt with respect tox, we define

(3.35) a(x, t, e) = /t fx+e—1,7)— f(Xx—1, 7)dr.
0

Let K be the maximum value of. The effect tox(X, t, ¢) of the discontinuity of the

function f on the linesx +t =c¢, t =t andx € Z is bounded byKe. Therefore,

a(X,t,¢) is bounded by except on the linex—t = ¢;. Similar estimation holds fop~.
O

The Riemannian metric tensgy; on RN-1 = {(Z)} induced by the stereographic
projectionz and its Christoffel's symbol are given as follows.

(3.36) Gij(2) = 41+ |2]°) %85,

' Ti'(2) = =201+ [z 642! + 6,2 = 532),
where |x| is the Euclidean norm. Note that they converges to 0 wzer> oo, and in
particular, they are bounded d&" 2.

We will solve (3.30) by successive approximation. We suppibst that the initial
value satisfiesa € C,, b € C), andc € CJ,,. Then, each extended initial condition
belongs to the corresponding space. We lgft, T) := m(uy, T)+mM(u, T). The norm
of fi = @'(u) + ¢ is bounded byC;{m(c, T) + M(u, T)?}, whereC; is an absolute
constant. Therefore, the integrell = | (&', b', f') satisfies

(3.37) M(v, T) = m(v, T) + M(vy, T) < Co{M(u, 0)+ (M(c, T) + M(u, T))T},

where C, is an absolute constant and the valiKu, 0) depends only on the initial
value. SetK := Cy{M(u, 0)+ m(c, T)T}, and choose a positive numb&s < T such
that Co{M(u, 0) + (M(c, T) + K?)To} < K. Let S be the set of all functiongu} on
[0, 1] x [0, Tp] satisfying the initial condition and the symmetric coimait such that
M(u, Tp) < K. Since the functiorw := I (a, b, ¢) satisfiesM(v, T) < Co{M(u, 0) +
m(c, T)T}, the setS is non-empty.

For anyu e S, we put f = ®(u) +c andv' := I(a', b, f'). Thenv satisfies

(3.38) M (v, To) < Co{M(u, 0) + (M(c, T) + M(u, To)>)To} < K.

Therefore, the correspondende: u +— v is a map fromSto S. For uy, u, € S, we
put vi := ¥(uy), vz := ¥(Uz), U = Uz — U1, §v = v —v7. Then,
sv = 1(0, 0, d(uz) — @(uy)),

(3.39)
|®(uz) — @(u1)| = Ca(|dul + [Sux| + [dut]),
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where C3 depends only orK because the derivative (ﬁ,—‘k(x, z) with respect toz is
bounded by an absolute constant.
Therefore, using a norm;(v, T) :=m(v, T) + M(v;, T) + M(vk, T), we have

mSvt, T) + M(Svy, T) < 2CsM(|8u| + |8uy| + [Su|, T)T < 2C3M;(Su, T)T,
(3.40) mM(Sv, T) < 2C3M1(8u, T)T?,
M1(8v, T) < 4C3Mq(u, T)T.

Hence, for any positive numbéh < Ty satisfying £3T? < 1, the map¥ defined on
[0, 1] x [0, Tg] is a contraction.
We proved

Lemma 3.10. Equation (3.30) has a short time solution u for any initial value.
Its existence time T and the normi(d, T) depend only on the initial norm {, 0)
and m(c, T).

For the continuity, we have

Lemma 3.11. If the initial value satisfies & C,, b € CJ, and ce CJ,,, then
the solution u of(3.30) belongs to @WX.

Proof. In Proof of Lemma 3.10, the first approximatiopy = | (a, b, c) belongs

to Cj,. by Lemma 3.9. Sincai € Cj,, implies W(u) € Cy,,, the sequenceiy :=

U"(u() belongs toCéWX. This sequence converges with respect to the nbtm and
the limit belongs toCj,, . O

We estimate the dependencewfn c. Let u; be the solution forc;. Then,

(3.41) su=1(0, 0,®(up) — ®(uy)) + 1 (0, 0,5c),
' |P(uz2) — ®(ua)| = Co(|du] + [ut| + [Sux]).

Sincem(du, T) <m(su¢, T)T,

(3.42) M1(Su, T) < Co{M;(su, T) + m(sc, T)}T.

Therefore, if we choose sufficiently small, M;(su, T) is bounded bym(sc, T). More-
over, since ¢/dt)|su| < ||8u¢|l, we have

(3.43) sup{[|dull + [[sur]| + [[Sux|l} = C3T sup isc|.
0<t=<T 0<t<T
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Lemma 3.12. For sufficiently small nhumber T> 0, the solution u of (3.30)
satisfies

M;(8u, T) < Cm(sc, T),

3.44
(3.44) sup {[l8u]l + [|8ue|| + 8ux|[} = C sup|lsc|.
O<t<T O<t<T

3.3. Existence of solutions for the coupled equation (2.16) Now, we can prove
the following

Theorem 3.13. Equation (2.16) has a unique short time g,gx solution &(x, t)
for any initial data& € C,%W, & € ng. Its existence time depends only on the norm

m(&:) + m(&éx) of the initial data.

REMARK 3.14. We don’'t assume the Neumann compatibility condition the
initial data. However, the solution satisfies the comphtybcondition for almost allt
from the symmetry of the solution.

Proof. PutAg := m(&’) + m(£1). Since the energyi&’||? is bounded byA3,
Lemma 3.7 implies that there is a positive humbgr> 0 depending only om, such
that d(P, &) > ro for some pointP € SN-1. We chooseP as the center of stereo-
graphic projectiont. Let Dy be the set of all point$q} such thatd(q, P) >rq/2, and
Ry the maximum nornidr| of the derivative of the stereographic projectimnon Dy.
We putKp:= 4AgmaxC,Ry, 1} and Tp := ro/(2max Ao, 1}), whereC, is the absolute
constant given in (3.37).

Let ap(x) anda;(x) be the coordinate expression of the initial value, and3ebe
the set of allSN~1-valued functions on [0, 1k [0, To] whose initial value is{ag, a;}
such thatm(&) + m(&x) < Ko. SinceKg > Ag, & is non-empty. And, the image of
any element ofS) is contained in the domaily. The solutiong of (2.16) for the
data¢ € § is estimated agp| < Kq, because the right hand side of the equation is
bounded only byKo.

We project the solutiorny into RN, Since the dilatation of the projection is
less thanRy, we have|r.¢| < K1Ry. We solve the wave equation of for the data
7.¢. By Lemma 3.10, there is a solution such thdt(u) < Co{AgRy + K1 RyTo} for
sufficiently smallTp.

We puty := 7"t ou € SN, Since the maximum dilatation of ~* is 2, we have

K
(3.45) M) + M(nx) < 2C2{AoRo + K1RoTo} < 70 + 2C,K 1Ry To.

Therefore, choosingy such that 2,K;RyTp < Ko/2, we haven € S.
Similarly, we can show that the may: S — S is a contraction. Fo¥ € S,
we denote bygi, u; and n; corresponding functions as above. Singe u; and n;
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are already estimated, we have positive constdfitsKs, K4 depending only orKg
such that

(3.46) M(n1—1n2) < KaMy(u1 — U2) < KaM(mupr — m.p2) T < KaMy (61 — £2)T

holds on [0,T]. Therefore,¥ is a contraction ifT < 1/Kj.

The uniqueness of the solution follows from the constructidMoreover, the se-
quence &), ) belongs toCj,, x CJ,, by Lemma 3.11 and Lemma 3.6, and the
limit belongs to the same space. ]

4. Regularity of solutions

Let £(x, 0) = a(x) and &(x, 0) = b(x) be the initial data. We assume that:is
C1, b is CY, and satisfies the compatibility condition (Dirichlet, Neeann, periodic). It
is equivalent to assume that the extensioradqfesp.b) over the boundarx =0, 1 is
C! (resp.C9).

We will show that the solutiorg is C1. When both boundary condition are not
Dirichlet condition, we can prove it by Proof of Theorem 3r&Eplacing piecewise con-
tinuity to continuity. When one of boundary condition is iDhlet condition, we have
to give another proof, because the odd extensionE ahd ¢ are not continuous.

Lemma 4.1. The functionm.¢(X, t) is differentiable with respect to,xand the
differences; of the value aft(x, t 4+ ¢) and (x, t) satisfies

(4.1) supdi ()| < C{supsi&| + supdiéx| + [I8e&ell}-
Proof. By Proposition 3.5, we know that
(4.2) supsi¢| = Ci{supdié | + supldiéx| + (18511}

Since the stereographic projectienand its derivatives are bounded on the imagé of
we have|si(m.¢)| < Cz|8:9]. O

Using this lemma, we prove

Proposition 4.2. If the initial data (&, £1) belongs to & x C°, and if it satisfies
the compatibility conditior(Dirichlet, Neumann periodic), then the solutior¢ is CL.

Proof. The functiom®*(x, t) defined in (3.34)

(4.3) viE(x, t) = uf(x Ft,t) = a'(x) £ b(x) £ /t f(xFr, 1)dr
0
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have bounded derivatives with respect tdNVe denote by, the difference of the values
at (x,t + ¢) and &, t), and by, the difference of the values ax ¢ ¢, t) and , t).
Then, we have

t t
|6xv+|§|axa’|+|6xb|+‘/ f(x+e&—r1, r)dr—/ f(x—1,1)dr
0 0

t—e t
(4.4) §C15—|—’/ f(X—t,t—i—e)dT—/ f(x—1,t)dr
e 0

t
< Cye + ’/ G f)x—r1,1)dr
0

Here, f = ®(u) + ¢ andc = w.¢. We will estimate the norm(s; f)(x, t)|. Note
that the odd extension in the case of Dirichlet condition haseffect on the estima-
tion. The term|s;c| can be estimated using the above lemma, and the [&b{u)| is
bounded byCs{|8;u| + |8;ux| + |8:Ut|}. Hence, sufd; f| < C4{e + supsiuy| + supdiu|}.

We decomposé;uy as follows.

(4.5)
20:Ux (X, 1) = 2ux(X, t + &) — 2ux(X, t)
=ut(X, t+e)+u(x,t+&)—ut(x,t)—u"(x,t)
=vtX+t+et+e)+v X—t—gt+e)—vi(X+t,t)—v (X—t,t)
=8vT(X+t+et)+8vT(X+1,1)
+6v (X—t—g,t)+ v (X—t—¢,t).

Hence we see that 2 siipy| < Cse + sugéxvt| + supdxv—|. Combining it and a
similar estimation: 2 sup;u;| < Cge + supdxv™t| + sugéxv—|, we get

supd: f| < Cr{e + supdxv™| + suddxv |},

(4.6) !
supsvT|(t) < Cg{s + / supdxvt|(z) + supdxv|(t) dr}.
0

We can estimaté,v~ similarly, and get

(4.7)  sups,vt|(t) + supdxv”|(t) < Cg{e + /t supdxv™|(r) + supdxv|(t) dr}.
0

Therefore, supyxv™|(t) + supgdxv|(t) increases at most exponentially, and con-
verges to 0 wherr — 0. It means thaw® is uniformly continuous also with respect
to x, anduy andu; are continuous with respect toandt. O

We need more differentiability to prove that the solutionaislassical solution.
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Proposition 4.3. If the initial data (%, &) belongs to ¢, xC.,,, and if it satisfies

pw?
the compatibility conditionDirichlet, Neumann periodic), then the solutiore belongs
to C2,..

pwx

Proof. As in Proof of Proposition 4.2, we have to show that filngction
t
(4.8) vE(X, t) = a/(x) £ b(x) & / f(xFr, 1)dr
0

belongs tocgwi. The functionvi(x, t) = £f(x Ft,t) is continuous. To show that

v belongs tocgwi, we putg = ®(u) and decomposey as follows.

8 t
vE(X, t) = a’(x) £ b'(x) + X / fxFr, 1)de
0
(4.9) —a'(x) £ b(X) £ /t (X F 7, 7) dt
0
t
(g F, 1) — g(x, O) i/o (X F 7, 7) dr.

The functionsa”, b’ are piecewise continuous aiggx, t) is continuous orx ¢ Z. Also,
the functionck(x, t) is continuous orx ¢ Z, because = m,(¢) and ¢ is a solution of
the integral equation (2.16).

We have to checl{é g(X F 7, t) dr. Sincev® is bounded,

(4.10) sudg| < Ci{1 + suguyy + Supui},
. sufuyt|, suduxt| < Co{1 + sugv, | 4+ sudvy|}.

Therefore, we have
t

(4.12) supw;! | (t) + sugvy|(t) < C3/ {1+ supvy |(r) + sudvy |(z)} dz.
0

Hence, supf|(t) + supvg|(t) increases at most exponentially, and is bounded. It im-
plies that|g:|, |uxt| and |uy| are bounded.
To prove thatvy belongs toCp,., we consider the differencefvf and sxvi.

Since |c«| and |g| are bounded, (4.9) implies thatvE converges to 0 whem — 0
except discrete lineg = x;. For §,v, as the above calculation, we can check that

t
@12)  |50i(x 1) <Cq / {O(e) + 18xv} (%, 7)] + 805 (%, 7)1} d,
0

excepte-neighbourhood of discrete lines= x;. This gives the desired estimation_]
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Proposition 4.4. We assum€ondition 1.5 poundary condition Assume that the
initial data (£o, £1) belongs to €x C?! and satisfies the compatibility conditi¢Birichlet,
Neumannperiodic). When the boundary condition at=x X, is Dirichlet condition we
assume thaW,&o (= (Eoxx)') = 0, Vx&1 (= (£1x)T) = 0 at the point. Thenthe solution
£ belongs to C.

Proof. By the assumption, the extended initial dadab) belongs toC? x C1,
and the extended Christoffel symb®l is continuous. Therefore, we can prove that
£ belongs toC? by the method of Proof of Proposition 4.3 without exceptloitees
X = X. O

5. Long time existence

As in Section 3, if the quantity mdg| + maxéx| is bounded, then we can extend
the solution. We recall equation (2.16).

4) + I—Po(d))T - UT
= (1) + (L - X)EO) +[£157 )T + L (&2 — 15128)T,

1 P 1 P
{[oox}” ={[ar-remeax -,
By Hamilton’s principle, the solution should preserve togat energy:
T() = (Il + lyxel® + llyl?
60 — P +2(n0)| | 1(1—y)a(y)dy)
b [ e @ s ax dy+ 11 + s

In fact, we constructed the solution so that the derivative

1d !
ld,_ (yt(O) O+ [ - y)su(y)dy) I 1

2dt
+ <§t
vanishes.

However, its general proof requires smoothness of the isoluSince our solutions
are not smooth, we have to check the energy preserving lawellow, we assume that
the initial data £, £1) belongs toC* x C° and satisfies the compatibility condition.

(5.2)

1
(L - X)ye(0) + /0 (%, V) (y) dy + & — sxx>



MOTION OF ELASTIC WIRE 807

By Proposition 4.2, the solutioé is of classC!. As in Proof of Lemma 3.8, the
integralu = 1(a, b, f) andu® := uy & u; satisfy

(5.3) uf(x,t) =a(x £t) £ b(x £t) £ /t f(x+tFr, 1)dr,
0
we have
t
(5.4) ut(x Ft,t) = a'(x) £ b(x) £ / f(x F 7, t)dr.
0

Therefore, the function — u*(x F t, t) is differentiable.
0 +
(5.5) ﬁ{u xXFt, )} =xf(xFt,t).

From this, we can check thgtt(x, t) = & =+ & has similar property as follows.
Forgetting the original definition o, we re-introduce a tangent vector valued func-
tion ¢ by

(5.6) P(X, 1) 1= (X, t) — (|&|° — |&[?)E.

Lemma 5.1. Let &, ¢ be the solution. On the domaittit < x <1+t (hence
[ =T), it holds that

(5.7) VHEE(X F L, 1)} = Zo(X Ft, 1),
0
(5.8) 5@*@$L0}=iﬂX¢L&
Proof.

The i-th component ofV,{£*(x F t, t)}
0 : : 0
= S ETXF LT EXF L) HE X F LI F D)
5.9 = % f - r;fk(s)(exf F stf)sik}|<x¢t,t)
= £{f =T (&) F&)E £ a8 o

= +{F =T} (&) ESE — & &N ey
=+¢' (X Ft,t).
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Hence,

8 +

= Vi{ET(x Ft, b)) + (;t{si(x Ft )| (X Ft, t))é(x Ft,t)
(5.10) = +p(XFt, ) - (Si(x Fi,1) %{E(X F, t)}>§(x Fit,t)

= {£¢ — (& £ & | F& + &) )
= (¢ F (&% — |&IDEHxze,0)
= (X Ft,1). ]

Lemma 5.2. The solution(¢, ¢) satisfies

d 1
< /O POJE® (x, 1) dx

(5.11) .
_ i{[p(x)s*(x, 013 + /0 S0, 1) + pOJp(, t)dx},
d 1
Gt | p0osx v ax
(5.12) 0 .
— [p()E(x, O] / p(X)E(x, 1) dx,
0
d 1
97 bz (x, ) dx
(5.13) dt/o

1
= [P()&x(x, )] +/O — P (X)éx(x, 1) + p(x)p(x, t) dx.

Proof. It suffices to prove the first equation. The second &ird tquations are
given by the sum and the difference.

d /? N d 1+t N
Gt | pooston = & [ pte 0gt T 4 1 ax

1+t
— £p(EH(L 1) F POE(0.1) + / Fp/(x F DEEXF L, 1) dx
(5.14) *

1+t
+/ +p(X Ft)p(X Ft,t)dx
+t

1 1
= £[P(X)5™(x, t)]é?/ P& (x, t)dXi/ p(X)e(x, t) dx. [
0 0
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We calculate each teri(y) in (5.1) using Lemma 5.1. We re-define the cupvby

1 P
nt(0, 1) = _{/o (1 —x)p(x, t) dx — &(O, t) + [£(X, t)]i:o} ,

wx(X, 1) = §(x, 1).

(5.15)

Note that we retain the condition for initial dataz(0, 0) € Py, (0, 0) € Py and

folst(x,O)dx = [n(x, 0)]3 € P1. Therefore, the definition of implies thaty;(0,t) € Py
and y(0,t) € Py. Moreover, by Lemma 5.2 and equation @f

1 1
(5.16) E/ éthZ[Sx]éJr/ pdxe Pl
dt 0 0

holds, and the constrained condition (K, t)]3 € Py is satisfied.
To simplify notation, we introduce a functiam(t) by

1
(5.17) a(t) = /0 (L= X)g(x, 1) dx — £(0, 1) + [£(x, D]L,.
Since y(0, t) = —a(t)®, 1(0,t) € Py, we have
d
(5.18) a|yt(0)|2 = 2(1(0) | 11:(0)) = =2(11(0) | ex()).
For the second term of (y), we apply Lemma 5.2.

d 1 1
Gt | @=xa0cnd=10-0685+ [ &+ @—x dx

1

(5.19) = ~6(0) +[¢lh + | (=X dx

= «.
Hence,

d 1
24 <yt(0) /0 (1= y)&(y) dy)

1

(5.20) _ _2<aPJ /0 (1— y)&(Y) dy> +2(1(0) | @)

= —2((1-x)a™ | &) +201(0) | @).
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For the third term ofT (y), we have to check only derivatives &f. Put p(x,t) =
Jo (%, Y)&(y) dy.

1
(5.21) p(0. 1) = /O (L- & Hdy, pt) =0,
1 X
(5.22) P, 1) = /0 ex(X, V() dy = — /O E(y) dy.
Lemma 5.2 implies that
d 1 ,r1 d 1
gt || etxoniaed tammax ay= g [ @00 1 pooyx
=2[(p| sx)](l)_Z(px | &) +2(p | ¢)
1 X
=—2</0 (L= V)&, 1) dy sx(0)> +2</0 &(y) dy

X 1
62 = —2l10-050)+2|( [ amay|e)| ~2a10+2pl0)

sx>+2<p|so>

1
26 | (L— X)) + 2( | atndy sm)

+ 2<§t(x) /01 Kk (X, Y)o(y) dy>

= 2<ét

Here, we used the fact thgt is orthogonal tog.
For the fourth and fifth term, we see that

1
(1 - X)Ex(0) + £(1) + /0 (. Yo (y) dy>.

1
€11 + 11&)? = é{lléJrll2 + €717
(5.24)

_ 1 1+t N ) 1 1-t N )
_5/t [ET(x —t, 1) dX+§/4 [ET(X +t, t)]“dx
and
d 2 2
SUEI+ 5
1 1+t
= Sl 0P+ [ € -t ot -t o) dx
t
(5.25)

1-t
Sl O - [ @t et ) dx

1
= 206 | )15 + 2 /0 (& | 0) dx
— 25 | ¢).
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The last equality comes from the extension of the solutioer av= 0, 1. Note that the
initial data should satisfy compatibility condition for Nmann type.
Put all together andf; & dx € P], v € P{-, we get

1d
EaT(V)
= —(n(0)| @) — (1 —x)a™ | &) + (n(0) | @)
1
+<st (1= %)E(0) + £(D) + /0 <(x, y)«)(y)dy>
+ (& | @)

1
= <a —~(1-x) /0 (1 — y)p(y) dy? + (1 - x)E(O0)7 — (1 —x)[E]S™

(5.26)

1
- @- X80 +£@ + [ Kty dy+ <p>

o) =0

Hence, the total energ¥(y) is preserved. Therefore, the quantitft) = sugé ™|+
supé~| satisfies sujp| < Ci(1 + h) by Proposition 3.3. Moreover, by Lemma 5.1,
we see

1
=<st|vT>=<st|v>=</0 £ dx

(5.27) e 1,0 = 2260w 1) |90 F L, 1),

and d/dt)|EE(xFt,t)| < |p(xFt,t)| <suge|. It implies that @/dt)supgé®| < suge,
and h'(t) = (d/dt) sugé™| + (d/dt) sugé | < 2 sufe| < 2Cy1(1 + h(t)). Therefore, the
function h(t) increases at most exponentially, and we proved the fofigwi

Theorem 5.3. Equation (2.16) has a infinite time solution for any initial data
(€0, &) in C1 x C° with compatibility condition.

When the initial data does not satisfy the compatibility dition, we have to ap-
proximate the solution by smooth solutions. We denotel BY® the space of all func-
tions whosem-th derivatives belong td.?, and putL,” = {u(x, t) | ux, uy € LI1P}.
We define the norm of the space by

(5.28) [uflLme = SPF(”””LT"’ + [[Uell m-p).

To eliminate&,(0) and Ex]3P from equation (2.16), we assume Condition 1.5.
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Theorem 5.4. Assume that the boundary condition is one @bndition 1.5 If
the initial data (%, &1) € L3> x LS satisfies the boundary conditions ¢r{0), y (1),

£(0), £(1) (but may not satisfies the conditions &(0), £&x(1)), then the L<lj?° solution
of Theorem 3.13exists on infinite time.

Proof. We approximate the initial data by a Cauchy sequeﬁS‘ié a{l(”)). We may
assume that eacf&é@, sf‘)) is smooth and satisfies the compatibility condition. In-par
ticular, supg(™| is bounded by the constant total energy and {f§® .~ increases

at most linearly by Lemma 3.8.
We denote by the difference of the solutioff™ and& (™. By formula ¢/0t){£*(x F
t, 1)} = £e(x Ft,t) in Lemma 5.1, we have

(5.29)
d sy2 d 1+t N )
Gl = 5 [ e ocr o ax
1+t
= [jse* (x F , YL, iZ/ GEE(X F 1, 1) | Sp(x F 1, 1)) dx
+t
= £[|8EE(X, )2} £ 2(8% (X, 1) | Se(X, t)).
Hence,
d
2 iset2 SE N2y = [1SE 12 — (86 |21L & (56 — 56 | 8
(5.30) dt{||§||+||%'||} (166717 — 66 |7Tp &+ 2(5& £ | 8p)

= 4[(8& | 8&)]g £ 2(8ET — 6™ | S¢p).

Here, the boundary termdf; | §£¢)]5 vanishes. Condition 1.5 implies thide| is
estimated by||6&|| + |66~ + supdé|, and that supé| is bounded byj|8&«| + |8 ]|.
Hence, we have

d
(5.31) a{IISSII2 + 186112 + 11867117 < CHISEN® + 1584117 + 1136 11%).

The constanC is independent of the approximate solutions. Therefore, sblutions
£ converges inLyZ. Moreover, the limit belongs td }{° because™ are uniformly
bounded inLyf.

On the other hand, the sequeng® converges inL2 . It means that the conver-
gence is inLg, by the boundary condition. Therefore, by Lemma 349 converges
in L3¢, and the limit coincides with the solution of Theorem 3.13. O]

6. Uniqueness of periodic solutions

When we consider equation for closed curyeswe choose the origixx = 0 and
apply Section 5. Therefore, to say that the solution is umigue have to prove that
the solution is independent of the choice of the origin.
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Let yo(x) be aC? closed curve:St = R/Z — R® with unit tangent vector field
£ = yox, and y1(x) be aC?* vector field alongyy(x) such thaté; = yy is orthogonal
to & at each point. For eackh = a, Theorem 3.13 gives a periodic solution for the
initial data &o(x), £1(x)) defined on the intervala) a + 1]. We denote the solution by
é(a)Z St x R+ — Sz.

Theorem 6.1. The above solutior(y is independent of the choice of a.

Proof. We denote by( ¢, v) the solution fora = 0. Since each solutiof is
unique, it suffices to prove tha€(x), ¢(x)) = (£(x + a), ¢(x + a)) is a solution on
—a<x=<1l-a.

We putia(X,y) =«(X,y) —(1—x)(21—y) and L(f) = fol k2(X, y) f(y)dy. The
equation in the periodic case becomes

¢+ L@ —v" = L((&I*— &P8) T,

1 1

dx = 2 — & [?)E dx,

61 /Oqs x /0(|st| 152)¢ dx
Vtéft_vxéxzd):

§(1) = §(0), &(1) = éx(0).
Here, we eliminated the ter(1)" by merging into the unknown function.

Since&¢ and¢ are periodic, these equality fof (¢) holds automatically except the
first one. The first one is equivalent o+ L(¢)" = v', wheregp = ¢ — (|&|? — |&x|?)E.
Hence, if there exists a functioi(t) such thatg + L(¢)" = v, then €, ¢, 7)) is a
solution.

Fromx2(0,y) = 0 andkax (X, y) = {—y (Y = x), 1~y (Y = X)}, we see that (f)(0) =
0 and

1
L(FY(x) = /0 o, ) £ () dy
X 1
6.2) =/O —yf(y)dy+/ (1—y)f(y)dy
1 1
=—/0 yf(y)dy+/x f(y) dy.

Hence,

1
(6.3) L(f)/(0)=/O L=-yfydy. L)) =-FfX).
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We putd(x) = L(@)(X) — L(¢)(x + a). The functiond satisfiesd(0) = L(¢)(0) —
L(¢)(@) = —L(»)(@) and

1 1-a 1
L@@ = [ @-vemdy=- [ yoy+ardy= [ yoty+a-1ay

1 a
(6.4) . / (2 a)p(2) dz— /0 (z+1- a)p(2) dz

= _/: Z(p(Z)dZ—/Oa(p(Z)dZ.

On the other hand,

1 1
6.5) L)@ = / Yo(y) dy + / o(y) dy = L&) (0),
0 a
and
d’(0) =0,
(6.6) ©)=0

d"(x) = L(9)"(x) = L(9)"(@+ x) = =¢(x) + ¢(a + x) = 0.

Therefore,d(x) = —L(¢)(a) and

L@)"(X) = L@)X) - (LE@)X) | £())
(6.7) = L(p)@@+x) — L)@ — (L(p)(a+ x) — L(¢)(@) | §(a+ X))
=L(p) (@+x) - L@@ (@+x) = {v - L)@} @+ x).
It implies thatt = v — L(p)(a) satisfies the desired equalify+ L(<,b)T =vl. ]
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