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Abstract
There are several types of equation of motion of elastic wires. In this paper,

we treat an equation taking account of the thickness of wire.The equation was in-
troduced by Caflisch and Maddocks on plane curves, and they proved the existence
of solutions. We will prove the existence of solutions for any dimensional Euclidean
space. Note that, in the case of plane, the equation can be explicitly written in terms
of polar coordinates. For higher dimensional case, we use covariant differentiation on
the unit sphere.

1. Introduction and results

In the previous work [9], the first author considered the motion of a fixed length elas-
tic wire, governed by the elastic energy. Let
 D 
 (x) be a curve in theN-dimensional
Euclidean spaceRN with arc length parameterx 2 [0, 1], i.e., j
 0(x)j � 1. We denote its
motion by
 D 
 (x, t). We denote by (� j � ) (resp.j � j, h � j � i, k � k) the pointwise
inner product (resp. pointwise norm, theL2-inner product with respect to the variablex,
the L2-norm with respect to the variablex). The potential energy of the elastic wire
 (x)
is defined by the square integralU D k
xxk2 of the curvature. Assuming that the wire is
infinitely thin, the kinetic energy of the motion of the wire is defined byE D k
tk2.

By Hamilton’s principle, the equation of motion is given as critical points of the
variational problem defined by the functional

(1.1) F D ∫ T

0
E �U dt D ∫ T

0
k
tk2 � k
xxk2 dt.

The equation turns out to be a coupled system of semi-linear 1-dimensional plate equa-
tion, where the derivatives of unknown functions up to fourth order are involved.

In [9] and also in A. Burchard and L.E. Thomas [2], the existence of a unique
short-time solution satisfying some initial data was proved. The former used a per-
turbation to a composition of parabolic operators, and latter used the contraction prin-
ciple and Hasimoto’s transformation in the 3-dimensional case. A linear version of such
equation can be also found, for example, in R. Courant and D. Hilbert [4].
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We may replace Newton’s dynamics by the gradient flow equation, where the equa-
tion turns out to be a coupled system of semi-linear parabolic equation. The gradient
flow equation is treated by the first author [7] and Y. Wen [10] in the Euclidean space,
and in [8] in the Riemannian manifolds.

In this article, we consider the case when the wire is thick. Following the argu-
ment in R. Caflisch and J. Maddocks [5], we define the kinetic energy of the motion
of the wire asE D k
tk2 C k
xtk2, where the termk
xtk2 comes from the thickness
of the wire. See also [3]. Then the equation of the wire is derived from the functional

(1.2) F D ∫ T

0
E �U dt D ∫ T

0
k
tk2C k
xtk2 � k
xxk2 dt

instead of (1.1). Such equation in the planer case (N D 2) was derived by R. Caflisch
and J. Maddocks [5], and the global in time existence of the solutions was established
under some kind of constrained conditions. The equation canalso be obtained as a
planar version of the director rod theory due to Antman and Kenney [1]. See also [6].

The objective of this article is to generalize the global existence results in [5] to
any space dimension. We remark that, in the case of plane, theequation can be ex-
plicitly written in terms of trigonometric functions. For higher dimensional case, it is
natural to introduce a geometrical aspect, and we use covariant differentiation on the
unit sphere. Exact expression of such equation will be givenlater in Section 2, but we
also remark here that it is a completely different equation from the one for infinitely
thin elastic wire case treated in [9] and [2].

We consider several boundary conditions for the minimizingfunction 
 D 
 (x) of
the functional (1.2), abbreviating the time variablet . Let P0 and P1 be affine subspaces
of RN .

CONDITION 1.1. We assume that (B) the boundary point
 (0) belongs to an affine
subspaceP0 of Rn and the vector
 (1)� 
 (0) belongs to an affine subspaceP1. And,
we assume that (E) the boundary direction
x(0) and
x(1) are free or fixed (4 types),
or (P) 
x(1)D 
x(0). We denote by (BE) the combination of (B) and (E), and by (BP)
the combination of (B) and (P).

The above condition includes the following special cases: When both P0 and P1

are point sets, the boundary point of the curve are fixed. Whenboth P0 and P1 areRN ,
the boundary point of the curve are free. The motion of closedcurves are represented
by the condition (BP) withP0 D RN and P1 D f0g. [5] treats the planner (N D 2)
non-closed case (BE) with (1)P0 D f0g, P1 D R2, 
x(0) is fixed,
x(1) is free; and (2)
P0 D f0g, P1 D R1, 
x(0) and
x(1) are free.

We assume that the distance ofP1 and the origin 0 is less than 1. We denote by
PT

i the vector subspace given by translatingPi to the origin, and byP?
i the orthogonal
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complement vector space toPT
i . The projection toPT

i (resp. P?
i ) is denoted by�PT

i

(resp.�P?i ).
The constrained condition 1.1 implies that the initial value 
0(x)D 
 (x, 0), 
1(x)D
t (x, 0) have to satisfy the following conditions. We always assume that the initial

value satisfies the condition.

CONDITION 1.2 (constrained condition of initial value). (B)
0(0) 2 P0, 
1(0) 2
PT

0 , 
0(1)� 
0(0) 2 P1, 
1(1)� 
1(0) 2 PT
1 .

(E) 
 01(0)D 0 if 
x(0) is fixed. 
 01(1)D 0 if 
x(1) is fixed.
(P) 
 00(1)D 
 00(0), 
 01(1)D 
 01(0).

As we will see in Proposition 2.1, Conditions 1.1 (BE), (BP) require that the so-
lution 
 (x, t) have to satisfy the following compatibility conditions.

CONDITION 1.3. (BE0) 
xx(0,t)D 0 if 
x(0) is free.
xx(1,t)D 0 if 
x(1) is free.
(BP0) 
xx(1, t) D 
xx(0, t).

These conditions corresponds to the compatibility condition of initial value:

CONDITION 1.4 (compatibility condition of initial value). (CE0) 
 000 (0) D 0 if
x(0) is free. 
 000 (1)D 0 if 
x(1) is free.
(CP0) 
 000 (1)D 
 000 (0).

To state our results, we prepare notations. LetCn
pw be the space of allCn�1 func-

tions fu(x)g such thatu(n)(x) are piecewise continuous. LetCn
pw� be the space of all

Cn�1 functionsfu(x, t)g which areCn outside of finite number of linesx� t D ci . Let
Cn

pwC be the space of allCn�1 functions fu(x, t)g which areCn outside of finite num-

ber of linest D ti and x 2 Z. Similarly, let Cn
pw�C be the space of allCn�1 functionsfu(x, t)g which areCn outside of finite number of linesx � t D ci , t D ti and x 2 Z.

We will get the following results. We always have short time solutions.

Theorem 3.13. If the initial value 
0(x) and 
1(x) satisfy Condition 1.2 (con-
strained condition) and if 
0(x), 
1(x) 2 C0

pw, then, even if they do not satisfyCon-
dition 1.4 (compatibility condition), there exists a unique short time solution
 (x, t)
such that both
xx(x, t) and 
xt(x, t) are in C0

pw�.

And, the solution exists for infinite time, if the initial value satisfies the compati-
bility condition.
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Theorem 5.3. If the initial value
0(x) and 
1(x) are C1, and they satisfyCondi-
tion 1.1 (constrained condition) and Condition 1.3 (compatibility condition), then there
exists a unique infinite time solution
 (x, t) such that 
xx(x, t) and 
xt(x, t) are
continuous.

Moreover, problems of the following types have infinite time solutions, even if the
compatibility condition are not satisfied.

CONDITION 1.5. (a) P0 D RN and (P1 D RN or (� (0) and� (1) are free)), or
(b) � (0) is free and (P1 D RN or � (1) is free), or
(c) P0 D RN and P1 D f0g and � (0)D � (1).

Theorem 5.4. Suppose that the constrained condition is one of the type(1.5).
Then, the solution
 (x, t) of Theorem 3.13exists infinite time.

2. Derivation of equation

To derive the equation of motion, we rewrite the functionalF(
 ) as a functional
of � WD 
x 2 SN�1. Since the variablet always appear, we omit it. The term
t can be
express as
 (x) D 
 (0)C ∫ x

0 � (y) dy.

∥

∥

∥

∥


t (0)C ∫ x

0
�t (y) dy

∥

∥

∥

∥

2

D j
t (0)j2C 2

(
t (0)
∫ 1

0

∫ x

0
�t (y) dy dx

)C〈∫ x

0
�t (y) dy

∫ x

0
�t (z) dz

〉

,

(2.1)

∫ 1

0

∫ x

0
�t (y) dy dxD ∫ ∫

0�y�x�1
�t (y) dx dyD ∫ 1

0

∫ 1

y
�t (y) dx dy

D ∫ 1

0
(1� y)�t (y) dy,

(2.2)

〈
∫ x

0
�t (y) dy

∫ x

0
�t (z) dz

〉 D ∫ 1

0

∫ x

0

∫ x

0
(�t (y) j �t (z)) dy dz dx

D ∫ ∫ ∫
0�y,z�x�1

(�t (y) j �t (z)) dx dy dz

D ∫ ∫
0�y,z�1

{∫ 1

maxfy,zg(�t (y) j �t (z)) dx

}

dy dz

D ∫ 1

0

∫ 1

0
(1�maxfy, zg)(�t (y) j �t (z)) dy dz.

(2.3)
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We put �(x, y) WD 1�maxfx, yg, and get

(2.4)

F D ∫ T

0

{j
t (0)j2C 2

(
t (0)
∫ 1

0
(1� y)�t (y) dy

)

C ∫ 1

0

∫ 1

0
�(x, y)(�t (x) j �t (y)) dx dyC k�tk2 � k�xk2

}

dt.

The first variation with respect to an infinitesimal variation ( M
 , M� ) is given by
(2.5)MF

2
D ∫ T

0

{

(
t (0) j M
t (0))C ( M
t (0) j ∫ 1

0
(1� y)�t (y) dy

)

C (
t (0)
∫ 1

0
(1� y) M�t (y) dy

)C ∫ 1

0

∫ 1

0
�(x, y)( M�t (x) j �t (y)) dx dy

C hM�t j �ti � h M�x j �xi
}

dt

D � ∫ T

0

{

(
t t (0) j M
 (0))

( M
 (0)
∫ 1

0
(1� y)�t t (y) dy

)

C (
t t (0)
∫ 1

0
(1� y) M� (y) dy

)C ∫ 1

0

∫ 1

0
�(x, y)( M� (x) j �t t (y)) dx dy

C hM� j �t ti C [( M� j �x)]1
xD0 � hM� j �xxi

}

dt

D � ∫ T

0

( M
 (0) 
t t (0)C ∫ 1

0
(1� y)�t t (y) dy

)

dt � ∫ T

0
[( M� j �x)]1

xD0 dt

� ∫ T

0

〈 M� (1� x)
t t (0)C ∫ 1

0
�(x, y)�t t (y) dyC �t t � �xx

〉

dt.

Since M
 (0) can move inPT
0 and 
t t (0) 2 PT

0 , we have

(2.6) 
t t (0)D �(∫ 1

0
(1� y)�t t (y) dy

)PT
0

by eliminating M
 (0), where�PT
0 means the projection. Since the conditions concerning

to M� are (M� j � ) D 0 and
∫ 1

0
M� dx 2 PT

1 , we have

(2.7) (1� x)
t t (0)C ∫ 1

0
�(x, y)�t t (y) dyC �t t � �xx D u� C v, v 2 P?

1

by eliminating M� . Here,uD u(x, t) is an unknown function andv D v(t) is an unknown
vector valued function. We consider the term [(M� j �x)]1

xD0 later.
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Put ' D �t t � �xx.

∫ 1

0
(1� y)�t t (y) dyD ∫ 1

0
(1� y)'(y) dyC ∫ 1

0
(1� y)�xx(y) dy

D ∫ 1

0
(1� y)'(y) dyC [(1 � y)�x(y)]1

yD0C
∫ 1

0
�x(y) dy

D ∫ 1

0
(1� y)'(y) dy� �x(0)C [� ]1

0,

(2.8)

∫ 1

0
�(x, y)�t t (y) dyD ∫ 1

0
�(x, y)'(y) dyC ∫ 1

0
�(x, y)�xx(y) dy

D ∫ 1

0
�(x, y)'(y) dyC [�(x, y)�x(y)]1

yD0C
∫ 1

x
�x(y) dy

D ∫ 1

0
�(x, y)'(y) dy� (1� x)�x(0)C � (1)� � .

(2.9)

Therefore,

(2.10)
' C ∫ 1

0
�(x, y)'(y) dy�{∫ 1

0
(1� x)(1� y)'(y) dy

}PT
0

D (uC 1)� C v C (1� x)�x(0)P?0 � � (1)C (1� x)[� ]1
0

PT
0 .

We put

(2.11) L P0( f ) WD ∫ 1

0
�(x, y) f (y) dy�{∫ 1

0
(1� x)(1� y) f (y) dy

}PT
0

and� WD '>, where�> means the tangential component to the unit sphere, i.e.,'> D' � (' j � )� . Then,

'> C L P0(')> D v> � � (1)> C (1� x)f�x(0)P?0 C [� ]1
0

PT
0 g>,(2.12)

� C L P0(�)> � v>
D �� (1)> C (1� x)f�x(0)P?0 C [� ]1

0
PT

0 g> C L P0((j�t j2 � j�xj2)� )>.
(2.13)

The constrained condition
 (0) 2 P0 is eliminated. Under the condition for initial

value, the constrained condition
 (1)� 
 (0) 2 P1 is equivalent to
∫ 1

0 �t t dx 2 PT
1 , and

can be written as
{∫ 1

0 �t t dx
}P?1 D 0. Therefore, using

(2.14)
∫ 1

0
�t t dx D ∫ 1

0
' dxC ∫ 1

0
�xx dx D ∫ 1

0
� dx� ∫ 1

0
(j�t j2 � j�xj2)� dxC [�x]1

0,
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the constrained condition
 (1)� 
 (0) 2 P1 is equivalent to

(2.15)

{∫ 1

0
� dx

}P?1 D {∫ 1

0
(j�t j2 � j�xj2)� dx

}P?1 � [�x]1
0

P?1 .

Hence, we have

(2.16)

� C L P0(�)> � v>
D �� (1)> C (1� x)f�x(0)P?0 C [� ]1

0
PT

0 g> C L P0((j�t j2 � j�xj2)� )>,
{∫ 1

0
� dx

}P?1 D {∫ 1

0
(j�t j2 � j�xj2)� dx

}P?1 � [�x]1
0

P?1 .

Now, we consider the condition [(M� j �x)]1
0 D 0. If � (x0) D 
x(x0) (x0 D 0, 1) is

fixed, then M� (x0) D 0 and we have no more equations (Dirichlet condition). If� (x0) is
free, then we have a new equation�x(x0) D 0 (Neumann condition). If the condition
is periodic: � (1) D � (0), we have a new equation�x(1) D �x(0) (periodic condition).
Note that [(�t j �x)]1

0 D 0 is required in all cases.
We proved the following

Proposition 2.1. The equation of motion defined by the functional(1.2) is given
by (2.16). Corresponding to the constrained condition, the boundary condition is
given by:
(E) If 
x(x0) (x0 D 0, 1) is fixed then� (x0) is fixed. If
x(x0) is free then�x(x0) D 0.
(P) � (1)D � (0), �x(1)D �x(0).

3. Existence of solutions

We solve (2.16) by the successive approximation. We have to solve

� C L P0(�)> � v> D a>,

{∫ 1

0
� dx

}P?1 D b,(3.1)

rt�t � rx�x D c, fboundary conditions atx D 0, 1g.(3.2)

Here,a(x, t), b(t) 2 P?
1 , c(x, t) are known functions, and�(x, t), v(t) 2 P?

1 , � (x, t) are
unknown functions. Note that the operator�> depends on� . r means the covariant
differentiation onSN�1, i.e., the tangential component of the derivatives.

3.1. Estimation for equation (3.1) of�. To solve (3.1), we consider operator

(3.3) L� , P0, P1 W (�, v) 7! (� C L P0(�)> � v>, �{∫ 1

0
� dx

}P?1 )
,
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where � is a tangential vector field along� on SN�1, and v is a vector in P?
1 . We

decompose the kernel function of the integral operatorL P0 into PT
0 component andP?

0

component. The two components becomesp(x, y) WD 1�maxfx, yg� (1� x)(1� y) and�(x, y) D 1� maxfx, yg, and they are symmetric and the ranges are contained in the
interval [0, 1]. Therefore, the operatorL P0 is a self-adjoint Hilbert–Schmidt operator,
and satisfieskL P0(�)>k � k�k.

We estimate the norm of the operatorL P0.

Lemma 3.1. The operator LP0 is bounded from below:

hL P0(�)> j �i � �1

4
k�k2.

Proof. We define two operators, using kernel functionsp and �.

(3.4) LT
P0
W f 7! ∫ 1

0
p(x, y) f (y) dy, L?P0

W f 7! ∫ 1

0
�(x, y) f (y) dy.

The operatorL P0 is decomposed intoLT
P0
C L?P0

. Since

(3.5)
p(x, y) D 1�maxfx, yg � (1� x)(1� y) D minfx, yg(1�maxfx, yg)

� minfx, yg(1�minfx, yg) � 1

4
,

we have

(3.6)

jhLT
P0

( f ) j f ij D ∣∣∣
∣

∫ 1

0

∫ 1

0
p(x, y)( f (x) j f (y)) dx dy

∣

∣

∣

∣

� 1

4

∫ 1

0

∫ 1

0
j f (x)j j f (y)j dx dy� 1

4
k f 2k.

And, since�(x, y) D p(x, y)C (1� x)(1� y), we have

(3.7)

hL?P0
( f ) j f i D ∫ 1

0

∫ 1

0
�(x, y)( f (x) j f (y)) dx dy

D hLT
P0

( f ) j f i C ∫ 1

0

∫ 1

0
(1� x)(1� y) f (x) f (y) dx dy

� �1

4
k f 2k.

We havehL P0(�)> j �i � �(1=4)k�k2, by combining these two inequalities.
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The operatorL� , P0, P1 is also self adjoint, because

(3.8)
h�1C L P0(�1)> � v>1 j �2i C

(�{∫ 1

0
�1 dx

}P?1 v2

)

D h�1 j �2C L P0(�2)>i � hv1 j �2i � h�1 j v2i.
To see that the operatorL� , P0, P1 is invertible, we prepare a lemma.

Lemma 3.2. For any non-negative number D< 1 and positive number C, there
exists a positive constant K with the following property: if the distance between P1

and the origin is less than D and if the elastic energyk�xk2 is less than C2, then all
eigenvalues� of L� , P0, P1 satisfy j�j � K�1.

Proof. Let� (j�j < 1=4) be an eigenvalue ofL� , P0, P1 and (�, v) be an eigenvector
such thatk�k2C jvj2 D 1. Since� C L P0(�)> � v> D ��, we see

(3.9)

� D hL� , P0, P1(�, v) j (�, v)i D h� C L P0(�)> j �i � hv> j �i C �jvj2
D h� C L P0(�)> j �i � (v ∫ 1

0
�(x) dx

)C �jvj2
D h� C L P0(�)> j �i C 2�jvj2.

Therefore,h� C L P0(�)> j �i D �(1� 2jvj2). Since hL P0(�)> j �i � �(1=4)k�k2, we
have j�(1� 2jvj2)j D jk�k2C hL P0(�)> j �ij � (3=4)k�k2.

Using this, the normkv>k is estimated by� as

(3.10)
k�k2 � 4

3
j�j � 2j�j,

kv>k2 D k(1� �)� C L P0(�)>k2 � (2C j�j)2k�k2 � 27

4
j�j � 8j�j.

Sincev> D v � (v j � )� , we have

(v>)x D �(v j �x)� � (v j � )�x, j(v>)xj2 � 2jvj2j�xj2 � 2j�xj2,(3.11)

maxjv>j2 � 2kv>k(kv>k C k(v>)xk) � 2
√

8j�j(√8j�j C p2k�xk)
� 16j�j C 8C

√j�j � 8(1C C)
√j�j,(3.12)

(v j � )2 D jvj2 � jv>j2 � 1� 4j�j2 � 8(1C C)
√j�j

� 1� (9C 8C)
√j�j.(3.13)

It implies that if j�j < (9C 8C)�2 then (v j � ) does not change its sign, and

(3.14)

∣

∣

∣

∣

(v ∫ 1

0
� dx

)∣

∣

∣

∣

D ∣∣∣
∣

∫ 1

0
(v j � ) dx

∣

∣

∣

∣

�√1� (9C 8C)
√j�j.
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On the other hand, we know that
∣

∣

(v ∣∣ ∫ 1
0 � dx

)∣

∣ � jvj � D � D, becausev 2 P?
1 .

Therefore,j�j � f(1� D2)=(9C 8k�xk)g2.

By this lemma, we can solve (3.1) with anL2 function.

Proposition 3.3. For any a 2 L1 and b, equation (3.1) has a unique solution
(�, v). Moreover, the norm of the solution is estimated as

(3.15)
k�k, jvj � K (kak C jbj),
maxj�j � K (maxjaj C jbj),

where K is a positive constant depending only on the energyk�xk2.

Proof. By Lemma 3.2, we seek�k, jvj � C1(kakCjbj). Since the solution satisfies� D�L P0(�)>Cv>Ca>, we have maxj�j � k�kCjvjCmaxjaj � 3C1(maxjajCjbj).
Also, the solution� is continuous in the following sense.

Lemma 3.4. In Proposition 3.3,if � (x) and a(x) are continuous, then �(x) is
continuous.

Proof. Put (Æ f )(x) WD f (x C ") � f (x).

d

dx
L P0( f ) D � ∫ x

0
(1� y) f (y) dy� (∫ 1

0
(1� y) f (y) dy

)PT
0

,

jÆ( f >)j � C1fjÆ f j C jÆ� jg.
(3.16)

Proposition 3.5. Consider equations

(3.17) �i C L P0(�i )
>i � v>i

i D a>i
i ,

{∫ 1

0
�i dx

}P?1 D b
P?1
i ,

where�>i means the orthogonal component to�i . There exists a positive constant C
depending onk�xk, supjaj and jbj, such that

(3.18) jÆ�j � CfkÆ�k C kÆak C jÆbj C jÆ� j C jÆajg,
whereÆ means the difference of solutions, e.g., Æ� WD �2 � �1.

Proof. We know that supj�i j, jvi j � C1. We write X>i WD X � (X j �i )�i . This is
an extension of the notation�>i . From

(3.19) X>2 � X>1 D �(X j �2)�2C (X j �1)�1 D �(X j Æ� )�1� (X j �1)Æ� � (X j Æ� )Æ� ,
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we havejX>2 � X>1j � 4jÆ� j jXj. Therefore,

(3.20) jfL P0(�2)>2 � v>2
2 � a>1

2 g � fL P0(�2)>1 � v>1
2 � a>1

2 gj � C2jÆ� j.
And,

jÆ� C L P0(Æ�)>1 � Æv>1j � C2fjÆ� j C jÆajg,(3.21)
∣

∣

∣

∣

{
∫ 1

0
Æ� dx

}P?1 ∣
∣

∣

∣

� C2fjÆ� j C jÆbjg.(3.22)

Since Æ� is not orthogonal to�1, we decompose it asÆ� D Æ�>1 C (Æ� j �1)�1.
Then,

(3.23) (Æ� j �1) D (�2 � �1 j �1) D (�2 j �1) D (�2 j �2 � Æ� ) D �(�2 j Æ� ),

and jÆ� � Æ�>1j � C3jÆ� j. Hence,

(3.24)

jÆ�>1 C L P0(Æ�>1)>1 � Æv>1j � C4fjÆ� j C jÆajg,
∣

∣

∣

∣

{∫ 1

0
Æ�>1 dx

}P?1 ∣
∣

∣

∣

� C5fjÆ� j C jÆbjg.
Therefore we have

(3.25) kÆ�k, jÆvj � C6fkÆ�k C kÆak C jÆbjg,
and, from (3.21),

jÆ�j � C2fjÆ� j C jÆajgC jL P0j(Æ�)>1 C jÆv>1j
� C2fjÆ� j C jÆajgC kÆ�k C jÆvj
� C6fkÆ�k C kÆak C jÆbj C jÆ� j C jÆajg.

(3.26)

Lemma 3.6. If � belongs to C1pw�, then the solution� of (2.16) belongs to C0pwC.

Proof. By Proposition 3.5, the variation of� with respect tot is bounded by
supjÆaj and supjÆbj, which are bounded bykÆ�k2, j�x(0)j and j�x(1)j. Therefore, if�x(x, t) is continuous in neighbourhoods of (0,t0) and (1,t0), then�(x, t) is continu-
ous in a neighbourhoods oft D t0.

3.2. Estimation for equation (3.2) of� . Next, we consider equation (3.2)rt�t�rx�x D c. Here,c is a tangent vector field onSN�1. We have to extract only vector infor-
mation ofc and ignore point information, or this equation is meaningless. The condition
that c is a vector field along� is recovered by (2.16).
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To do it, we use the stereographic projection� W SN�1 ! RN�1. We introduce a
new unknownu WD � Æ � , rewrite ��c by c, and consider equation

(3.27) ui
t t � ui

xx C 0 j
i
k(u)(u j

t uk
t � u j

xuk
x) D ci ,

where0 j
i
k is Christoffel’s symbol of the Riemannian metric onRN�1 induced by� .

Note that we treatc as anRN�1-valued function.
We have to choose the center of the stereographic projectionso that the distance

of the center and the curve� is bounded below by a positive constant.

Lemma 3.7. For any positive number C, there exists a positive number r with
following property: If the energy of the curve� on SN�1 is less than K, then there is
a point A on SN�1 such that the distance d(A, � ) of A and� is greater than r.

Proof. Sincek�xk � K , the lengthk�xkL1 is less thanK . Let B" be the set of
all points fA 2 SN�1g such thatd(A, � ) < ". The (N � 1)-dimensional volume ofB"
is less than 2(K C 2")". We chooser so that 2(K C 2r )r is less than the volume of
SN�1. Then the setSN�1 n B" is non-empty.

To solve the wave equation (3.27), we extendx on R as follows.
(P) [periodic condition] If the boundary condition isu(1) D u(0), we extendu as a
periodic function.
(N) [Neumann condition] Ifu(0) is free, we extendu as an even function:u(�y) D
u(y) (0� y � 1).
(D) [Dirichlet condition] If u(0) is fixed we extendu as an odd function:u(�y) D
2u(0)� u(y) (0� y � 1). In this case, we also need revisionQ0j

i
k of 0 j

i
k. Put

(3.28) 0�j i
k(w) D �0 j

i
k(2u(0)� w),

Q0j
i
k D 0 j

i
k (0 � x � 1) and Q0j

i
k D 0�j i

k (�1 � x � 0). (Except this case, we putQ0 D 0.)
We define similar extension atx D 1. The initial valuesai (x) D ui (x, 0), bi (x) D

ui
t (x, 0) andci are extended similarly:

(P) a(�y) D a(1� y), b(�y) D b(1� y), c(�y, t) D c(1� y, t),
(N) a(�y) D a(y), b(�y) D �b(y), c(�y, t) D c(y, t),
(D) a(�y) D �a(y), b(�y) D b(y), c(�y, t) D �c(y, t).

Note that the regularity of the extended functions are lowerthan the original func-
tions. In particular,Q0 and c are only piecewise continuous.
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We convert the extended differential equation

(3.29) ui
t t � ui

xx C Q0j
i
k(x, u)(u j

t uk
t � u j

xuk
x) D ci

to an integral equation

(3.30)

2ui (x, t) D fai (x C t)C ai (x � t)gC ∫ xCt

x�t
bi (y) dyCW( f i )(x, t),

W( f )(x, t) WD ∫ t

0

∫ xC(t�� )

x�(t�� )
f i (y, � ) dy d� ,

f i D 8i (u)C ci , 8i (u) WD � Q0j
i
k(x, u)(u j

t uk
t � u j

xuk
x),

and will solve this equation. We denote by 2I (ai , bi , f i ) the right hand side of the
first line.

Lemma 3.8. Let uD I (a, b, f ) be the above integral, where a, b, f are extended
functions. Then, we have

(3.31) m(ux, T)Cm(ut , T) � 2m(ux, 0)C 2m(ut , 0)C 2m( f , T)T ,

wherem(v, T) WD sup0�x�1, 0�t�T jvj.
Proof.

2ux D fa0(x C t)C a0(x � t)gC fb(x C t) � b(x � t)g
C ∫ t

0
f (x C (t � � ), � ) � f (x � (t � � ), � ) d� ,

2ut D fa0(x C t) � a0(x � t)gC fb(x C t)C b(x � t)g
C ∫ t

0
f (x C (t � � ), � )C f (x � (t � � ), � ) d� .

(3.32)

Lemma 3.9. If a 2 C1
pw, b 2 C0

pw and f 2 C0
pw�C, then the integral uD I (a, b, f )

belongs to C1pw�.

Proof. Putu� WD ux � ut . From (3.32),

(3.33) u�(x, t) D a0(x � t)� b(x � t)� ∫ t

0
f (x � (t � � ), � ) d� .

Therefore, it suffices to show that

(3.34) v�(x, t) WD u�(x � t , t) D a0(x)� b(x)� ∫ t

0
f (x � � , � ) d�
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is continuous. Sincef is bounded,v�(x, t) is continuous with respect tot . To check
the continuity ofvC with respect tox, we define

(3.35) �(x, t , ") WD ∫ t

0
f (x C " � � , � ) � f (x � � , � ) d� .

Let K be the maximum value off . The effect to�(x, t , ") of the discontinuity of the
function f on the linesx C t D ci , t D ti and x 2 Z is bounded byK ". Therefore,�(x, t ,") is bounded by" except on the linex�t D ci . Similar estimation holds forv�.

The Riemannian metric tensorgi j on RN�1 D f(zi )g induced by the stereographic
projection� and its Christoffel’s symbol are given as follows.

(3.36)
gi j (z) D 4(1C jzj2)�2Æi j ,

0 j
i
k(z) D �2(1C jzj2)�1(Æi

kz j C Æi
j z

k � Æ jkzi ),

where j�j is the Euclidean norm. Note that they converges to 0 whenjzj ! 1, and in
particular, they are bounded onRN�1.

We will solve (3.30) by successive approximation. We suppose that that the initial
value satisfiesa 2 C1

pw, b 2 C0
pw and c 2 C0

pwC. Then, each extended initial condition
belongs to the corresponding space. We putM(u, T) WDm(ux, T)Cm(ut , T). The norm
of f i D 8i (u) C ci is bounded byC1fm(c, T) C M(u, T)2g, whereC1 is an absolute
constant. Therefore, the integralvi D I (ai , bi , f i ) satisfies

(3.37) M(v, T) D m(vt , T)Cm(vx, T) � C2fM(u, 0)C (m(c, T)C M(u, T)2)Tg,
where C2 is an absolute constant and the valueM(u, 0) depends only on the initial
value. SetK WD C2fM(u, 0)Cm(c, T)Tg, and choose a positive numberT0 � T such
that C2fM(u, 0)C (m(c, T) C K 2)T0g � K . Let S be the set of all functionsfug on
[0, 1] � [0, T0] satisfying the initial condition and the symmetric condition such that
M(u, T0) � K . Since the functionv WD I (a, b, c) satisfiesM(v, T) � C2fM(u, 0)C
m(c, T)Tg, the setS is non-empty.

For anyu 2 S, we put f D 8(u)C c and vi WD I (ai , bi , f i ). Then v satisfies

(3.38) M(v, T0) � C2fM(u, 0)C (m(c, T)C M(u, T0)2)T0g � K .

Therefore, the correspondence9 W u 7! v is a map fromS to S. For u1, u2 2 S, we
put v1 WD 9(u1), v2 WD 9(u2), Æu D u2 � u1, Æv D v2 � v1. Then,

(3.39)
Æv D I (0, 0,8(u2) �8(u1)),

j8(u2) �8(u1)j � C3(jÆuj C jÆuxj C jÆut j),
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whereC3 depends only onK because the derivative ofQ0j
i
k(x, z) with respect toz is

bounded by an absolute constant.
Therefore, using a normM1(v, T) WD m(v, T)Cm(vt , T)Cm(vx, T), we have

(3.40)

m(Ævt , T)Cm(Ævx, T) � 2C3m(jÆuj C jÆuxj C jÆut j, T)T � 2C3M1(Æu, T)T ,

m(Æv, T) � 2C3M1(Æu, T)T2,

M1(Æv, T) � 4C3M1(Æu, T)T .

Hence, for any positive numberT1 � T0 satisfying 4C3T2
1 < 1, the map9 defined on

[0, 1]� [0, T0] is a contraction.
We proved

Lemma 3.10. Equation (3.30) has a short time solution u for any initial value.
Its existence time T and the norm M1(u, T) depend only on the initial norm M(u, 0)
and m(c, T).

For the continuity, we have

Lemma 3.11. If the initial value satisfies a2 C1
pw, b 2 C0

pw and c2 C0
pwC, then

the solution u of(3.30) belongs to C1pw�.

Proof. In Proof of Lemma 3.10, the first approximationu(0) D I (a, b, c) belongs
to C1

pw� by Lemma 3.9. Sinceu 2 C1
pw� implies 9(u) 2 C1

pw�, the sequenceu(n) WD9n(u(0)) belongs toC1
pw�. This sequence converges with respect to the normM1, and

the limit belongs toC1
pw�.

We estimate the dependence ofu on c. Let ui be the solution forci . Then,

(3.41)
Æu D I (0, 0,8(u2) �8(u1))C I (0, 0, Æc),

j8(u2) �8(u1)j � C1(jÆuj C jÆut j C jÆuxj).
Sincem(Æu, T) � m(Æut , T)T ,

(3.42) M1(Æu, T) � C2fM1(Æu, T)Cm(Æc, T)gT .

Therefore, if we choose sufficiently smallT , M1(Æu, T) is bounded bym(Æc, T). More-
over, since (d=dt)kÆuk � kÆutk, we have

(3.43) sup
0�t�T

fkÆuk C kÆutk C kÆuxkg � C3T sup
0�t�T

kÆck.
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Lemma 3.12. For sufficiently small number T> 0, the solution u of (3.30)
satisfies

(3.44)
M1(Æu, T) � Cm(Æc, T),

sup
0�t�T

fkÆuk C kÆutk C kÆuxkg � C sup
0�t�T

kÆck.
3.3. Existence of solutions for the coupled equation (2.16). Now, we can prove

the following

Theorem 3.13. Equation (2.16) has a unique short time C1pw� solution � (x, t)

for any initial data �0 2 C1
pw, �1 2 C0

pw. Its existence time depends only on the norm
m(�t )Cm(�x) of the initial data.

REMARK 3.14. We don’t assume the Neumann compatibility condition for the
initial data. However, the solution satisfies the compatibility condition for almost allt
from the symmetry of the solution.

Proof. Put A0 WD m(�0
0) C m(�1). Since the energyk�0

0k2 is bounded byA2
0,

Lemma 3.7 implies that there is a positive numberr0 > 0 depending only onA0 such
that d(P, �0) > r0 for some pointP 2 SN�1. We chooseP as the center of stereo-
graphic projection� . Let D0 be the set of all pointsfqg such thatd(q, P) � r0=2, and
R0 the maximum normjd� j of the derivative of the stereographic projection� on D0.
We put K0 WD 4A0 maxfC2R0, 1g and T0 WD r0=(2maxfA0, 1g), whereC2 is the absolute
constant given in (3.37).

Let a0(x) and a1(x) be the coordinate expression of the initial value, and letS0 be
the set of allSN�1-valued functions on [0, 1]� [0, T0] whose initial value isfa0, a1g
such thatm(�t ) C m(�x) < K0. Since K0 > A0, S0 is non-empty. And, the image of
any element ofS0 is contained in the domainD0. The solution� of (2.16) for the
data � 2 S0 is estimated asj�j � K1, because the right hand side of the equation is
bounded only byK0.

We project the solution� into RN�1. Since the dilatation of the projection� is
less thanR0, we havej���j < K1R0. We solve the wave equation ofu for the data���. By Lemma 3.10, there is a solution such thatM1(u) < C2fA0R0C K1R0T0g for
sufficiently smallT0.

We put � WD ��1 Æ u 2 SN�1. Since the maximum dilatation of��1 is 2, we have

(3.45) m(�t )Cm(�x) < 2C2fA0R0C K1R0T0g � K0

2
C 2C2K1R0T0.

Therefore, choosingT0 such that 2C2K1R0T0 � K0=2, we have� 2 S0.
Similarly, we can show that the map9 W S! S is a contraction. For�i 2 S0,

we denote by�i , ui and �i corresponding functions as above. Since�i , ui and �i
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are already estimated, we have positive constantsK2, K3, K4 depending only onK0

such that

(3.46) M(�1 � �2) � K2M1(u1 � u2) � K3m(���1 � ���2)T � K4M1(�1 � �2)T

holds on [0,T ]. Therefore,9 is a contraction ifT < 1=K4.
The uniqueness of the solution follows from the construction. Moreover, the se-

quence (�(n), �(n)) belongs toC1
pw� � C0

pwC by Lemma 3.11 and Lemma 3.6, and the
limit belongs to the same space.

4. Regularity of solutions

Let � (x, 0)D a(x) and �t (x, 0)D b(x) be the initial data. We assume that:a is
C1, b is C0, and satisfies the compatibility condition (Dirichlet, Neumann, periodic). It
is equivalent to assume that the extension ofa (resp.b) over the boundaryx D 0, 1 is
C1 (resp.C0).

We will show that the solution� is C1. When both boundary condition are not
Dirichlet condition, we can prove it by Proof of Theorem 3.13replacing piecewise con-
tinuity to continuity. When one of boundary condition is Dirichlet condition, we have
to give another proof, because the odd extensions ofQ0 and � are not continuous.

Lemma 4.1. The function���(x, t) is differentiable with respect to x, and the
differenceÆt of the value at(x, t C ") and (x, t) satisfies

(4.1) supjÆt (���)j � CfsupjÆt� j C supjÆt�xj C kÆt�tkg.
Proof. By Proposition 3.5, we know that

(4.2) supjÆt�j � C1fsupjÆt� j C supjÆt�xj C kÆt�tkg.
Since the stereographic projection� and its derivatives are bounded on the image of� ,
we havejÆt (���)j � C2jÆt�j.

Using this lemma, we prove

Proposition 4.2. If the initial data (�0, �1) belongs to C1 �C0, and if it satisfies
the compatibility condition(Dirichlet, Neumann, periodic), then the solution� is C1.

Proof. The functionv�(x, t) defined in (3.34)

(4.3) v�(x, t) D u�(x � t , t) D a0(x)� b(x)� ∫ t

0
f (x � � , � ) d�
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have bounded derivatives with respect tot . We denote byÆt the difference of the values
at (x, t C ") and (x, t), and byÆx the difference of the values at (x C ", t) and (x, t).
Then, we have

(4.4)

jÆxvCj � jÆxa0j C jÆxbj C ∣∣∣
∣

∫ t

0
f (x C " � � , � ) d� � ∫ t

0
f (x � � , � ) d� ∣∣∣

∣

� C1" C
∣

∣

∣

∣

∫ t�"
�" f (x � � , � C ") d� � ∫ t

0
f (x � � , � ) d� ∣∣∣

∣

� C2" C
∣

∣

∣

∣

∫ t

0
(Æt f )(x � � , � ) d� ∣∣∣

∣

.

Here, f D 8(u)C c and c D ���. We will estimate the normj(Æt f )(x, t)j. Note
that the odd extension in the case of Dirichlet condition hasno effect on the estima-
tion. The termjÆtcj can be estimated using the above lemma, and the termjÆt8(u)j is
bounded byC3fjÆtujC jÆtuxjC jÆtut jg. Hence, supjÆt f j � C4f"CsupjÆtuxjCsupjÆtut jg.

We decomposeÆtux as follows.
(4.5)
2Ætux(x, t) D 2ux(x, t C ") � 2ux(x, t)

D uC(x, t C ")C u�(x, t C ") � uC(x, t) � u�(x, t)

D vC(x C t C ", t C ")C v�(x � t � ", t C ") � vC(x C t , t) � v�(x � t , t)

D ÆtvC(x C t C ", t)C ÆxvC(x C t , t)

C Ætv�(x � t � ", t)C Æxv�(x � t � ", t).

Hence we see that 2 supjÆtuxj � C5" C supjÆxvCj C supjÆxv�j. Combining it and a
similar estimation: 2 supjÆtut j � C6" C supjÆxvCj C supjÆxv�j, we get

(4.6)

supjÆt f j � C7f" C supjÆxvCj C supjÆxv�jg,
supjÆxvCj(t) � C8

{" C ∫ t

0
supjÆxvCj(� )C supjÆxv�j(� ) d�}.

We can estimateÆxv� similarly, and get

(4.7) supjÆxvCj(t)C supjÆxv�j(t) � C9

{" C ∫ t

0
supjÆxvCj(� )C supjÆxv�j(� ) d�}.

Therefore, supjÆxvCj(t) C supjÆxv�j(t) increases at most exponentially, and con-
verges to 0 when" ! 0. It means thatv� is uniformly continuous also with respect
to x, and ux and ut are continuous with respect tox and t .

We need more differentiability to prove that the solution isa classical solution.
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Proposition 4.3. If the initial data (�0, �1) belongs to C2pw�C1
pw, and if it satisfies

the compatibility condition(Dirichlet, Neumann, periodic), then the solution� belongs
to C2

pw�.

Proof. As in Proof of Proposition 4.2, we have to show that thefunction

(4.8) v�(x, t) D a0(x)� b(x)� ∫ t

0
f (x � � , � ) d�

belongs toC1
pw�. The functionv�t (x, t) D � f (x � t , t) is continuous. To show thatv�x belongs toC0

pw�, we put g D 8(u) and decomposev�x as follows.

(4.9)

v�x (x, t) D a00(x)� b0(x)� ��x

∫ t

0
f (x � � , � ) d�

D a00(x)� b0(x)� ∫ t

0
cx(x � � , � ) d�

� fg(x � t , t) � g(x, 0)g� ∫ t

0
gt (x � � , � ) d� .

The functionsa00, b0 are piecewise continuous andg(x, t) is continuous onx � Z. Also,
the functioncx(x, t) is continuous onx � Z, becausecD ��(�) and� is a solution of
the integral equation (2.16).

We have to check
∫ t

0 gt (x � � , � ) d� . Sincev�t is bounded,

(4.10)
supjgt j � C1f1C supjuxtj C supjut t jg,
supjut t j, supjuxtj � C2f1C supjvCx j C supjv�x jg.

Therefore, we have

(4.11) supjvCx j(t)C supjv�x j(t) � C3

∫ t

0
f1C supjvCx j(� )C supjv�x j(� )g d� .

Hence, supjvCx j(t)C supjv�x j(t) increases at most exponentially, and is bounded. It im-
plies thatjgt j, juxtj and jut t j are bounded.

To prove thatv�x belongs toC0
pw�, we consider the differencesÆtv�x and Æxv�x .

Since jcxj and jgt j are bounded, (4.9) implies thatÆtv�x converges to 0 when" ! 0
except discrete linesx D xi . For Æxv�x , as the above calculation, we can check that

(4.12) jÆxv�x (x, t)j � C4

∫ t

0
fO(")C jÆxvCx (x, � )j C jÆxv�x (x, � )jg d� ,

except"-neighbourhood of discrete linesx D xi . This gives the desired estimation.
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Proposition 4.4. We assumeCondition 1.5 (boundary condition). Assume that the
initial data (�0,�1) belongs to C2�C1 and satisfies the compatibility condition(Dirichlet,
Neumann, periodic). When the boundary condition at xD x0 is Dirichlet condition, we
assume thatrx�0x (D (�0xx)>) D 0, rx�1 (D (�1x)>) D 0 at the point. Then, the solution� belongs to C2.

Proof. By the assumption, the extended initial data (a, b) belongs toC2 � C1,
and the extended Christoffel symbolQ0 is continuous. Therefore, we can prove that� belongs toC2 by the method of Proof of Proposition 4.3 without exceptional lines
x D xi .

5. Long time existence

As in Section 3, if the quantity maxj�t j Cmaxj�xj is bounded, then we can extend
the solution. We recall equation (2.16).

� C L P0(�)> � v>
D � (1)> C (1� x)f�x(0)P?0 C [� ]1

0
PT

0 g> C L P0((j�t j2 � j�xj2)� )>,
{∫ 1

0
� dx

}P?1 D {∫ 1

0
(j�t j2 � j�xj2)� dx

}P?1 � [�x]1
0

P?1 .

By Hamilton’s principle, the solution should preserve the total energy:

(5.1)

T(
 ) D (k
tk2C k
xtk2)C k
xxk2
D j
t (0)j2C 2

(
t (0)
∫ 1

0
(1� y)�t (y) dy

)

C ∫ 1

0

∫ 1

0
�(x, y)(�t (x) j �t (y)) dx dyC k�tk2C k�xk2.

In fact, we constructed the solution so that the derivative

(5.2)

1

2

d

dt
T D (
t (0) 
t t (0)C ∫ 1

0
(1� y)�t t (y) dy

)C [(�t j �x)]1
xD0

C〈�t (1� x)
t t (0)C ∫ 1

0
�(x, y)�t t (y) dyC �t t � �xx

〉

vanishes.
However, its general proof requires smoothness of the solution. Since our solutions

are not smooth, we have to check the energy preserving law. Inbelow, we assume that
the initial data (�0, �1) belongs toC1 � C0 and satisfies the compatibility condition.



MOTION OF ELASTIC WIRE 807

By Proposition 4.2, the solution� is of classC1. As in Proof of Lemma 3.8, the
integral u D I (a, b, f ) and u� WD ux � ut satisfy

(5.3) u�(x, t) D a0(x � t)� b(x � t)� ∫ t

0
f (x � t � � , � ) d� ,

we have

(5.4) u�(x � t , t) D a0(x)� b(x)� ∫ t

0
f (x � � , � ) d� .

Therefore, the functiont 7! u�(x � t , t) is differentiable.

(5.5)
��t

fu�(x � t , t)g D � f (x � t , t).

From this, we can check that��(x, t) D �x � �t has similar property as follows.
Forgetting the original definition of', we re-introduce a tangent vector valued func-
tion ' by

(5.6) '(x, t) WD �(x, t) � (j�t j2 � j�xj2)� .

Lemma 5.1. Let � , � be the solution. On the domain�t � x � 1� t (henceQ0 D 0), it holds that

rt f��(x � t , t)g D ��(x � t , t),(5.7)

��t
f��(x � t , t)g D �'(x � t , t).(5.8)

Proof.

(5.9)

The i -th component ofrt f��(x � t , t)g
D ��t

f��i (x � t , t)gC 0 j
i
k(� (x � t , t))

��t
f� j (x � t , t)g��k(x � t , t)

D �f f i � 0 j
i
k(� )(� j

x � � j
t )��kgj(x�t ,t)

D �f f i � 0 j
i
k(� )(� j

x � � j
t )(� k

x � � k
t )gj(x�t ,t)

D �f f i � 0 j
i
k(� )(� j

x � k
x � � j

t � k
t )gj(x�t ,t)

D ��i (x � t , t).
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Hence,

��t
f��(x � t , t)g
D rt f��(x � t , t)gC ( ��t

f��(x � t , t)g � (x � t , t)

)� (x � t , t)

D ��(x � t , t) � (��(x � t , t)
��t

f� (x � t , t)g)� (x � t , t)

D f�� � (�x � �t j ��x C �t )�gj(x�t ,t)

D f�� � (j�t j2 � j�xj2)�gj(x�t ,t)

D �'(x � t , t).

(5.10)

Lemma 5.2. The solution(� , �) satisfies

d

dt

∫ 1

0
p(x)��(x, t) dx

D �{[ p(x)��(x, t)]1
0C

∫ 1

0
�p0(x)��(x, t)C p(x)'(x, t) dx

}

,

(5.11)

d

dt

∫ 1

0
p(x)�x(x, t) dx

D [ p(x)�t (x, t)]1
0 �
∫ 1

0
p0(x)�t (x, t) dx,

(5.12)

d

dt

∫ 1

0
p(x)�t (x, t) dx

D [ p(x)�x(x, t)]1
0C

∫ 1

0
�p0(x)�x(x, t)C p(x)'(x, t) dx.

(5.13)

Proof. It suffices to prove the first equation. The second and third equations are
given by the sum and the difference.

d

dt

∫ 1

0
p(x)��(x, t) dx D d

dt

∫ 1�t

�t
p(x � t)��(x � t , t) dx

D �p(1)��(1, t)� p(0)��(0, t)C ∫ 1�t

�t
�p0(x � t)��(x � t , t) dx

C ∫ 1�t

�t
�p(x � t)'(x � t , t) dx

D �[ p(x)��(x, t)]1
0�

∫ 1

0
p0(x)��(x, t) dx� ∫ 1

0
p(x)'(x, t) dx.

(5.14)
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We calculate each termT(
 ) in (5.1) using Lemma 5.1. We re-define the curve
 by

(5.15)

t t (0, t) D �{∫ 1

0
(1� x)'(x, t) dx� �x(0, t)C [� (x, t)]1

xD0

}PT
0

,


x(x, t) D � (x, t).

Note that we retain the condition for initial data:
 (0, 0) 2 P0, 
t (0, 0) 2 PT
0 and

∫ 1
0 �t (x, 0)dxD [
t (x, 0)]10 2 P1. Therefore, the definition of
 implies that
t (0,t) 2 PT

0
and 
 (0, t) 2 P0. Moreover, by Lemma 5.2 and equation of�,

(5.16)
d

dt

∫ 1

0
�t dx D [�x]1

0C
∫ 1

0
' dx 2 PT

1

holds, and the constrained condition [
t (x, t)]1
0 2 P1 is satisfied.

To simplify notation, we introduce a function�(t) by

(5.17) �(t) WD ∫ 1

0
(1� x)'(x, t) dx� �x(0, t)C [� (x, t)]1

xD0.

Since
t t (0, t) D ��(t)PT
0 , 
t (0, t) 2 PT

0 , we have

(5.18)
d

dt
j
t (0)j2 D 2(
t (0) j 
t t (0))D �2(
t (0) j �(t)).

For the second term ofT(
 ), we apply Lemma 5.2.

(5.19)

d

dt

∫ 1

0
(1� x)�t (x, t) dx D [(1 � x)�x]1

0C
∫ 1

0
�x C (1� x)' dx

D ��x(0)C [� ]1
0C

∫ 1

0
(1� x)'(x) dx

D �.

Hence,

(5.20)

2
d

dt

(
t (0)
∫ 1

0
(1� y)�t (y) dy

)

D �2

(�PT
0

∫ 1

0
(1� y)�t (y) dy

)C 2(
t (0) j �)

D �2h(1� x)�PT
0 j �ti C 2(
t (0) j �).
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For the third term ofT(
 ), we have to check only derivatives of�t . Put p(x, t) D
∫ 1

0 �(x, y)�t (y) dy.

p(0, t) D ∫ 1

0
(1� y)�t (y, t) dy, p(1, t) D 0,(5.21)

px(x, t) D ∫ 1

0
�x(x, y)�t (y) dyD � ∫ x

0
�t (y) dy.(5.22)

Lemma 5.2 implies that

(5.23)

d

dt

∫ 1

0

∫ 1

0
�(x, y)(�t (x) j �t (y)) dx dyD d

dt

∫ 1

0
(�t (x) j p(x)) dx

D 2[(p j �x)]1
0 � 2hpx j �xi C 2hp j 'i

D �2

(∫ 1

0
(1� y)�t (y, t) dy �x(0)

)C 2

〈∫ x

0
�t (y) dy �x

〉C 2hp j 'i
D �2h�t j (1� x)�x(0)i C 2

[(∫ x

0
�t (y) dy �)]1

0

� 2h�t j �i C 2hp j 'i
D �2h�t j (1� x)�x(0)i C 2

(∫ 1

0
�t (y) dy � (1)

)

C 2

〈�t (x)
∫ 1

0
�(x, y)'(y) dy

〉

D 2

〈�t �(1� x)�x(0)C � (1)C ∫ 1

0
�(x, y)'(y) dy

〉

.

Here, we used the fact that�t is orthogonal to� .
For the fourth and fifth term, we see that

(5.24)
k�tk2C k�xk2 D 1

2
fk�Ck2C k��k2g

D 1

2

∫ 1Ct

t
j�C(x � t , t)j2 dxC 1

2

∫ 1�t

�t
j�C(x C t , t)j2 dx

and

(5.25)

d

dt
fk�tk2C k�xk2g
D 1

2
[j�C(x, t)j2]1

0C
∫ 1Ct

t
(�C(x � t , t) j '(x � t , t)) dx

� 1

2
[j��(x, t)j2]1

0 �
∫ 1�t

�t
(��(x C t , t) j '(x C t , t)) dx

D 2[(�x j �t )]
1
0C 2

∫ 1

0
(�t j ') dx

D 2h�t j 'i.
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The last equality comes from the extension of the solution over x D 0, 1. Note that the
initial data should satisfy compatibility condition for Neumann type.

Put all together and
∫ 1

0 �t dx 2 PT
1 , v 2 P?

1 , we get

(5.26)

1

2

d

dt
T(
 )

D �(
t (0) j �) � h(1� x)�PT
0 j �ti C (
t (0) j �)

C〈�t �(1� x)�x(0)C � (1)C ∫ 1

0
�(x, y)'(y) dy

〉

C h�t j 'i
D 〈�t �(1� x)

∫ 1

0
(1� y)'(y) dyPT

0 C (1� x)�x(0)PT
0 � (1� x)[� ]1

0
PT

0

� (1� x)�x(0)C � (1)C ∫ 1

0
�(x, y)'(y) dyC '〉

D h�t j v>i D h�t j vi D
(∫ 1

0
�t dx v) D 0.

Hence, the total energyT(
 ) is preserved. Therefore, the quantityh(t)D supj�CjC
supj��j satisfies supj�j � C1(1 C h) by Proposition 3.3. Moreover, by Lemma 5.1,
we see

(5.27)
d

dt
j��(x � t , t)j2 D �2(��(x � t , t) j �(x � t , t)),

and (d=dt)j��(x� t , t)j � j�(x� t , t)j � supj�j. It implies that (d=dt)supj��j � supj�j,
and h0(t) D (d=dt) supj�Cj C (d=dt) supj��j � 2 supj�j � 2C1(1C h(t)). Therefore, the
function h(t) increases at most exponentially, and we proved the following

Theorem 5.3. Equation (2.16) has a infinite time solution for any initial data
(�0, �1) in C1 � C0 with compatibility condition.

When the initial data does not satisfy the compatibility condition, we have to ap-
proximate the solution by smooth solutions. We denote byLm, p

x the space of all func-
tions whosem-th derivatives belong toL p

x , and putLm, p
x,t D fu(x, t) j ux, ut 2 Lm�1,p

x g.
We define the norm of the space by

(5.28) kukLm, p
x,t
D sup

t
(kukLm, p

x
C kutkLm�1,p

x
).

To eliminate�x(0)P?0 and [�x]1
0

P?1 from equation (2.16), we assume Condition 1.5.
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Theorem 5.4. Assume that the boundary condition is one ofCondition 1.5. If
the initial data (�0, �1) 2 L1,1

x � L1x satisfies the boundary conditions on
 (0), 
 (1),� (0), � (1) (but may not satisfies the conditions on�x(0), �x(1)), then the L1,1
x,t solution

of Theorem 3.13exists on infinite time.

Proof. We approximate the initial data by a Cauchy sequence (� (n)
0 , � (n)

1 ). We may

assume that each (� (n)
0 , � (n)

1 ) is smooth and satisfies the compatibility condition. In par-
ticular, supj�(n)j is bounded by the constant total energy and thatk� (n)kL1,1

x,t
increases

at most linearly by Lemma 3.8.
We denote byÆ� the difference of the solution� (n) and� (m). By formula (�=�t)f��(x�

t , t)g D �'(x � t , t) in Lemma 5.1, we have
(5.29)

d

dt
kÆ��k2 D d

dt

∫ 1�t

�t
jÆ��(x � t , t)j2 dx

D �[jÆ��(x � t , t)j2]1�t
xD�t � 2

∫ 1�t

�t
(Æ��(x � t , t) j Æ'(x � t , t)) dx

D �[jÆ��(x, t)j2]1
0� 2hÆ��(x, t) j Æ'(x, t)i.

Hence,

(5.30)

d

dt
fkÆ�Ck2C kÆ��k2g D [jÆ�Cj2 � jÆ��j2]1

0� 2hÆ�C � Æ�� j Æ'i
D 4[(Æ�t j Æ�x)]1

0� 2hÆ�C � Æ�� j Æ'i.
Here, the boundary term [(Æ�t j Æ�x)]1

0 vanishes. Condition 1.5 implies thatkÆ�k is
estimated bykÆ�Ck C kÆ��k C supjÆ� j, and that supjÆ� j is bounded bykÆ�xk C kÆ�k.
Hence, we have

(5.31)
d

dt
fkÆ�k2C kÆ�Ck2C kÆ��k2g � CfkÆ�k2C kÆ�Ck2C kÆ��k2g.

The constantC is independent of the approximate solutions. Therefore, the solutions� (n) converges inL1,2
x,t . Moreover, the limit belongs toL1,1

x,t because� (n) are uniformly

bounded inL1,1
x,t .

On the other hand, the sequence�(n) converges inL2
x,t . It means that the conver-

gence is inL1x,t , by the boundary condition. Therefore, by Lemma 3.12,� (n) converges

in L1,1
x,t , and the limit coincides with the solution of Theorem 3.13.

6. Uniqueness of periodic solutions

When we consider equation for closed curves
 , we choose the originx D 0 and
apply Section 5. Therefore, to say that the solution is unique, we have to prove that
the solution is independent of the choice of the origin.
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Let 
0(x) be a C2 closed curve:S1 D R=Z ! R3 with unit tangent vector field�0 D 
0x, and 
1(x) be aC1 vector field along
0(x) such that�1 D 
1x is orthogonal
to �0 at each point. For eachx D a, Theorem 3.13 gives a periodic solution for the
initial data (�0(x), �1(x)) defined on the interval [a, aC 1]. We denote the solution by�(a) W S1 � RC ! S2.

Theorem 6.1. The above solution�(a) is independent of the choice of a.

Proof. We denote by (� , �, v) the solution fora D 0. Since each solution�(a) is
unique, it suffices to prove that (Q� (x), Q�(x)) D (� (x C a), �(x C a)) is a solution on�a � x � 1� a.

We put �2(x, y) D �(x, y) � (1� x)(1� y) and L( f ) D ∫ 1
0 �2(x, y) f (y) dy. The

equation in the periodic case becomes

(6.1)

� C L(�)> � v> D L((j�t j2 � j�xj2)� )>,
∫ 1

0
� dx D ∫ 1

0
(j�t j2 � j�xj2)� dx,

rt�t � rx�x D �,

� (1)D � (0), �x(1)D �x(0).

Here, we eliminated the term� (1)> by merging into the unknown functionv>.
Since� and� are periodic, these equality for (Q� , Q�) holds automatically except the

first one. The first one is equivalent to'C L(')> D v>, where' D �� (j�t j2�j�xj2)� .

Hence, if there exists a functionQv(t) such that Q' C L( Q') Q> D v Q>, then (Q� , Q�, Qv)) is a
solution.

From�2(0,y)D 0 and�2x(x, y)D f�y (y� x), 1�y (y� x)g, we see thatL( f )(0)D
0 and

(6.2)

L( f )0(x) D ∫ 1

0
�2x(x, y) f (y) dy

D ∫ x

0
�y f (y) dyC ∫ 1

x
(1� y) f (y) dy

D � ∫ 1

0
y f (y) dyC ∫ 1

x
f (y) dy.

Hence,

(6.3) L( f )0(0)D ∫ 1

0
(1� y) f (y) dy, L( f )00(x) D � f (x).
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We put d(x) D L( Q')(x) � L(')(x C a). The functiond satisfiesd(0)D L( Q')(0)�
L(')(a) D �L(')(a) and

(6.4)

L( Q')0(0)D ∫ 1

0
(1� y) Q'(y) dyD � ∫ 1�a

0
y'(yC a) dy� ∫ 1

1�a
y'(yC a� 1) dy

D � ∫ 1

a
(z� a)'(z) dz� ∫ a

0
(zC 1� a)'(z) dz

D � ∫ 1

0
z'(z) dz� ∫ a

0
'(z) dz.

On the other hand,

(6.5) L(')0(a) D � ∫ 1

0
y'(y) dyC ∫ 1

a
'(y) dyD L( Q')0(0),

and

(6.6)
d0(0)D 0,

d00(x) D L( Q')00(x) � L(')00(aC x) D � Q'(x)C '(aC x) D 0.

Therefore,d(x) D �L(')(a) and

(6.7)

L( Q')
Q>(x) D L( Q')(x) � (L( Q')(x) j Q� (x))

D L(')(aC x) � L(')(a) � (L(')(aC x) � L(')(a) j � (aC x))

D L(')>(aC x) � L(')(a)>(aC x) D fv � L(')(a)g>(aC x).

It implies that Qv D v � L(')(a) satisfies the desired equalityQ' C L( Q') Q> D v Q>.
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