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Abstract
The space�(G) of all based loops in a compact simply connected Lie groupG

has an action of the maximal torusT � G (by pointwise conjugation) and of the
circle S1 (by rotation of loops). Let� W �(G) ! (t � iR)� be a moment map of the
resultingT � S1 action. We show that all levels (that is, pre-images of points) of �
are connected subspaces of�(G) (or empty). The result holds if in the definition of�(G) loops are of classC1 or of any Sobolev classH s, with s � 1 (for loops of
classH1 connectedness of regular levels has been proved by Harada, Holm, Jeffrey,
and the author in [3]).

1. Introduction

Let G be a compact simply connected Lie group andT � G a maximal torus. The
based loop group ofG is the space�(G) consisting of all smooth maps
 W S1 ! G
with 
 (1)D e. The assignments

T ��(G)! �(G), (t , 
 ) 7! [S1 3 z 7! t
 (z)t�1]

and

S1 ��(G)! �(G), (ei � , 
 ) 7! [S1 3 z 7! 
 (zei � )
 (ei � )�1]

define an action ofT � S1 on �(G). In fact, the latter space is an infinite dimensional
smooth symplectic manifold and the action ofT � S1 is Hamiltonian. Let

� W �(G)! (t� iR)�
denote a moment map, wheret WD Lie(T) and iR D Lie(S1). Atiyah and Pressley
[1] extended the celebrated convexity theorem of Atiyah andGuillemin–Sternberg and
showed that the image of� is the convex hull of its singular values. Their proof’s
idea is to determine first the image under� of the subspace�alg(G) � �(G) whose
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elements are restrictions of algebraic maps fromC� to the complexificationGC of G:
they notice that�(�alg(G)) is a closed subspace of (t � iR)�; since�alg(G) is dense
in �(G) (by a theorem of Segal), they deduce from the continuity of� that

�(�(G)) D �(�alg(G)).

The goal of this paper is to extend to�(G) the well-known result which says that
all levels of the moment map arising from a Hamiltonian torusaction on a compact
symplectic manifold are connected. That is, we will prove the following theorem.

Theorem 1.1. For any a2 �(�(G)), the pre-image��1(a) is a connected topo-
logical subspace of�(G).

REMARKS. 1. A version of Theorem 1.1 has been proved in [3]. More specif-
ically, instead of�(G) the authors consider there the space�1(G) of all loops S1! G
of Sobolev classH1. They prove that allregular levels of� W �1(G)! (t� iR)� are
connected. It is not obvious how to adapt that proof for singular levels or/and for loops
of classC1.
2. One can easily see that our proof of Theorem 1.1 works for�W �1(G)! (t� iR)�
(and even loops of Sobolev classH s, with s � 1) as well. In other words, we can
prove thatall levels of� W �1(G)! (t� iR)� are connected topological subspaces of�1(G). We decided to deal here with�(G) (smooth loops) rather than�1(G) because
the former is discussed in detail in our main reference [11],and the reader can make
the connections directly.

We will give here an outline of the paper. In Section 2 we present basic notions
and results concerning loop groups. In Section 3 we define thekey ingredient of the
proof of Theorem 1.1. This is a certain geometric invariant theory (shortly G.I.T.) quo-
tient of �(G) with respect to the complexificationTC � C� of T � S1. To define this
quotient, we face the difficulty that theS1 action on�(G) mentioned above does not
extend to aC� action (only theT action extends canonically to aTC action). How-
ever, for any
 2 �(G) there is a natural way to define the loopu
 for any u 2 C
which is contained in the exterior of a disk with center at 0 and radius smaller than 1
(which depends on
 ); if juj D 1 then u
 is given by theS1 action on�(G) de-
fined above. By putting
 � gu
 , where u is as before andg 2 TC arbitrary, we
obtain an equivalence relation� on �(G). The G.I.T. quotient mentioned before is
A=�, where A consists of all elements of�(G) which are equivalent to elements of��1(a). The main result of Section 3 is Proposition 3.5, which saysthat the natural
map��1(a)=(T �S1)! A=� is bijective (the idea of the proof belongs to Kirwan, see
[5, Chapter 7]). In Section 4 we note that the image of (��1(a) \ �alg(G))=(T � S1)
under the map above is (A\�alg(G))=�. The former space is connected (by a result of
[3]) and we prove that the latter is dense inA=� (see Proposition 4.2). Consequently,
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A=� is a connected topological subspace of�(G)=�. We deduce that��1(a)=T � S1

is connected. Hence��1(a) is connected as well.

2. Notions of loop groups

In this section we collect results about loop groups which will be needed later.
The details can be found in Pressley and Segal [11] and/or Atiyah and Pressley [1].

Like in the introduction,G is a compact simply connected Lie group. We denote
by L(G) the space of all smooth mapsS1! G (call them loops). The obvious multi-
plication makes it into a Lie group. By�(G) we denote the space of all loops which
map 12 S1 to the unit e of G. It can be naturally identified with the homogeneous
spaceL(G)=G. In fact, the presentation of�(G) which is most appropriate for our
goals is

(1) �(G) D L(GC)=LC(GC).

HereGC is the complexification ofG and L(GC) the set of all (smooth) loops�W S1!
GC; by LC(GC) we denote the subgroup ofL(GC) consisting of all� as above which
extend holomorphically forj� j � 1 (this notion is explained in detail at the beginning
of the next section). SinceL(GC) is a complex Lie group andLC(GC) a complex Lie
subgroup, equation (1) shows that the manifold�(G) has a complex structure. More
precisely, the complex structureJx at a pointx 2�(G) is induced by the multiplication
by i in the tangent spaceT�L(GC), where� 2 L(GC) is such thatx D �LC(GC).

Let us embedG into some special unitary groupSU(N). We consider the Hilbert
spaceH WD L2(S1,CN) and the corresponding “Grassmannian”Gr(H ). The latter con-
sists of all closed vector subspaces ofH which satisfy certain supplementary proper-
ties; it turns out thatGr(H ) can be equipped with a Kähler (Hilbert) manifold struc-
ture (the details can be found in [11, Chapter 7]). An important subspace ofGr(H )
is Gr0(H ). For the goals of our paper it is sufficient to mention thatGr0(H ) contains
HC, which is the closed vector subspace ofH spanned byS1 3 z 7! zkv, with k � 0
and v 2 CN . Also, the connected component ofHC in Gr0(H ) consists of all vector
subspacesW of H for which there existsn � 0 such that

znHC � W � z�nHC
and

dim[(z�nHC)=W] D dim[W=(zn HC)].

In other words, ifGn denotes the subspace of allW which satisfy the last two equa-
tions, then the connected component ofHC in Gr0(H ) is

⋃

n�0 Gn. It is important to
note that via the map

Gn 3 W 7! W=znHC,
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the spaceGn can be identified with the GrassmannianGrnN(C2nN) of all vector sub-
spaces of dimensionnN in

(2) C2nN D z�nHC=znHC.

Also note that we have the chain of inclusions

(3) G0 � G1 � G2 � � � � .
Less obvious is the fact that for anyn � 0, the canonical symplectic structure on the
GrassmannianGn makes this space into a symplectic submanifold ofGr(H ). The role
of the above construction is revealed by the following result.

Proposition 2.1. (a) The map

(4) �(G)! Gr(H ), 
 7! 
 HC
is an embedding, which induces on�(G) a structure of symplectic manifold. Together
with the complex structure J defined above, this makes�(G) into a Kähler manifold.
(b) The image of�alg(G) (see the introduction) under the embedding(4) is contained
in
⋃

n�0 Gn.

Based on point (b), we identify�alg(G) with a subspace of
⋃

n�0 Gn. The inclu-
sions (3) induce the filtration

�alg(G) D ⋃
n�0

�n, �0 � �1 � �2 � � � � ,
where

�n WD �alg(G) \ Gn.

The space�n is a closed subvariety of the GrassmannianGn. We refer to the topology
on�alg(G) induced by the filtration above as thedirect limit topology. There is another
natural topology on�alg(G), namely the subspace topology, induced by the inclusion�alg(G) � �(G).

The following proposition can be proved with the same arguments as Proposition 2.1
of [3] (the result is also mentioned in [2, Section 2]).

Proposition 2.2. The direct limit topology on�alg(G) is finer than the subspace
topology.

Let us consider again theT � S1 action on�(G) described at the beginning of
the paper, and the corresponding moment map�W �(G)! (t� iR)�. This is uniquely
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determined up to an additive constant, which will be made more precise momentarily
(a standard moment map is described explicitly in [1, Section 3], but we will not need
that expression here). For the moment, we would like to deduce from Proposition 2.2
a result which will be useful later. Namely, let us takea 2 �(�(G)); by [3, Propos-
ition 3.4], ��1(a) \ �alg(G) is a connected subspace of�alg(G) with respect to the
direct limit topology. We deduce:

Proposition 2.3. For any a2 �(�alg(G)), the space��1(a) \ �alg(G) is a con-
nected topological subspace of�(G).

There is also an action ofT � S1 on eachGn, n � 0, which can be described as
follows. We fix a basis, sayb1, : : : , bN , of CN , and consider the induced basiszkb j ,�n � k � n � 1, 1� j � N, of C2nN (see equation (2)). The action ofT on Gn is
induced by

(5) t . (zkb j ) WD zk(tb j ),

for any t 2 T and k, j as above; the action ofS1 is induced by

(6) ei � . (zkb j ) WD (ei �z)kb j D zkeik�b j

for all ei � 2 S1. This T � S1 action is the restriction of an obviousTC � C� action:
namely, in equation (5) we taket 2 TC and in equation (6) we replaceei � by an arbitrary
element ofC�. The TC � C� action turns out to be linear with respect to the Plücker
embedding ofGn (see [1, Section 4]). Thus, theT � S1 action is Hamiltonian. We pick

�n W Gn ! (t� iR)�
a moment map, which is again uniquely determined up to an additive constant. We can
arrange the constants in such a way that ifm< n then

�njGm D �m.

The reason is thatGm is a T � S1-invariant symplectic submanifold ofGn. We obtain
the map Q� W ⋃n�0 Gn ! (t� iR)� such that Q�jGn D �n, for all n � 0. The map Q� is
uniquely determined up to an additive constant. The following proposition relates the
moment maps� and Q�.

Proposition 2.4. We can choose� and Q� such that

�j�alg(G) D Q�j�alg(G).

Proof. The idea of the proof is that there exists a submanifold Gr1(H ) of Gr(H )
acted on smoothly byT � S1 and such that
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• Gr0(H ) � Gr1(H ) and the inclusion isT � S1 equivariant
• there existsO� W Gr1(H )! t� iR which is a moment map for theT � S1 action
• the image of�(G) under the inclusion (4) is contained inGr1(H ).
It is worth noticing thatGr(H ) does not admit a smooth action ofT � S1; only its
subspaceGr1(H ) does (see [11, Section 7.6]). This is why we need to use the latter
space in our proof.

We deduce thatO�j�(G) differs from � by a constant; the same can be said aboutO�jGn and�n, for any n � 0. The result follows.

Let us consider again theTC �C� action onGn defined above. Any of the inclu-
sionsGn � GnC1 is equivariant. Thus, we have an action ofTC �C� on

⋃

n�0 Gn. The
same group acts on�alg(G), as follows. We take into account that

(7) �alg(G) D Lalg(G
C)=LCalg(G

C)

where Lalg(GC) is the space of all algebraic maps� W C�! GC and LCalg(G
C) the sub-

group consisting of those� which can be extended holomorphically toC. Then the
action we are referring to is

(8) TC � C� ��alg(G) 3 (g, u, �LCalg(G
C)) 7! [C� 3 � 7! g�(u� )]LCalg(G

C).

The following result will be needed later.

Proposition 2.5. The inclusion�alg(G) � ⋃n�0 Gn defined inProposition 2.1 (b)
is TC � C� equivariant.

Proof. Take
 2 �alg(G), which is of the form

S1 3 z 7! 
 (z) D ∑

�k0�k�k0

Akzk,

wherek0 � 0. Here Ak are N � N matrices with entries inC. The subspace
 HC of
H has the property that

znHC � 
 HC � z�nHC,

for some n � 0. Any elementv of HC has a Fourier expansion of the formv D
∑

m�0 vmzm, wherevm 2 CN , for all m� 0. Then


 v D ∑

m�0,k2Z(Akvm)zkCm.

The corresponding element of (
 HC)=zn HC is

[
 v] D 
 v modznHC D ∑

m�0,�k0�k�k0,kCm�n�1

(Akvm)zkCm.
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In this sum we havem � n � k � 1 � n C k0 � 1. Thus, to describe all elements of
 HC=zmHC, it is sufficient to takev of the form

v D ∑

0�m�nCk0�1

vmzm.

If t 2 TC, then

t . [
 v] D ∑

m�0,�k0�k�k0,kCm�n�1

t(Akvm)zkCm D ∑

m�0,�k0�k�k0,kCm�n�1

(t Ak)vmzkCm

D [(t . 
 )v].

Consequently,t . (
 HC) D (t . 
 )HC. If u 2 C�, then

u . [
 v] D ∑

m�0,�k0�k�k0,kCm�n�1

(Akvm)(uz)kCm D ∑

m�0,�k0�k�k0,kCm�n�1

(uk Akumvm)zkCm.

This is the same as [(u . 
 )Qv], where

Qv D ∑

0�m�nCk0�1

umvmzm.

Consequently,u . (
 HC) D (u . 
 )HC.

Finally, let us pick B � GC a Borel subgroup withT � B. The presentation (7)
of �alg(G) allows us to define on the latter space a natural action of thegroup

BC WD f� 2 LCalg(G
C) W �(0) 2 Bg

on �alg(G). The orbit decomposition is

�alg(G) D ⋃�2 LT C�,
where the union is disjoint and

C� WD BC�
is called aBruhat cell. Here LT denotes the lattice of group homomorphismsS1 ! T .
The spaceC� is really a (finite dimensional) cell, being homeomorphic toCr for somer .
In this paper, byC� we will always mean the closure ofC� in the direct limit topology
(see above). The following property of the Bruhat cells willbe needed later.

Proposition 2.6. For any � 2 LT , there exists n� 1 such thatC� is contained in
Gn as a TC � C�-invariant closed subvariety.
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This can be proved as follows. There existsn � 1 such thatC� � Gn, becauseBC
leaves each�k, k � 0, invariant (see [6, Lemma 3.3.2]). The spaceC� is a locally
Zariski closed subspace of�alg(G) (see [8, Proposition 2.13 and Theorem 3.1]), thus
also of �n and of Gn. Consequently, the closures ofC� in the Zariski, respectively
differential topology ofGn are equal.

Another result concerning the Bruhat cells is the followingproposition (cf. [1, Sec-
tion 1], see also [3, Proof of Proposition 3.4]).

Proposition 2.7. For any �1, �2 2 LT there exists� 2 LT such that

C�1 � C�
and

C�2 � C�.
Consequently, for any x, y 2�alg(G) there exists� 2 LT such that both x and y are inC�.

3. The equivalence relation�
We begin with the following definition. Take 0< r � 1. We say that a free loop

S1! GC extends holomorphically forj� j � r if it is the restriction of a map

� W f� 2 C [1W j� j � r g! GC
which is continuous, holomorphic onf� 2 C[1W j� j > r g and smooth onf� 2 CW j� j D
r g; the same terminology is adopted if we taker � 1 and replace “�” and “>” by “�”,
respectively “<” (and alsoC[1 by C).

Let L�(GC) denote the subspace ofL(GC) consisting of those� which extend
holomorphically forj� j � 1 in the sense of the definition above. One knows that any� 2 L(GC) can be written as

� D ����C,

where �� 2 L�(GC), �C 2 LC(GC), and � is a group homomorphismS1 ! T (see
[11, Theorem 8.1.2]). By using the presentation (1), the elements of�(G) are cosets
of the form ���LC(GC), where�� and � are as above. The following lemma will be
used later.

Lemma 3.1. Take��, �� in L�(GC) and �, � W S1 ! T group homomorphisms
such that

���LC(GC) D ���LC(GC).

Let r be a strictly positive real number.
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(a) Assume that r< 1. If �� extends holomorphically forj� j � r then �� extends
holomorphically forj� j � r as well.
(b) Assume that r� 1 or r < 1 and �� extends holomorphically forj� j � r . For any
u 2 C� with juj � r we have

[S1 3 z 7! ��(uz)]�LC(GC) D [S1 3 z 7! ��(uz)]�LC(GC).

Proof. We have

(9) ��� D ����C,

where�C 2 LC(GC).
(a) The loops� and� are one-parameter subgroups inT , thus they have obvious

(holomorphic) extensions to group homomorphismsC� ! TC. From (9) we deduce
that �� is the restriction of a function holomorphic on the annulus

f� 2 C W r < j� j < 1g
and continuous on the closure of this space. Consequently, the map� 7! ��(1=� ) ex-
tends holomorphically forj� j � 1=r , that is, �� extends holomorphically forj� j � r .
Indeed, let us consider again the embeddingG � SU(N), as in Section 2. The result-
ing embeddingGC � MatN�N(C) is holomorphic. We use the following claim:

Claim. If f W f� 2 C W j� j � 1=r g ! C is a continuous function which is holo-
morphic onf� 2 C W j� j < 1=r , j� j ¤ 1g, then f is holomorphic onf� 2 C W j� j < 1=r g.

This can be proved by comparing the Laurent series off on f� 2 C W j� j < 1g,
respectivelyf� 2 C W 1 < j� j < 1=r g. The series are equal, since the coefficients of
both of them are equal to (1=(2� i ))

∫j� jD1 f (� )=� k d� , k 2 Z (by a uniform continuity
argument). Thus, the radius of convergence of the first of thetwo series (which is
actually the Taylor series off around 0) is at least equal to 1=r . The claim is proved.

(b) From equation (9) we deduce that�C extends holomorphically toC. The
reason is that the entries of theN�N matrix �C D ��1��1� ��� areC-valued functions
which are continuous onC and holomorphic onC n f� 2 C W j� j D 1g; by the same
argument as in the claim above, they are holomorphic on the whole C. Again from
equation (9), we deduce that

��(uz)�(uz) D ��(uz)�(uz)�C(uz),

for all z 2 S1. The mapS1 3 z 7! �C(uz) is in LC(GC). We only need to notice that

�(uz) D �(z)�(u), �(uz) D �(z)�(u).
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DEFINITION 3.2. (a) Takex 2 �(G) and u 2 C�. We say that the pair (u, x) is
admissibleif

• juj � 1
or

• juj < 1 and x D ���LC(GC), where�� 2 L�(GC) extends holomorphically
for j� j � juj and � W S1! T is a group homomorphism.

If (u, x) is as above andg 2 TC, then

gux WD g[S1 3 z 7! ��(uz)]�LC(GC)

is an element of�(G).
(b) Take x, y 2 �(G). We say that

x � y

if there existu 2 C� and g 2 TC such that (u, x) is an admissible pair andy D gux.

REMARK . We can also expressgux as

gux WD g[S1 3 z 7! (���)(uz)]LC(GC),

because� is a group homomorphismC� ! TC.

Note that by Lemma 3.1, the definition ofgux in part (a) is independent of the
choice of the representative��� of x 2 L(GC)=LC(GC). The following lemma shows
that � is an equivalence relation.

Lemma 3.3. (a) If x 2 �(G), u 2 C� and g2 TC such that(u, x) is admissible,
then (u�1, gux) is admissible and we have

g�1u�1(gux) D x.

(b) If x 2 �(G), u1, u2 2 C�, and g1, g2 2 TC such that(u1, x) and (u2, g1u1x) are
admissible, then (u1u2, x) is admissible and

(g1g2)(u1u2)x D g2u2(g1u1x).

Proof. (a) We can assume thatg D 1. We write x D ���LC(GC). Assume first
that juj � 1. The loop S1 3 z 7! ��(uz) extends holomorphically forj� j � 1=juj by� 7! ��(u� ). The casejuj < 1 is even easier to analyze. Verifying thatu�1(ux) D x
is equally easy.

(b) We can assume thatg1 D g2 D 1. Again we writex D ���LC(GC). It is
sufficient to analyze the case whenju1u2j < 1. Thus, at least one of the numbersju1j
and ju2j is strictly less than 1. We distinguish the following two cases.
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CASE 1. ju2j < 1. The loopS1 3 z 7! ��(u1z) is well defined and extends holo-
morphically for j� j � ju2j. Let Q� W f� 2 C [1W j� j � ju2jg! GC be an extension of
this loop. The mapO� W f� 2 C [1W j� j � ju1u2jg! GC given by

O�(� ) D { Q�(u�1
1 � ), if ju1u2j � j� j � ju1j,��(� ), if ju1j � j� j

is the desired extension of�� for j� j � ju1u2j (note that O� is holomorphic onj� j >ju1u2j, since it is continuous and is holomorphic on the complementof the circlef� 2C W j� j D ju1jg).
CASE 2. ju2j � 1. This implies ju1j < 1. We notice that the pair (u1, u2x) is

admissible: indeed, by hypothesis, the loopS1 3 z 7! ��(u2z) extends holomorphically
for ju2� j � ju1j, hence also forj� j � ju1j. The pair (u2, x) is admissible too. From the
result proved in Case 1 we deduce that (u1u2, x) is admissible.

The equationu2(u1x) D (u1u2)x is straightforward.

The following result relates the equivalence relation� to the T � S1 action on�(G) (see Section 1).

Lemma 3.4. Take 
 2 �(G). If � 2 R, then the pair(ei � , 
 ) is admissible. If
t 2 T , then the loop tei �
 given byDefinition 3.2 (b)can be expressed as

tei �
 D t
 � t�1.

Here the right-hand side is given by

(t
 � t�1)(z) D t
 (zei � )
 (ei � )�1t�1,

for all z 2 S1.

Proof. There exist�� 2 L�(GC) and � W S1 ! T a group homorphism such that
the image of
 under the isomorphism (1) is���LC(GC). This means that

��� D 
�C,

for some�C 2 LC(GC). We deduce that for anyz 2 S1 we have

[t��(zei � )�(z)]�(ei � ) D [t
 � (z)t�1]t
 (ei � )�C(zei � ).
In other words, via the isomorphism (1), tot
 � t�1 corresponds the coset of

t [S1 3 z 7! ��(zei � )]�,

which is the same astei � (���LC(GC)).
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We now denote byA the set of allx 2�(G) with x � y, for somey 2 ��1(a). We
are interested in the quotient spaceA=� and the (natural) map��1(a)=(T�S1)! A=�
which assigns to the coset ofx 2 ��1(a) the equivalence class ofx. By Lemma 3.4,
this map is well defined.

Proposition 3.5. The natural map

��1(a)=(T � S1)! A=�
is bijective.

Proof. Only the injectivity has to be proved. We have to show that if x, y 2��1(a) with x � y, then y D tei �x, where (t , ei � ) 2 T � S1. By Definition 3.2 we have

y D gux

for someu 2 C� and g 2 TC. We write g D exp(w1) exp(iw2) and u D ei�e�� , wherew1,w2 2 t and�, � 2 R (here we see�� as i (i�)). Since the pair (u, x) is admissible
and juj D je�� j, the pair (e�� , x) is admissible too. By Lemma 3.3 (b) we have

y D exp(w1)ei�(exp(iw2)e��x).

Thus, it is sufficient to assume that

y D exp(iw2)e��x.

Moreover, without loss of generality we assume that

� � 0,

because if contrary we writex D exp(�iw2)e� y (by Lemma 3.3 (a)). Let us consider
the functionh W [0, 1]! R,

h(s) D [�(exp(isw2)e�s�x) � a](w2, i�),

where 0� s� 1. Notice thath(s) is well defined for anys with 0� s� 1: indeed, the
pair (e�� , x) is admissible hence, becausee�s� � e�� , the pair (e�s� , x) is admissible
too. Since�(x) D �(y), we haveh(0)D h(1)D 0. Consequently, there existss0 in the
interval (0, 1) such thath0(s0) D 0. We denote

(10) x0 WD exp(is0w2)e�s0�x.

Claim. We have

d

ds

∣

∣

∣

∣

s0

exp(isw2)e�s�x D Jx0((w2, i�) . x0),
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where Jx0 is the complex structure at x0 (seeSection 2)and

(w2, i�) . x0 WD d

ds

∣

∣

∣

∣

0

[exp(sw2)eis�x0]

arising from the infinitesimal action of T� S1 on �(G).

The claim can be proved as follows. Writex0 D ���LC(GC), where�� 2 L�(GC)
and � W S1 ! T is a group homomorphism. By using Lemma 3.4 and the remark
following Definition 3.2, we have

exp(isw2)e�s�x D exp(i (s� s0)w2)e�(s�s0)�x0 D exp(i (s� s0)w2)(���)�(s�s0)L
C(GC).

Here we have denoted

(���)�(s�s0)(z) WD (���)(e�(s�s0)�z)

for all s in the interval (0, 1) and allz2 S1. By the definition of the complex structure
J (see Section 2), it is sufficient to prove that

(11)
d

ds

∣

∣

∣

∣

s0

[exp(i (s� s0)w2)(���)�(s�s0)] D i
d

ds

∣

∣

∣

∣

0

[exp(sw2)(���)is],

where

(���)is(z) WD (���)(eis�z)

for all s 2 R and all z 2 S1. By using the Leibniz rule, the left-hand side of (11) is

d

ds

∣

∣

∣

∣

0

[exp(isw2)(���)�s] D i
d

ds

∣

∣

∣

∣

0

[exp(sw2)](���)C i
d

ds

∣

∣

∣

∣

0

[(���)is].

Here we have used that

d

ds

∣

∣

∣

∣

0

[exp(isw2)] D iw2 D i
d

ds

∣

∣

∣

∣

0

[exp(sw2)]

and also that

d

ds

∣

∣

∣

∣

0

(���)(e�s�z) D i
d

ds

∣

∣

∣

∣

0

(���)(eis�z),

for all z 2 S1 (the last equation follows from the fact that��� is holomorphic on the
exterior of a closed disk with center at 0 and radius strictlysmaller than 1). The claim
is proved.



622 A.-L. M ARE

From the claim we deduce as follows:

h0(s0) D (d�)x0

(

d

ds

∣

∣

∣

∣

s0

(exp(isw2)e�s�x)

)

(w2, i�)

D !x0

(

d

ds

∣

∣

∣

∣

s0

(exp(isw2)e�s�x), (w2, i�) . x0

)

D !x0(Jx0((w2, i�) . x0), (w2, i�) . x0)

D h(w2, i�) . x0, (w2, i�) . x0i,
where! denotes the symplectic form andh , i the Kähler metric on�(G) (see Prop-
osition 2.1). We deduce that

(w2, i�) . x0 D 0

which, according to the claim above, implies that

d

ds

∣

∣

∣

∣

0

exp(isw2)e�s�x0 D 0.

From this we deduce that

(12) exp(isw2)e�s�x0 D x0

for all s� 0 (note that for any suchs, the pair (e�s� , x0) is admissible, sincee�s� � 1).
Indeed, by using Lemma 3.4 we deduce that for anys1 � 0 we have

d

ds

∣

∣

∣

∣

s1

exp(isw2)e�s�x0 D d

ds

∣

∣

∣

∣

s1

(exp(is1w2)e�s1�) exp(i (s� s1)w2)e�(s�s1)�x0

D d(exp(is1w2)e�s1�)x0

(

d

ds

∣

∣

∣

∣

0

(exp(isw2)e�s�x0)

)

D 0.

Here we have used the (differential of the) map exp(is1w2)e�s1�W �(G)!�(G) given by


 7! exp(is1w2)e�s1�
 ,

which is well defined, sincee�s1� � 1.
By Lemma 3.3 (a), equation (12) implies that the pair (e�s� , x0) is admissible for

any s � 0; moreover, equation (12) holds for alls � 0 as well. We makesD �s0 in
(12) and deducex D x0; then we makesD 1� s0 and deducey D x0. We conclude

x D y

and the proof is finished.
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REMARK . Let M be a compact Kähler manifold acted on by a complex Lie group
G, which is the complexification of a compact Lie groupK , in such a way that the ac-
tion of K on M is Hamiltonian. Kirwan has proved that ifx, y 2 M have the same
image under the moment map and are on the sameG orbit, then they are on the same
K -orbit (see [5, Lemma 7.2]). We have used above the idea of herproof. Kirwan’s
result cannot be used directly in our context: first,�(G) is not a compact manifold;
second, and most importantly, theT � S1 action on�(G) does not extend in any rea-
sonable way to aTC � C� action. We are substituting this action by the equivalence
relation�.

4. Connectedness ofA=� and of ��1(a)

We start with the following proposition.

Proposition 4.1. (a) If x 2 �alg(G) then the pair (u, x) is admissible(in the
sense ofDefinition 3.2) for any u2 C�. The map

TC � C� ��alg(G)! �alg(G), (g, u, x) 7! gux

is the action of TC � C� on �alg(G) defined inSection 2 (see equation(8)).
(b) The image of(��1(a) \ �alg(G))=(T � S1) under the map inProposition 3.5is
(A\�alg(G))=�. The latter space is a connected topological subspace of�(G)=�.

Proof. Point (a) follows from equations (7) and (8) and the remark following Def-
inition 3.2. To prove the first assertion of (b), we only need to note that ifx 2 �alg(G)
and y 2 �(G) such thatx � y, then y 2 �alg(G). To prove the second assertion of (b),
we note that the natural map

(��1(a) \�alg(G))=(T � S1)! �(G)=�
is continuous. We use Proposition 2.3.

The key result of this section is

Proposition 4.2. The subspace(A \ �alg(G))=� of A=� is dense(both spaces
have the topology of subspace of�(G)=�).

Combined with Proposition 4.1 (b), this implies

Corollary 4.3. The space A=� is a connected topological subspace of�(G)=�.

In turn, this implies the main result of the paper, as follows.
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Proof of Theorem 1.1. The natural map

(13) ��1(a)=(T � S1)! �(G)=�
is continuous, one-to-one, and its image isA=� (by Proposition 3.5). SinceA=� is
connected (see the previous corollary), we deduce that��1(a)=(T � S1) is connected
as well. Consequently,��1(a) is a connected topological subspace of�(G).

The rest of the section is devoted to the proof of Proposition4.2. First, if � 2 LT ,
we say that a pointx 2 C� is (� � a)-semistableif

(14) (TC � C�)x \ (��1(a) \ C�) ¤ ;.
Here the closure is taken in�alg(G) with respect to the direct limit topology. We may
assume thatC� is contained in the GrassmannianGn as a TC � C�-invariant closed
subvariety (see Proposition 2.6). Thenx is (��a)-semistable if and only if it is (�n�
a)-semistable in the usual sense, that is, if

(TC � C�)x \ (��1
n (a) \ C�) ¤ ;

(see for instance [5, Chapter 7]). This follows immediatelyfrom the fact that� and�n coincide onC�, by Proposition 2.4. We denote byC�ss
the set of all semistable

points in C�. We also consider the setGss
n of all (�n � a)-semistable points inGn. We

have

(15) C�ssD C� \ Gss
n .

The following description of the semistable set ofC� will be needed later.

Lemma 4.4. We have

A\ C� D C�ss
.

Proof. By Proposition 4.1 (b), we have

A\�alg(G) D (TC � C�)(��1(a) \�alg(G)).

Consequently, a pointx 2 �(G) is in A\C� if and only if x 2 [(TC�C�)��1(a)]\C�.
The latter set is obviously equal to (TC �C�)(��1(a)\C�), which is the same asC�ss

(by [5, Theorems 7.4 and 8.10], applied for the GrassmannianGn which containsC�
as aTC � C�-invariant closed subvariety, as indicated above).

We are now ready to prove Proposition 4.2.
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Proof of Proposition 4.2. We show that in any open subsetV of A=� there exists
an element of (A\�alg(G))=�. Since A=� is equipped with the topology of subspace
of �(G)=�, we can write

V D (A=�) \ (U=�) D (A\U )=�.

Here U is an open subspace of�(G) with the property that for anyx 2 U , we have

fy 2 �(G) W y � xg � U .

The subspaceU \ �alg(G) of �alg(G) is open in the direct limit topology (because
the direct limit topology on�alg(G) is finer than the subspace topology, see Propos-
ition 2.2) and non-empty (because�alg(G) is dense in�(G), see [11, Section 3.5]).
For any x 2 U \�alg(G) we have

(16) (TC � C�)x D fy 2 �alg(G) W y � xg � U \�alg(G),

which follows from Proposition 4.1 (a). There exists� 2 LT such thatC� \ U ¤ ;
and��1(a) \ C� ¤ ;. Indeed, we can pickx 2 �alg(G) \ U (the intersection is non-
empty, see above) andy 2 �alg(G) \ ��1(a) (the intersection is non-empty, sincea 2�(�(G)) D �(�alg(G))); by Proposition 2.7, there exists� 2 LT such thatx and y are
both in C�.

Claim. If � 2 LT is as above, then C�ss
is a dense subspace ofC� (here C� is

equipped with the direct limit topology it inherits from�alg(G)).

To prove the claim, we consider again a GrassmannianGn which containsC� as a
TC �C�-invariant closed subvariety. By the main theorem of [4], there exists onGn a
TC � C�-invariant very ample line bundleL such thatGss

n D Gss
n (L). The latter space

consists of allL-semistable points inGn, that is pointsx 2 Gn such that there exists
k � 1 and sW X ! L
k equivariant holomorphic section withs(x) ¤ 0 (cf. e.g. [10]).
Consequently,Gss

n is a Zariski open subspace ofGn. SinceC�ss D Gss
n \ C�, we de-

duce thatC�ss
is a Zariski open subspace ofC�. The spaceC�ss

is non-empty, since��1(a) \ C� � C�ss
. Thus C�ss

is dense inC� with respect to the usual differential
topology on the latter space: this can be deduced by using [9,Theorem 2.33] forC�,
which is an irreducible projective variety (cf. [8, p. 360]).

From the claim we deduce that the intersectionC�ss\U is non-empty (sinceC�\U
is a non-empty subspace ofC� which is open with respect to the direct limit topology).
By Lemma 4.4 we have

C�ss\U D A\ C� \U ,

thus

U \ A\�alg(G) ¤ ;.
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By equation (16), the quotient (U \ A \ �alg(G))= � is a (non-empty) subspace of�(G)=�. It is contained in bothV D (U \ A)=� and (A\�alg(G))=�. Consequently,
the intersectionV \ [( A\�alg(G))=�] is non-empty. This finishes the proof.
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