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The many unanswerable questions (1) which arise in the study of finite

groups have lead to a review of fundamental ideas, e.g. the Theorem of Burnside

(3, p. 299 2, 6) that if λ be any faithful irreducible representation of G over a

field K, then every irreducible representation of G over K is contained in some

tensor power of λ.

If we take K to be the complex field and write the inner tensor product

in question λxλx {n factors) as λxn, we recall Schur's result that this

representation of G splits according to the formula (7, p. 129)

1.1 Axw = Σ/vAΘM

where λ 0 Zvl is the symmetrized inner product associated with the irreducible

representation M of degree /v of the symmetric group Sn. For a finite group

G, λ®[vl is in general reducible, while for the full linear group and certain

of its subgroups this representation is irreducible.

These symmetrized tensor products are hard to handle, though their degrees

<5V are given by the formula (5, p. 60)

1.2 <5 v(/λ)=G v(/λ)/# v

where f\ is the degree of λ. If we denote the Young diagram associated with

the irreducible representation v of Sn by M , then W is the product of hook

length of M and G v(/λ) = Π (/x + i ~ /), taken over [>J It follows immediately

that for n<fx, all these symmearized products are defined.

It would be interesting if Burnside's theorem could be refined so as to

relate the apperances of the different irreducible representations of G to these

symmetrized components of λxn, but the difficulties seem insurmountable at

present.
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2. Another application of these tensor products is of interest. In Chapter

XII of (3) Burnside studies at some length the permutation representation gi

of G induced by the identity representation of a subgroup Hi {i = 1, 2, . . . , r)

of orders hi. It is natural to arrange the Hi so that J3Ί = / and gi is the regular

representation of G, hi<hi+i<hr with Hr~G so that gr is the identity repre-

sentation of G. If we suppose gi to be represented on the variables xu and gj

on the variables yυ, the tensor product giXgj is represented on the variables

xuyυ and

2.1 giXgj = Σaijkgk.

If j=i9 we obtain the symmetrized components for n = 2 on the variables (5,

p. 57).

χiyι> χzyz> . , γ(χuyv+ χoyu) - - . -^(xuyυ-xυyu)

by setting jyM =j«. It follows, as in the case of giXgjy that gi ®Z2l is also a

permutation representation of G, while gvΘQ2] is not. The argument is quite

general so that 2.1 becomes

2.2 # X Λ = Σ*7/&F,

and we have

2.3 ^ 0M

where the α^ , £?/ are rational integers.

3. What is of interest here is that 2.1-2.3 can be interpreted in a natural

way relative to the geometry of the irreducible representations λ of G. A start

was made on this many years ago (4). For purposes of illustration, we reproduce

two tables which set the stage for this interpretation in the case of S4. Here

we write

and Table 2 gives the values of the m). For completeness, it would have been

desirable to list all the solutions of 2.1, but this has been omitted in favour

of Table 3 which gives the solutions of 2.2 and 2.3 for n = 2, 3. Since there

are five irreducible representations of Si, we have the following linear relations

between the gi'
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TABLE 1

H

Hi
Hi
Hi
Hi

Hs
Hs
Hi

Hs
H*
i/io
Hn

gi

g2

g^

gi

gs

gs

1
1,
1,
1,
1,
1,
1,
1,

i—
l

24 gi

(12)
(12)(34)
(123) . (132)

sub-group

(1234), (13)(24), (1432)
(12)(
(12),
(12),
(12),

gi

g3

g4

gs
gs
gi
gi

£Ίo
gn

X 2

5 £i + 2 £2

4 £1 + 4 £3

2 * 1 -

6 £ 6

}'g*

34), (14)(23),
(34), (12)(34)

13)(24)

(13), (23), (123), (132)
(34), (12)(34),
ΛA
Si

[I 4 ] [2

1
•
1
1
.
1
•
•
•
1
•

X 3

576 £i

70 £1 + 4 £ 2

64 £i + 16 £3

20 £, + 4 g t

8 £1 + 4 £5

36 £6

(14)(23), (13)(24)

TABLE 2

, I 2 ] [22]

3 2
1 1
1 2
1
1 1

2
1•
1

••

TABLE 3

®[2]

8 £1 + 6 £2 + 3 £3

£1 + 4 £ 2 +£6

3 £2 + 3 £3 + £5

£2+£3+£4+£8

£2+£5+£9

3 £6+£9

, (1324), (1423)

[3.1]

3
2
1
1
•
•
1
1
•
•
•

17 £1 + 4

[4]

1
1
1
1
1
1
1
1
1
1
1

®[3]

gi

11 £1 + 7 £2 + 2 £4

10 £i + 9 £3 + 2 £4

4 £1 + 3 £4

£l+£3 + £4 + £5

9 £6 +£10

h

1
2
2
3
4
4
4
6
8

12
24

gi £ i + 2 £7

£8 £2+£8

£9 £6+ £9

£Ίo 2 £io

8 £1 + 4 £7

£l + 3£ 2 + £8

4 £6+£9

4 £10

£2+£7+£9

£7+ £8

2 £ 9

^ I O + ^ I

£l+£3 + 2£7+2£8

£2 + 2 £8

£6 + £9+£ll

£"π
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2 £ 6 + gί = 3 £3 2

Consider, in particular the irreducible representation [3, 1] whose invariant

configuration is a regular tetrahedron. Since H^H*, the groups of stability

of the vertices are Hi and its conjugates. Taking the bi-vector defined by two

such vertices, we have from Table 3,

which indicates that the group of stability of the corresponding edge is H2

with m[Zf 1] = 2. However, this does not take into account the extra symmetry

arising by interchanging the two vertices. For this we go to

^R® [2] =

and the group of stability of the mid-edge point is H7. As already mentioned,

the component

= lZ, l ] + [2, I2]

has no geometrical significance.

We may study the geometry of the representation [2, I2] in a similar

fashion, noting from Table 2 that only the vertices of the fundamental region

are well defined; since Hz^Hό, the groups of stability are H2, H4 and H-o and

their conjugates. It may be verified that

and from Table 3

gz x 2 = 5 gι + 2 g2, gA x 2 = 2 gι + g.u gs x 2 = gi + 2 gs.

Moreover, these inner products and the £ϊ®[2] and gϊ®[3] U = 2, 4, 5)

interpreted relative to [2, I2], describe the familiar arrangement of the vertices,

mid-edge and mid-face points, of the octahedron, since the rotation group of

the octahedron is isomorphic to the representation [2, I2] of S4.

4. Thus it appears that the geometry of the fundamental region of a real

irreducible λ can be completely described in terms of giXgj and g ϊ Θ M . In

order to clarify further these ideas, consider the relation
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which is more interesting than gi®ί2] = gs + giy since the octahedron is cen-

trally symmetrical. Denoting the mid-point of the edge ij of the tetrahedron

by Pij, we have three possibilities: i) pairing P i 2 with P32 yields g7 ii) pairing

P12 with P.34 allows an extra symmetry, since H7 is invariant under (1324),

which yields g» iii) pairing PJ2 with Pis yields a point on the edge of the

fundamental region and so g2. Since no point is invariant under Hi and also

(1324), g9 does not register in either [3, 1] or [2, I2].

In particular, if Hi is a group of stability with m) = ly considerations of

linear dependence imply that

4.1 gi®Lnl yields every gj with m) — ly for n sufficiently large.

The geometry of the octahedron suggests immediately that g5 ® [3] yields gA

but we must go to g2® [4] and ^ Θ Γ4] to obtain ghi as may readily be verified.

These ideas may be extended to apply to complex λ but we shall not consider

such a genralization here.
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