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TAMED TO COMPATIBLE: SYMPLECTIC FORMS VIA
MODULI SPACE INTEGRATION

Clifford Henry Taubes

Fix a compact 4-dimensional manifold with self-dual second Betti
number one and with a given symplectic form. This article proves the
following: The Frêchet space of tamed almost complex structures as
defined by the given symplectic form has an open and dense subset
whose complex structures are compatible with respect to a symplectic
form that is cohomologous to the given one. The theorem is proved by
constructing the new symplectic form by integrating over a space of
currents that are defined by pseudo-holomorphic curves.

1. Introduction

Suppose that X is a compact, oriented manifold and suppose that ω is a
symplectic form on X that is compatible with the orientation. An endomor-
phism, J, of TX is said to be an almost complex structure when J2 = −1.
Such an almost complex structure is said to be tamed by ω when the bilin-
ear form ω(·, J(·)) is positive definite. The almost complex structure J is
said to be compatible with ω when this same bilinear form is also symmet-
ric. Gromov [G] observed that tamed almost complex structures and also
compatible almost complex structures always exist. Simon Donaldson [D1]
posed the following question: If an almost complex structure is tamed by ω,
must it be compatible with a symplectic form?

Of particular interest is the case when X is 4-dimensional. The the-
orem below says something about this question in the case when X is
4-dimensional and its self-dual, second Betti number is 1. By way of a
reminder, this Betti number, b2+, is the number of positive eigenvalues of
the intersection pairing on H2(X; R). The theorem speaks of a generic com-
patible, almost complex structure. This condition is met by all compatible
complex structures from a certain dense and open set. (These terms are
defined using the C∞-Frechêt space topology.) The requirements for mem-
bership in this set are given in the body of this article.
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Theorem 1.1. Suppose that X is a compact, oriented 4-dimensional man-
ifold with b2+ = 1 and with a given symplectic form, ω. A generic, ω-tamed
almost complex structures on X is compatible with a symplectic form on X.
Moreover, the class in H2(X; R) of this form can be taken to be that of ω if
the latter’s class comes from H2(X; Q).

Note that in the case when X = CP
2, the conclusions of Theorem 1.1 hold

for every tamed almost complex structure. This follows from what Gromov
says in [G] about pseudoholomorphic subvarieties and what the author says
in [T1] about symplectic forms on CP

2.
What follows is meant to indicate how Theorem 1.1 is proved. To start,

remark that a 2-dimensional current is, by definition, a bounded linear func-
tional on the space of smooth 2-forms on X. All currents here are understood
to be 2-dimensional. A current is said to be closed when it is zero on the
exterior derivative of any 1-form.

Let J denote an almost complex structure on TX. The complexification
of the cotangent bundle of X decomposes as TXC

∗ = T 1,0X⊕T 0,1X, where
T 1,0X annihilates the subspace in TXC where J acts as −i. The bundle of
C-valued 2-forms on X decomposes analogously as T 2,0X ⊕ T 1.1X ⊕ T 0,2X
where T 2,0X = ∧2T 1,0, and T 0,2X = ∧2T 0,1. Meanwhile, T 1,1X = T 1,0X ⊗
T 0,1X. A current is said to be of type 1-1 when it annihilates T 2,0X and
T 0,2X. A current of type 1-1 is said to be non-negative when its value is
non-negative on any section of ∧2T ∗X that can be written as if σ ∧ σ̄ with
σ a section of T 1,0X and f ≥ 0 a non-negative function. A current is positive
when its value on such a form is positive when f is not identically zero.

Suppose that Ω is a symplectic form on X such that Ω ∧ Ω defines the
given orientation. If J is Ω-compatible, then the linear functional

(1.1) υ →
∫

X
υ ∧ Ω

is a closed, positive current of type 1-1. Note however that a closed, positive
current of type 1-1 need not be given by integration against a symplectic
form. An example of a non-negative current of this sort is given next.

A closed set C ⊂ X with finite, non-zero 2-dimensional Hausdorff mea-
sure is said to be a J-holomorphic subvariety if it has no isolated points, and
if the complement of a finite set of points in C is a smooth submanifold with
J-invariant tangent space. Such a subvariety has a canonical orientation
given by J . Integration on the smooth part of C is defined using this orien-
tation. This understood, the linear functional

(1.2) υ →
∫

C
υ

defines a closed, non-negative current of type 1–1.
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The set of closed, non-negative, type 1–1 currents is convex. As a conse-
quence, a non-negatively weighted average of currents that are defined as in
(1.2) by J-holomorphic subvarieties also defines a closed, non-negative, type
1–1 current. When J is suitably generic, and tamed by a given symplectic
form, such an average is described momentarily whose current is very nearly
given by (1.1) with Ω a compatible symplectic form. A final step in the proof
makes the needed modifications to obtain the desired symplectic form.

Section 1.1 describes in some detail the current that is used to prove The-
orem 1.1. Section 1.2 proves Theorem 1.1 given what is said in Section 1.1.
The subsequent sections of this article are organized as follows: Section 4 has
the proofs of the three key propositions in Section 1.1. Section 2 supplies
what is needed in Section 4 with regard to the properties of pseudoholo-
morphic curves, and Section 3 supplies what is needed about their moduli
spaces. A lengthy appendix to this article supplies the proofs of the various
genericity assertions that are made in Section 3.

The motivation for the use of J-holomorphic subvarieties to say something
about compatible symplectic forms comes from a construction in Donald-
son’s seminal paper [D2] on the existence of symplectic subvarieties in a
compact manifold with a given symplectic form. In particular, Donaldson
used such subvarieties to construct a sequence of currents that converges to
the current defined by integration against the given symplectic form. The
construction introduced by Donaldson is not used here to find the needed
subvarieties. The desired J-holomorphic subvarieties are found by using ver-
sions of the Seiberg–Witten equations with the main theorem in [T2] and the
wall crossing formulae in [LL1]. The application of these equations requires
the b2+ = 1 condition for X. What is done here is reminiscent of what is
done by Gromov for the case when X = CP

2 [G].
Donaldson suggests in [D1] a very different approach to his question,

one along the lines used by Yau in [Ya] to prove the Calabi conjecture. This
alternate approach is considered by Weinkove in [We], with Tosatti and Yau
in [TWY] and with Tosatti in [TW]. Tosatti’s Harvard Ph.D. thesis says
more about this approach as well. Meanwhile, Li and Zhang in [LZ] discuss
cohomological issues that concern this question of tamed versus compatible
almost complex structures.

Before reading the detailed arguments, the reader should take note of
the following conventions: First, no generality is lost by assuming that ω
defines a class in H2(X; R) that comes from H2(X; Q). This is because the
taming condition is an open condition on the set of almost complex struc-
tures. This rationality condition is imposed below. The second convention
concerns notation: In all cases, c0 denotes a real number that is greater than
1, and also independent of any parameters that are germaine to the dis-
cussion at hand. Its value can be assumed to increase between subsequent
appearances.
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1.1. The current. The subsection describes in more detail a non-negative
1–1 current that is used to obtain a symplectic form which is compatible
with an almost complex structure chosen from a certain generic subset of
those that are ω-tamed. The description is given in five parts.

Part 1 : This part sets the stage. To begin introduce [ω] to denote the
cohomology class of the symplectic form. Fix a large integer N , and in par-
ticular one such that e = N [ω] is a class from H2(X; Z). Use c ∈ H2(X; Z)
to denote the first Chern class of T 1,0X. When ê and ô are classes in
H2(X; Z), use ê·ô to denote their cup product pairing. Granted this notation,
introduce

(1.3) ιe = e · e− c · e and g = 1
2(e · e+ c · e) + 1.

It is assumed in what follows that N is chosen so that ιe is very large.
Keep in mind for what follows that ιe is in all cases an even number.

View the set of ω-tamed almost complex structures as a topological space
whose topology comes from the Frêchet topology on C∞(X; End(TX)). The
almost complex structure is taken from a certain dense, open subset of
ω-tamed almost complex structures. This subset is denoted here by Je∗ ; it
is characterized in the subsequent sections. Let J denote the chosen almost
complex structure. The polarization of the quadratic form given by ω(·, J(·))
defines a Riemannian metric on X, and this metric is used implicitly in all
that follows to define, for example, norms, distances on X, integration over
open sets in X, and self-dual and anti-self dual 2-forms.

Part 2 : Use J to define the set Me,g whose elements are irreducible,
J-holomorphic subvarieties with the following two properties: First, each
has fundamental class Poincare’ dual to e. Second, each is the image via
an almost everywhere 1-1, pseudoholomorphic map to X of a connected,
complex curve with genus g. The definition of Je∗ guarantees that Me,g is
a smooth manifold whose dimension is ιe.

Set d = 1
2 ιe and use Me,g,d to denote the subset in Me,g × (×dX) that

consists of elements of the form (C, x1, . . . , xc) with each xk ∈ C. The defini-
tion of Je∗ guarantees that Me,g,d is smooth submanifold in Me,g × (×dX)
whose dimension is 4d = 2ιe.

Part 3 : The b2+ = 1 condition on X enters in this part. Introduce πd :
Me,g,d → ×dX to denote the restriction of the projection map onto the ×dX
factor of Me,g × (×dX). The b2+ condition guarantees the following:

Proposition 1.1. Take N very large so as to define e = N [ω], choose J from
the set Je∗, and use J to define Me,g,d. Then the map πd: Me,g,d → ×dX is
onto the complement of a compact, measure zero subset. Moreover, π−1

d (h) is
non-empty and finite if h ∈ ×dX is a regular value of πd in the complement
of this subset.
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This proposition is proved in Section 4.1.
A set K ⊂ Me,g,d is said in what follows to be fiberwise finite when the

following condition holds: There exists K ≥ 1 such that π−1
d (h) ∩ K has at

most K elements when h comes from the complement of the set of critical
values of πd.

Part 4 : Fix a fiberwise finite subset K ⊂ Me,g,d. Fix K ≥ 1 and a point
h ∈ πd(K) such that π−1

d (η) ∩ K has at most K elements. Let υ denote a
2-form on X and define

(1.4) φh(υ) =
∑

C∈π−1
d (h)∩K

∫
C
υ.

With h so chosen, the assignment υ → φh(υ) defines a current, which is
to say a bounded, linear functional on C∞(X;∧2T ∗M). The bound on the
norm comes courtesy of the taming assumption because the latter leads to
a bound on the area of any given subvariety in Me,g; and such a uniform
area bound leads directly to a bound |φh(υ)| ≤ c0K supX |υ|.

With υ fixed, the assignment h → φh(υ) defines a function on πd(K). The
following proposition says something about this function for certain choices
of K.

Proposition 1.2. Fix N � 1 to define e = N [ω], and take the almost
complex structure from Je∗. Suppose that K ⊂ Me,g,d is a non-empty, open,
fiberwise finite set. Then

• πd(K) ⊂ ×dX is a measurable subset.
• Let υ denote a given smooth 2-form on X. Then the function h →
φh(υ) on πd(K) is a bounded, measurable function with bound a
K-dependent multiple of supX |υ|.

• The assignment

υ → ΦK(υ) =
∫

h∈πd(K)
φh(υ)

defines a closed and non-negative type 1-1 current on X, which is
non-trivial if πd(K) has positive measure.

This proposition is proved in Section 4.2.
Part 5 : The next proposition says more about certain versions of ΦK.

In particular, it asserts that K can be chosen so as to make ΦK a positive
current which is very nearly given by integration as in (1.1) with a form Ω
that is non-degenerate and bounded. This proposition is at the heart of the
proof of Theorem 1.1
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Proposition 1.3. Fix N � 1 so as to define e = N [ω]. The set Je∗ is such
that if J ∈ Je∗, then there exists a fiberwise finite set K ⊂ Me,g,d and a
constant κ > 1 with the following two properties:

• The conclusions of Proposition 1.2 hold and so the current ΦK is well
defined.

• Fix t > 0 but small, and let B ⊂ X denote a ball of radius t. Let σ
denote a unit length section of T 1,0X|B and let fB denote the char-
acteristic function of B. Then

κ−1t4 < ΦK(ifB σ ∧ σ̄) < κt4.

The proof of this proposition occupies Sections 4.4–4.6 of this article.
What follows directly says something about Proposition 1.3’s residual set

constraint on the almost complex structure. The proof of the proposition
uses this constraint to insure that certain pseudoholomorphic curve moduli
spaces have “generic” properties. To give an idea of what can go wrong,
suppose that all subvarieties that contribute to ΦK contain a particular point
in X. If such is the case, then the upper bound in the proposition must be
replaced by κt2. The resulting current will not define a smooth form on X,
although it may well define one on the blow up of X at the given point.
This example is the extreme case of what might be called the key concern:
The bounds claimed by the proposition require that the relevant subvarieties
have uniform “density” acrossX: Regions where the density is low determine
the lower bound; whereas high-density regions, those where the subvarieties
concentrate, determine the upper bound. The needed genericity properties
of the relevant moduli spaces are described by the various propositions in
the upcoming Section 3 and their proofs are given in the appendix to this
article. The proofs are lengthy, but at the heart of each is the Sard-Smale
theorem [Sm]; this used to deduce the existence of a residual set of regular
values for a relevant map.

1.2. The proof of Theorem 1.1. The proof of this theorem has four parts.
Part 1 : Fix a version of the current ΦK as given by Proposition 1.3. This

first part of the proof defines a smoothing of ΦK so as to give a current that is
defined as in (1.1) by integration against a smooth 2-form. The construction
that follows is along the lines of one that appears in Section 2 of [Su]. To
start, fix an exponential map exp: TX → X whose differential along the
zero section is the identity. There exists δ > 0 such that exp embeds the
radius δ ball about the origin in any given fiber of TX. Use BX ⊂ TX
in what follows to denote the space of vectors with norm less than δ. Let
π : TX → X denote the bundle projection. If x ∈ X has been specified,
then TX|x and BX|x are used to denote the respective fibers at x of TX
and BX.
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Use exp! to denote the push-forward homomorphism given by the expo-
nential map; this a homomorphism from the space of smooth, compactly
supported sections of ∧pT ∗(BX) to C∞(X;∧p−4T ∗X).

As T (TX|x) is canonically isomorphic to TX|x, the fiber tangent space
T (TX|x) inherits a translationally invariant metric, this the metric on TX
at x. Let wx denote the associated translationally invariant volume 4-form on
the vector space TX|x. Fix a smooth, non-increasing function, χ : [0,∞) →
[0, 1] that is equal to 1 on [0, 5

16 ] and is equal to 0 on [ 7
16 , ∞). Use A to denote

(1.5) A = 2π2

∫ ∞

0
χ(t)t3 dt.

Given ε > 0 but much smaller than both δ and the constant ρ used
to define Φ, define the function χε on TX by setting χε(v) = χ(ε−1|v|).
A standard construction (see, e.g., Chapter 1.6 of [BT]) produces a com-
pactly supported, closed 4-form on BX whose pull-back to any given fiber
BX|x is the 4-form A−1ε−4χεwx. This form represents the Thom class in the
compactly supported cohomology of BX. Denote this 4-form by wε. Note
for future reference that wε can be constructed so that its derivatives obey
|∇wε| ≤ c0ε

−5.
The form wε is used in what follows to define the infinitely smoothing

operator from C∞(X;∧∗T ∗X) to itself that acts as

(1.6) υ → exp!(wε ∧ π∗υ).
This smoothing map is denoted by Tε. The map Tε approximates the

identity operator in the sense that

(1.7) |υ − Tε(υ)| ≤ c0ε|∇υ|.
Moreover, if r > 0 and υ has support in a ball of radius r, then Tε(υ) has

support in the concentric, radius r+ε ball. It is also the case that Tεd = dTε;
this because push-forward of compactly supported forms and pull-back both
commute with exterior differentiation.

This smoothing operator extends to define a bounded, linear map from
distribution valued forms to C∞(X;∧∗T ∗X). For example, fix x ∈ X and
an element, βx, in ∧2T ∗X. These define the distribution that acts to send a
given 2-form υ to ∗(υ|x ∧ β) where ∗ here denotes the metric’s Hodge star.
Denote this distribution valued 2-form by βδx. Then Tε(βδx) is a smooth
2-form with support in the radius ε ball centered at x. The norm of this
form obeys

(1.8) |Tε(βδx)| ≤ c0ε
−4|β|.

This form approximates the distribution υ → ∗(υ|x ∧ β) in the sense that
the integral of over X of υ ∧Tε(βδx) differs from ∗(υ|x ∧β) by no more that
c0 ε|∇υ||β|.
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A 2-form on X is defined by specifying the Hodge dual of its wedge with
any given 2-form. This understood, define the 2-form Ωε by demanding that

(1.9) ∗(β ∧ Ωε|x) = ΦK(Tε(βδx))

for any given β ∈ ∧2T ∗X|x. Note that this implies the formula

(1.10)
∫

X
υ ∧ Ωε = ΦK(exp!(wε ∧ π∗υ))

for any given 2-form υ.
What is written in (1.9) defines a smooth 2-form, this by virtue of the

fact that wε is a smooth, compactly supported form on BX. The form Ωε is
also a closed form. To see why, suppose that υ = dα. It follows from (1.10)
that

(1.11)
∫

X
dα ∧ Ωε = ΦK(exp!(wε ∧ π∗dα)).

As dwε = 0, the right-hand side of (1.11) is ΦK(exp!(d(wε ∧ α)). Given that
push-forward of compactly supported forms commutes with d, this is the
same as ΦK(d(exp!(wε ∧ α)). The latter expression is zero by virtue of the
fact that ΦK is a closed current.

The small ε versions of Ωε supply the desired smoothings of ΦK. Indeed,
the fact that integration against Ωε approximates ΦK follows from (1.7)
and (1.10).

Part 2 : This part of the proof supplies an upper bound for |Ωε|, an upper
bound for the (2, 0) component of Ωε, and a lower bound for the Ωε ∧ Ωε.
As it turns out, the latter is positive when ε is small; and so the small ε
versions of Ωε are symplectic.

A bound for |Ωε| of the form

(1.12) |Ωε| ≤ cJ

follows directly from (1.8) and the upper bound given by Proposition 1.4.
Here, and in what follows, cJ ≥ 1 is an ε-independent constant. Note however
that cJ depends on J and the other data used to define ΦK. As with c0, the
value of cJ can be assumed to increase between subsequent appearances.

Consider next the norm of the (2, 0) part of Ωε. To start, fix x ∈ X
and a coordinate chart centered at x with complex, Gaussian coordinates,
(z, w), that are defined in a ball about the origin in C

2 and are such that dz
and dw are orthonormal at x and span T 1,0X|x. Use Taylor’s theorem with
remainder to see that the norms of both dz and dw on the −i subspace of J
at a point x′ in this coordinate chart are bounded by c0dist(x, x′). Granted
the latter bound, and granted (1.8), it then follows from the upper bound
in Proposition 1.3 that the (2, 0) part of Ωε obeys

(1.13) |(Ωε)2,0| ≤ cJε
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when ε is very small. Here, (Ωε)2,0 denotes the (2, 0) part of Ωε. Given the
bound on |∇wε| by c0ε−5, a similar line of reasoning finds

(1.14) |∇(Ωε)2,0| ≤ cJ .

To consider Ωε ∧ Ωε, return to the coordinate patch just described. Let
(α, β) ∈ C

2 denote a given unit vector, and let u = αz+ βw. What was just
said about the norms of dz and dw on −i eigenvectors of J implies that the
(1, 1) portion of du ∧ dū can be written as

(1.15) (du ∧ dū)1,1 = fσ ∧ σ̄
where σ is a unit length section of T 1,0X and where |f − 1| ≤ c0 dist(x, ·)2.
This last fact with (1.13) and the lower bound from Proposition 1.3 imply
that

(1.16) ∗(i(du ∧ dū) ∧ Ωε) ≥ c−1
J

when ε is small. The latter bound implies directly that

(1.17) ∗(Ωε ∧ Ωε) ≥ c−1
J

when ε is small.
Part 3 : This part sets the stage for a modification of Ωε that results

in a symplectic (1, 1) form. To start the stage setting, let ∧2+T ∗X ⊂
∧2T ∗X denote subbundle of self-dual 2-forms. Use d+ : C∞(X;T ∗X) →
C∞(X;∧2+T ∗X) to denote the composition of first d and then orthogonal
projection. This map is surjective onto the complement of the 1-dimensional
subspace spanned by the closed self-dual forms. Hodge theory gives an
inverse to d+ on the L2-orthogonal complement of this line of self-dual closed
forms. The following lemma says something about this inverse.

Lemma 1.1. There is an inverse of d+ and a constant κ ≥ 1 with the
following properties: Suppose that υ ∈ C∞(X;∧2+T ∗X) is L2-orthogonal
to the kernel of d. Then |(d+)−1υ| ≤ κ|υ|. Moreover, if t > 0, then
|∇((d+)−1υ)| ≤ κ(| ln(t)||υ| + t|∇υ|).
Proof of Lemma 1.1. A standard parametric construction writes (d+)−1 as
integration against an integral kernel. Viewed as integration against a form
on X × X, the latter is singular along the diagonal. This singular form,
a, obeys |(a|(x,y))| ≤ c0dist(x, y)−3 and |(∇a)|(x,y)| ≤ c0 dist(x, y)−4. These
bounds lead directly to the lemma’s assertions. �

One other fact is needed for the promised modification of Ωε: The form
ω is self dual with respect to the metric that is obtained by polarizing the
quadratic form ω(·, J(·)). Since b2+ = 1, and since ω is closed, it generates
the line of closed, self-dual 2-forms.

Part 4 : This last part of the proof supplies the promised modification of
Ωe. To start, let KR ⊂ ∧2+T ∗X denote the underlying real bundle for T 2,0X.
Use Ωε

K to denote the orthogonal projection of Ωε onto the subbundle KR
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and use x ε to denote the integral overX of Ωε
K∧ω. It follows from (1.13) that

this number obeys |x ε| ≤ cJε. Meanwhile, use ωK to denote the projection
of ω into KR. If this is zero, then J is already ω compatible, so assume that
ωK is not zero. Use zJ to denote the integral over X of ωK ∧ ω, this the L2

norm of ωK .
The form Ωε

K - z−1
J x εωK is L2 orthogonal to ω, and thus to all closed

self-dual 2-forms. It is thus in the image of d+ and so can be written as d+aε

with aε ∈ C∞(X;T ∗X). Use Lemma 1.1 with (1.13) and (1.14) to see that
aε can be chosen so that

(1.18) |∇aε| ≤ cJ(t+ ε| ln(t)|).

In particular, take t = ε to see that the latter choice for aε obeys

(1.19) |∇aε| ≤ cJε| ln ε|.

Set Ω = Ωε−z−1
J x εω - daε with aε as just described. The (2, 0) part of this

2-form is zero; and it follows from (1.17) and (1.19) that the small ε versions
are symplectic. Any such small ε version of this 2-form is a J compatible
symplectic form.

It remains now only to explain why the class of Ω in H2(X; R) is a mul-
tiple of the symplectic class [ω]. Of course, this is the case if and only if
such is the case for the class defined by Ωε. To see about the latter, note
that it is sufficient to verify that the linear functional υ →

∫
X υ ∧ Ωε on

C∞(X;∧2T ∗X) descends to H2(X; R) as a multiple of the functional given
by cup product with [ω]. This follows from (1.6) and (1.10) from the fact
that wε represents the Thom class in the compactly supported cohomology
of BX s. See e.g Chapter 1.6 in [BT].

2. Pseudoholomorphic subvarieties

The purpose of this section is to summarize various known results about
pseudoholomorphic subvarieties for use in proving the various claims in Sec-
tions 1.1 and 1.2.

2.1. The existence of J-holomorphic subvarieties. The cup product
pairing between classes e and e′ in H2(X; R) is denoted subsequently by
e · e′. Assume in what follows that b2+ = 1 and that ω is a given symplectic
form on X such that ω∧ω gives the orientation. A class in H2(X; R) is said
to lie in the positive cone when it has positive cup product pairing with itself
and with the class that is defined by ω. Introduce c ∈ H2(X; Z) to denote
the first Chern class of the complex line bundle T 2,0X. The class c depends
only on the component of ω in the subspace of 2-forms with nowhere zero
square. This class is used to associate the integer ιe = e · e− c · e to a given
class e ∈ H2(X; Z). Note that this integer ιe is even.
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Let J denote a given ω-tamed almost complex structure. If C ⊂ X is a
J-holomorphic subvariety, then it defines via (1.2) a linear form on
H2(X; R). This is an integer valued linear functional. Its Poincare’ dual
in H2(X; Z) is denote by eC . Since ω is positive on the smooth part of C,
the form eC is a non-zero class in the positive cone.

The proposition below refers to an irreducible J-holomorphic subva-
riety. A subvariety is irreducible if its smooth locus is connected. Any
given J-holomorphic subvariety is a union of a finite set of irreducible
J-holomorphic subvarieties.

Proposition 2.1. Fix a class ê ∈ H2(X; Z) in the positive cone with ê·ê > 0.
There exists κ > 1 + |c · ê|/ê · ê such that if n is an integer greater than κ,
then the following is true: Suppose that J is a given, ω-tamed almost complex
structure. Fix 1

2 ιnê points in X and there exists a finite set, Θ, of pairs of
the form (C,m) with C ⊂ X an irreducible, J-holomorphic subvariety and
m a positive integer. Moreover,

•
∑

(C,m)∈Θ
meC = nê.

• ∪(C,m)∈Θ
C contains the chosen set of points.

Proof of Proposition 2.1. Suppose first that the chosen points are distinct,
and that J is taken from a certain dense and open set of compatible
almost complex structures. The assertion in this case follows directly from
Lemma 3.3 in [LL2] using the main theorem [LL3]. See also [T2]. The
theorems in [LL3] and [T2] equate certain Seiberg–Witten invariants of
X with invariants of the symplectic form that are obtained by making a
suitably weighted count of pseudoholomorphic curves that go through the
chosen points. Lemma 3.3 in [LL2] is used to prove that the desired Seiberg–
Witten invariants are non-zero. The statement of the theorem when J is not
from this set, or when the points are not distinct follows using the standard
convergence theorems for sequences of pseudoholomorphic curves. A proof
is given in [Wo]. See also [Ye], or the more recent book [H]. The assertion
can also be proved by arguments that differ only in notation from those in
Section 6.1 of [T3]; a proof along the latter lines can be found in Section 4
of [T4]. �

Given what was just said about ω-compatible almost complex structures,
the case when J is ω-tamed follows from three observations. Here are the
first two observations: The space of ω-tamed almost complex structures is
contractible and the space of ω compatible almost complex structures is non-
empty. Here is the third observation: The aforementioned weighted curve
counts are invariant with respect to variations of the almost complex struc-
ture along a path of tamed almost complex structures. Note in this regard
that the aforementioned convergence theorems hold for tamed as well as
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compatible almost complex structures. The point being that these conver-
gence theorems require only an area bound for the sequence in question;
and, as noted in the upcoming Lemma 2.1, such a bound is implied by the
taming assumption.

2.2. Properties of J-holomorphic subvarieties. Suppose that J is an
ω-tamed almost complex structure. The four parts of this subsection sum-
marize some basic facts about irreducible, J-holomorphic subvarieties. In all
that follows, C denotes an irreducible, J-holomorphic subvariety.

The assertions made in this subsection are well known to the experts.
Part 1 : There exists a compact, connected complex curve C0 with an

almost everywhere 1-1 map ϕ : C0 → C whose differential intertwines the
complex structure on C0 with J ’s restriction to TC. The curve C0 is said
to be C’s model curve. The genus of the model curve of a given irreducible,
J-holomorphic subvariety is apriori bounded. In particular, the adjunction
formula implies that

(2.1) genus(C0) ≤ 1
2(eC · eC + c · eC) + 1

with equality if and only if C is embedded. The genus of C0 is one less than
the right hand side of (2.1) if and only if ϕ is an immersion with precisely
one transversal double point. Note that in general, if C is such that all
singularities are transversal double points, then the genus of C0 is given
by subtracting the number of such double points from the right hand side
of (2.1).

Part 2 : View ϕ as a map from C0 into X. As such, it has but a finite
set of critical points; and these are points where its differential is identically
zero. Each point in the complement of the critical locus has a neighborhood
that is embedded by ϕ. This being the case, there is a rank 2, real vector
bundle that is defined on the complement of the critical locus, and whose
fiber at a given point p is the normal bundle at ϕ(p) of the image via ϕ of a
neighborhood of p that is embedded by ϕ. This bundle is called the normal
bundle. The almost complex structure J gives this bundle the structure of a
complex line bundle. The latter is denoted by N . As explained momentarily,
the bundle N has a canonical extension over the critical locus.

Part 3 : Let C denote an irreducible, pseudoholomorphic subvariety and
let C0 denote its model curve. Let p ∈ C0. There is a complex coordinate, u,
for a disk in C0 centered on p, and a complex coordinate centered on ϕ(p)
in X such that the map ϕ appears as a map from a neighborhood of the
origin in C to a neighborhood of the origin in C

2 having the form

(2.2) u→ (un+1 + rz, cun+k+1 + rw)

where n ≥ 0, k ≥ 1. Here, c ∈ C is zero when n = 0; but is non-zero when n ≥
1. Meanwhile, rz and rw have the following properties: First, |rz| ≤ c0|u|n+2

and |drz| ≤ c0|u|n+1. Second, |rw| ≤ c0|u|n+k+2 and |drw| ≤ c0|u|n+k+2 if
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n �= 0. If n = 0, then |rw| ≤ c0|u|2 and |rw| ≤ c0|u|. See Proposition 2.6 in
[McD]. In any event, (2.2) is proved as a part of the proof of Lemma A.5
in the Appendix.

The point p is a critical point of the map ϕ if and only if n ≥ 1. It is a
consequence of (2.2) that the bundle N extends over p as the pull-back from
C

2 via (2.2) of the span of the vector field ∂
∂w .

With regards to complex coordinates, the term adapted coordinates is
used below to refer to a special sort of coordinate chart. To describe such
a chart, fix a point x ∈ X. An adapted a coordinate chart centered at x
denotes complex coordinates, (z, w) defined on a radius c−1

0 ball centered at
x with both vanishing at x, with dz and dw orthonormal at x, with {dz, dw}
spanning T 1,0X at x, and with the norms of |∇dz| and |∇dw| bounded on
the coordinate domain by c0.

Part 4 : This part of the subsection gives upper and lower bounds for
the area of C’s intersection with a ball about any given point in C. These
bounds are summarized by the next lemma. This lemma uses [ω] to denote
the class in H2(X; R) defined by ω.

Lemma 2.1. Let J denote an ω-tamed almost complex structure. Fix a
metric on X that makes J orthogonal. There exists κ ≥ 1 with the following
significance: Let C ⊂ X denote an irreducible, J-holomorphic subvariety.
Then

• The area of C is greater than κ−1eC · [ω] and less than κeC · [ω]
• Fix r > 0 and a point x ∈ C. Let ax(r) denote the area of C’s

intersection with the ball of radius r in X centered at x. Then
κ−1r2 < ax(r) ≤ (eC · [ω])κr2.

Proof of Lemma 2.1. Use the induced metric from X to define a metric on
the tangent bundle of C over the complement of its singular points. Let x
denote a point in this smooth locus, and let v1 denote a unit length vector
in TC|x. The pair (v1, Jv1) is thus an orthonormal basis for TC|x. Then
the taming condition implies that c−1

0 ≤ ω(v1, Jv1), so integration over C of
ω gives an upper bound to the area of C. Thus, area (C) ≤ c0eC · [ω]. The
lower bound on the area of C follows from the fact that |ω(v1, Jv1)| ≤ c0.
The local area bounds follow from a monotonicity inequality that asserts
the following: If x ∈ C, and if r1 ≥ r0 > 0, then

(2.3) ax(r1) ≥ c−1
0 ax(r0)r21/r

2
0.

The latter with (2.2) imply the lower bound for ax(r) stated in the lemma.
The upper bound on ax(r) follows from (2.14) given the aforementioned
bound on the area of C. The monotonicity follows, for example, from The-
orem 2.1 in [Ye]. However, a much simpler proof is had via integration
by parts. To make the latter argument, take local coordinates centered at
x where the symplectic form ω appears as the standard form in R

4, thus
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dx1 ∧ dx2 + dx3 ∧ dx4. Write this as 1
2d(x1dx2 − x2dx1 + x3dx4 − x4dx3).

Use integration by parts to express the integral of ω over the subvariety’s
intersection with the ball of radius r as a boundary integral. This can be par-
layed using the tamed condition into a differential inequality for the function
r → ax(r) that integrates to give (2.3). �

2.3. The deformation operator. This subsection describes an essen-
tially canonical Fredholm operator that is associated to an irreducible
J -holomorphic subvariety and which is used to parametrize its J -holomor-
phic deformations. The discussion here has two parts. In both, C denotes
an irreducible, J -holomorphic subvariety.

Part 1 : Introduce again C ’s model curve C0 with its tautological map,
ϕ, to X. This map is pseudoholomorphic, which is to say that its differential
intertwines the complex structure on TC0 with the almost complex struc-
ture J on TX. To say this differently, introduce T1,0X ⊂ TXC to denote the
subspace on which J acts as i, and introduce T1,0C to denote the subspace
of TCC on which its complex structure also acts by i. The differential of ϕ
extends as a C-linear map from TCC to ϕ∗TXC; and ϕ is pseudoholomor-
phic if and only if this C-linear map sends T1,0C to T1,0X. Of interest first
are deformations of ϕ that are pseudoholomorphic as maps from the fixed
complex curve C0 to X.

Introduce expX to denote the metric’s exponential map. Let η denote
a given section of C∞(C0, ϕ

∗T 1,0X), and let ηR denote the corresponding
section of ϕ∗TX. Then the map

(2.4) expX |ϕ(·)(ηR(·))
defines a smooth map from C0 to X.

With η fixed, a family of deformations of ϕ that is parametrized by [0, 1]
has s ∈ [0, 1] member given by replacing ηR in (2.3) by sηR. This family is
pseudoholomorphic to first order in s if and only if η is annihilated by a
certain R-linear, differential operator

(2.5) D : C∞(C0;ϕ∗T1,0X) → C∞(C0;ϕ∗T1,0X ⊗ T 0,1C0).

To elaborate, note that there exists a r0 > 0 such that if |η| is everywhere
bounded by r0, then the map given by (2.4) is pseudoholomorphic if and
only if η obeys an equation that has the schematic form

(2.6) Dη + R1(η) · ∇η + R0(η) = 0.

Here, R1 and R2 obey |R1(b)| ≤ c0|b| and |R0(b)| ≤ c0|b|2.
A deformation of ϕ can have a J-holomorphic image but not define a

J -holomorphic map from C0 to X. It will, however, be pseudoholomorphic
with respect to a deformation of the original complex structure on C0. More
is said about this next. Assume until told otherwise that C0 has genus at
least 2.
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To start, tensor the complex vector bundle homomorphism ϕ∗ : T1,0C0 →
ϕ∗T1,0X with the identity homomorphism on T 0,1C0 to extend ϕ∗ so as to
give a bundle homomorphism from T1,0C0 ⊗ T 0,1C0 to ϕ∗T1,0X ⊗ T 0,1C0.
This extension is such that

(2.7) Dϕ∗ = ϕ∗∂̄

where ∂̄ here maps C∞(C0;T1,0C0) to C∞(C0;T1,0C0 ⊗ T 1,0C0). Fix a com-
plex, 3g-3 dimensional space of sections of T1,0C0 ⊗ T 0,1C0 that projects
isomorphically to the cokernel of ∂̄. Use V to denote this space of sections,
and let

(2.8) ΠV : C∞(C0;ϕ∗T1,0X) → C∞(C0;ϕ∗T1,0X ⊗ T 0,1C0)

denote the L2 orthogonal projection to the complement of ϕ∗V . Use the
latter to define the operator

(2.9) DC = ΠV D : C∞(C0;ϕ∗T1,0X) → ΠV C
∞(C0;ϕ∗T1,0X ⊗ T 0,1C0).

This operator appears in the following context: Let η denote a given sec-
tion of ϕ∗T1,0X with |η| ≤ r0. Then the image of the map in (2.4) is a
J -holomorphic subvariety in X if and only if

(2.10) DCη + ΠV (R1(η) · ∇η + R0(η)) = 0.

Put a Riemannian metric on C0 which is compatible with its almost com-
plex structure. Use this metric with the metric on ϕ∗TX and the Levi–Civita
connection on X to define Sobolev spaces of sections of ϕ∗T1,0X and its ten-
sor product with T 0,1C. This done, then the operator DC extends to give a
bounded, Fredholm operator from the Hilbert space L2

1(C0, ϕ
∗T1,0X) to the

orthogonal complement of V in the Hilbert space L2(C0;ϕ∗T1,0X⊗T 0,1C0).
A slight modification is needed when C0 has genus 0 or 1 for in this case,

there are non-trivial, holomorphic sections of T1,0C0. The latter define a
complex vector subspace in C∞(C0;T1,0C0) with complex dimension equal
to 3 when C0 has genus 0 and equal to 1 when C0 has genus 1. Use
ker(∂) to denote this subspace. In the genus 0 and genus 1 cases, the
domain for the operator DC depicted in (2.10) is the quotient vector space
C∞(C0;ϕ∗T1,0X)/ker(∂̄). This last point will be implicit in what follows. In
particular, the notation used below will indicate the actual domain only in
the cases when the genus of C0 is at least two.

The index of the Fredholm version of DC is denoted by dC . Note that dC

is in all cases even; and in all cases dC ≤ ιeC = eC · eC − c · eC . This is an
equality if and only if C0 has genus equal to 1

2(eC · eC + c · eC) + 1 and C
is embedded. As noted in (2.1), the genus of C0 is no greater than this. In
general, the integer dC can be written as dC = ιeC -2Δ when C0 has genus
1
2(eC ·eC +c ·eC)+1−Δ. Note that dC = ιeC −2 if and only if C has a single
immersion singularity. The case dC = ιeC−4 occurs if and only if C has either
two immersion singularities, or a single singularity that is either described
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by the n = 1 version of (2.2), or it has a neighborhood whose intersection
with C has three irreducible components, each a smoothly embedded disk.

Part 2 : The Riemannian metric on TX|C can be used to realize the bundle
N as a subbundle of ϕ∗T1,0X. Let N⊥ denote the orthogonal complement.
The homomorphism ϕ∗ maps T1,0C into N⊥ and can be used to identify the
latter with T1,0C ⊗O(q) where q here denotes a sum that is indexed by the
critical points of ϕ and whose contribution from any given critical point is
the integer n that appears in the relevant version of (2.2).

The operator DC appears in block diagonal form with respect to the
splitting T1,0X = N ⊕N⊥ as

(2.11)
(
DC 0
� ∂̄

)
.

where the notation is as follows: First, DC : C∞(C0;N) → C∞(C0;N ⊗
T 0,1C0) is an R-linear operator that acts on a given section ς as

(2.12) DCς = ∂̄ς + νς + μς̄.

Here, ∂̄ in (2.11) is the d-bar operator that is defined using the metric
induced on N as a subbundle of T1,0X, and ν is a section of N . Meanwhile,
μ is a section of N2 ⊗T 0,1C0. What is denoted by R in (2.11) is an R-linear
bundle homomorphism from N to N⊥.

It follows from (2.11) that the respective kernel and cokernel of DC are
canonically isomorphic to the kernel and cokernel ofDC when ϕ is an immer-
sion. In fact, more is true if ϕ is an immersion. If such is the case, then a
deformation of the subvariety C is given by composing a section of N with
a suitable exponential map from N to X. In particular, there exists such a
map, expC , that is defined on a small radius disk bundle N1 ⊂ N and has
the following properties:
(2.13)

• expC maps the zero section to C; and its differential along the zero
section is an isomorphism from TN |0 to ϕ∗T1,0X.

• expC embeds each fiber of N1as a J-holomorphic disk in X.

A construction of such a map is described in Section 5.4 of [T3].
Let η denote a section of N1. Then the image in X of the map expC(η(·))

is a J-holomorphic subvariety if and only if η obeys an equation of the form

(2.14) DCη + r1 · ∂η + r0 = 0,

where r1 and r0 are smooth, fiber preserving maps from N1 to Hom(N ⊗
T 1,0C;N ⊗ T 0,1C) and to N ⊗ T 0,1C that obey |r1(b)| ≤ c0|b| and |r0(b)| ≤
c0|b|2.
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3. Moduli spaces

This section summarizes certain facts about moduli spaces of J-holomorphic
subvarieties. Of particular concern are the properties of these spaces and
their constituent subvarieties when J is suitably generic. Most of what is
said will not surprise experts.

3.1. Moduli spaces of irreducible, J-holomorphic subvarieties. Fix
a tamed almost complex structure J . Associate to a given class e ∈ H2(X; Z)
a set, Me, that is defined as follows: Any given element Θ ∈ Me is a finite
set of pairs, where each pair has the form (C,m) with C ⊂ X denoting an
irreducible, J-holomorphic subvariety and m a postive integer. The set of
pairs in Θ is further constrained so that no two of its pairs have the same
subvariety component, and so that

(3.1)
∑

(C,m)∈Θ

meC = e.

A topology on Me is defined as follows: A sequence {Θk}k=1,2,... in Me

converges to a given element Θ if the following two conditions are met:
(3.2)
• limk→∞ (supz∈(∪(C,m)∈ΘC)dist(z,∪(C′,m′)∈Θk

C ′) + supz′∈(∪(C′,m′)∈Θk
C′)

dist(∪(C,m)∈Θ C, z′)) = 0.
• limk→∞

∑
(C′,m′)∈Θk

m′ ∫
C′ υ =

∑
(C,m)∈Θ

∫
C υ

for any given smooth 2-form υ.

This topology is used implicitly in what follows.

Proposition 3.1. The space Me is compact for any given e ∈ H2(X; Z).
In particular, only finitely many classes in H2(X; Z) are of the form eC with
(C,m) ∈ Θ and Θ ∈ Me.

Proof of Proposition 3.1. Given the area bound from Lemma 2.1, this is a
standard application of the compactness theorems for J-holomorphic sub-
varieties as can be found, for example in [Wo, Ye], or from what is said in
Section 4 of [T4]. �

With e ∈ H2(X; Z) and an integer k ≥ 0 fixed, denote by Me,k the
subspace of Me that consists of sets of the form Θ = (C, 1) with C an
irreducible, J-holomorphic subvariety whose fundamental class is Poincare’
dual to e and whose model curve has genus k. The proposition that follows
gives a structure theorem for Me,k The assertion is only needed in what
follows for the cases when DC has trivial cokernel; even so, a proof is given
in Subsection 5.3) of the appendix.

Proposition 3.2. Given C ∈ Me,k, there exists a smooth map, f , from a
neighborhood of 0 in the kernel of DC to the cokernel of DC ; and there exists
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a homeomorphism from f−1(0) to a neighborhood of C in Me,k sending 0 to
C. Moreover, the subset of Me,k where the cokernel of D(·) is trivial has the
structure of a smooth manifold; and the smooth structure is such that at any
point in this set, the aforementioned homeomorphism from a neighborhood
of 0 in the kernel of D(·) is a smooth embedding onto an open set.

3.2. Moduli spaces when J is generic. More can be said in the case
when the almost complex structure is generic. To elaborate, introduce the
notion of a residual set in the space of almost complex structures on TX.
Such a set is a countable intersection of open dense sets. As such, it is also
dense.

The next proposition is a standard result (see e.g [McS]). Even so, a proof
is given in Subsection 5.3) of the appendix.

The proposition that follows introduces g to denote the integer 1
2(e · e+

c · e) + 1.

Proposition 3.3. Fix e ∈ H2(X; Z) and an integer k ∈ {0, . . . , g}. There is
a residual set in the space of almost complex structures such that if J comes
from this set, then the cokernel of D(·) is trivial at each point in Me,k, and
so the latter has the structure of a smooth manifold whose dimension is
ιe − 2(g − k).

With e and k fixed, the residual set referred to here is denoted in what
follows by Je,k.

Introduce ϑe to denote the set of pairs of the form (e′, k′) where e′ ∈
H2(X; Z) is a equal to eC for some pair (C,m) in a set Θ from Me and
where k′ is the genus of C’s model curve. Proposition 3.1 and (2.1) guarantee
that ϑe has but a finite collection of elements. Set Je = ∩(e′,k′)∈ϑe

Je′,k′ .
The next proposition is a corollary of sorts to Proposition 3.3. To set the

stage for this proposition, fix a positive class e ∈ H2(X; Z) and then define
a set Se ⊂ H2(X; Z) as follows: A class ê ∈ Se if and only if

(3.3) • 0 < ê · [ω] ≤ e · [ω].
• ê · ê = −1.

This is a finite set. There exists a subset Se∗ ⊂ Se with the following
property: If J is ω-tamed, then ê ∈ Se∗ is Poincare’ dual to the fundamental
class of an embedded, J-holomorphic sphere. Note in this regard that a class
so represented for one particular ω-tamed J is represented in this manner
by all. This follows by virtue of the fact that the cokernel of the relevant
version of the operator D(·) is necessarily trivial. In any event, say that a
class e ∈ H2(X; Z) is positive if

(3.4)
• e is positive, which is to say that e · [ω] > 0.
• e · e > 0.
• e · ê > 0 for all ê ∈ Se∗ .
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The class e is strictly positive if the inequality in the third bullet is a strict,
thus if e · ê > 0 for all ê ∈ Se∗ . A class e that obeys the first two bullets
here will obey the third if there exists an ω-tamed almost complex structure
whose version of Me contains an element Θ with the following property:
If (C,m) ∈ Θ then eC · eC ≥ 0. This is because distinct J-holomorphic
subvarieties have positive local intersection numbers. In any event, there
exist strictly positive classes. Indeed, given that [ω] comes from H2(X; Q),
then some large multiple of [ω] will be integral and as such, automatically
strictly positive.

With the stage set, what follows is the promised proposition.

Proposition 3.4. Fix a positive class e ∈ H2(M ; Z). There is a residual set
of ω-tamed almost complex structures inside Je with the following property:
Suppose that J is from this set.

• If Θ ∈ Me and (C,m) ∈ Θ, then ιeC ≥ 0.
•
∑

(C,m)∈Θ
mιeC ≤ ιe.

• The preceding is an equality if and only if Θ = (C, 1) with C ∈ Me,g.
If Θ is not of this form, then

∑
(C,m)∈Θ mιeC ≤ ιe − 2.

The residual subset inside Je referred to here is denoted by Je1.

Proof of Proposition 3.4. What with Proposition 2.5, the condition ιeC ≥ 0
follows from the fact that the index of any given (C,m) ∈ Θ version of the
operator DC is no greater than ιeC . To see about the second assertion, note
first that

(3.5) ιe =
∑

(C,m)∈Θ

(mιeC +(m2−m)eC ·eC)+
∑

(C,m),(C′,m′)∈Θ:C 
=C′
mm′eC ·eC′ .

Each contribution to the right most sum in (3.5) is non-negative by virtue of
the fact that any given intersection between distinct, J-holomorphic subva-
rieties has positive local interesection number. The second assertion of the
proposition follows if it is the case that m = 1 if (C,m) ∈ Θ and eC ·eC < 0.
Note in this regard that eC · eC ≥ −1 in any case; and if eC · eC = −1, the C
is an embedded sphere. Indeed, this follows from the adjunction formula for
J-holomorphic subvarieties. Thus, eC ∈ Se∗ . With this last point in mind,
suppose that (C,m) ∈ Θ and eC ∈ Se∗ . Then

(3.6) e · eC = −m+
∑

(C′,m′)∈Θ: C′ 
=C

m′eC′ · eC .

This last expression is non-negative by virtue of the fact that e is strictly
positive. With (3.6) in mind, split Θ = Θ+ ∪ Θ− where Θ− contains the
pairs of the form (C,m) with C a sphere that has eC ·eC = −1. Now use (3.6)
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to write

ιe =
∑

(C,m)∈Θ+

⎛
⎝mιeC + (m2 −m)eC · eC +m

∑
(C′,m′)∈Θ+: C′ 
=C

m′eC′ · eC

⎞
⎠

+
∑

(C,m)∈Θ−

m(1 + e · eC).

(3.7)

This last expression implies the second assertion of the proposition. �

3.3. Moduli spaces with marked points and with singularities.
Assume in what follows that e ∈ H2(X; Z) as described in Proposition 3.4
and that the almost complex structure comes from Je1. Subsequent argu-
ments require a refined version of Me,k to parametrize the J-holomorphic
subvarieties that pass through a given set of points in X. To make a precise
definition, let d denote the number of points under consideration. Given a
class e ∈ H2(X; Z) set g = 1

2(e · e+ c · e)+1. Fix k ∈ {0, 1, . . . , g} and intro-
duce Me,k,d ⊂ Me,k × (×dX) to denote the subspace that consists of pairs
(C, q) with C ⊂ Me,k and q = (x1, . . . , xd) ⊂ ×dX such that {xi}1≤i≤d ⊂ C.

The next two propositions use the term image variety to describe certain
subsets of a smooth manifold. Here is the definition: Let Y denote a manifold
and let n denote a positive integer no greater than the dimension of Y . A
subset Σ ⊂ Y is a codimension n image variety if it is closed, and if each
point in Y has a neighborhood that intersects Σ as the image via a smooth,
proper map of a manifold with a finite number of connected components,
none with dimension greater than dim(Y ) − n.

Proposition 3.5. For any given k ∈ {0, 1, . . . , g}, the space Me,k,d is a
smooth, codimension 2d image variety in Me,k × (×dX). It is a smooth
submanifold if k = g.

A proof of this is in Subsection 5.4 of the Appendix.
The rest of this subsection is concerned with the structure of the set of

J-holomorphic subvarieties near a subvariety with singular points.
Set d = 1

2 ιe and. For each k ∈ {0, 1, . . . , g}, use πd−2 to denote the map
from Me,k,d to ×d−2X that is obtained by composing πd with the map to
×d−2X which is defined by writing ×dX as (×2X) × (×d−2X) and then
projecting to the ×d−2X factor. Meanwhile, πM will denote the map from
Me,k,d to Me,k that is obtained by restricting the projection map from
Me,k × (×dX) to Me,k,d.

Proposition 3.6. There is a residual set in Je1 such that if the almost
complex structure is from this set, then the following is true: There is residual
set of points in ×d−2X such that if k ∈ {0, 1, . . . , g − 3} and if w is from
this residual set, then π−1

d−2(w) ⊂ Me,k,d is empty. If k ∈ {g − 2, g − 1}, it
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is an image variety defined by a proper map from a manifold of dimension
(4− 2(g− k)). In the case k = g, it is a smooth 4-dimensional submanifold.
Moreover, there exists κ ≥ 1 such that

• At most κ subvarieties in Me,g−1 from πM(π−1
d−2(w)) are singular at

an entry of w.
• πM(π−1

d−2(w)) ⊂ Me,g−2 is a finite set. If C ∈ Me,g−2 comes via
πM(π−1

d−2(w)), then C’s singular points are not entries of w.
• The πM image in Me of π−1

d−2(w) ⊂ (Me,g,d ∪Me,g−1,d ∪Me,g−2,d)
is closed.

• w is a regular value for the map πd−2 on Me,g,d−2.

This proposition is proved in Subsection 5.5 of the Appendix.
Use Je2 ⊂ Je1 that is referred to by this proposition. A point w ∈ ×d−2X

from the residual set in ×2X given by Proposition 3.6 is said below to be
a regular point. Note, by the way, that a regular point must have distinct
entries.

Assume in what follows that the almost complex structure is from Je2.
To set the stage for the next proposition, suppose that w ∈ ×d−2X is a
regular point and let Mw ⊂ Me,g denote the subset of curves that contain
all entries of w. This is to say that Mw is the πM-image of π−1

d−2(w) ⊂
Me,g,d−2. It is consequence of the fact that w is a regular point that Mw is
a smooth, 4-dimensional submanifold of Me,g. Given (x,w) ∈ X×(×d−2X),
let M(x,w) ⊂ Mw denote the subset of curves that contain x and all entries
of w.

Use Mw
X ⊂ Mw × X to denote the subspace of pairs (C, x) such that

x ∈ C. Let πw
X : Mw

X → X denote the map that is induced by the projection
from Mw × X to X. Write the entries of w as (w1, . . . ,wd−2). The set of
critical points of πw

X is the union of (∪1≤m≤d−2(Mw × wm)) ⊂ Mw × X
with a set Zw

X ⊂ Mw
X . Use Zw ⊂ Mw to denote the image via the map

that is induced by the projection from Mw ×X to its Mw factor, and use
Z(x,w) ⊂ Mw to denote the set of curves in Zw that contain x and all entries
of w, thus the intersection between Zw and M(x,w).

The upcoming proposition also refers to the symmetric, non-negative
function, d, on Me × Me that is define by the following rule: Let Θ, Θ′
denote elements in Me. Then

d(Θ,Θ′) = sup
z∈(∪(C,m)∈ΘC)

dist(z,∪(C′,m′)∈Θ′C ′)

+ supz′∈(∪(C′,m′)∈Θ′C′)dist(∪(C,m)∈ΘC, z
′).(3.8)

The function d is used to measure distances on Me. This is to say that if
C ∈ Me,g, then the d-distance of C to a given set K ⊂ Me denotes the
infimum of the set of numbers {d((C, 1),Θ) : Θ ∈ K}.
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By way of a reminder from what is said at the end of Part 1 in Sec-
tion 2.3, a subvariety in Me,g−1 has precisely one singular point, and this is
an immersion singularity.

Proposition 3.7. If w ∈ ×d−2X is a regular point, then the space Mw
X is

a smooth, 6-dimensional manifold. Moreover, there exists a residual subset
in Je2 whose significance is as follows. Take the complex structure from this
smaller set.

• There exists a residual set X2 ⊂ ×2(×d−2X) whose points have the
following property: If (w,w′) come from X2, then they have no entry
in common; and there exists κ > 1 such that each curve in Mw has
d-distance at least κ−1 from Mw′

.
• Let x ∈ X. There exists a residual set Xx ⊂ ×d−2X whose points have

the following property: If w ∈ Xx, then there exists κ > 1 such that
(a) x has distance greater than κ−1 from each entry of w.
(b) The distance from x to any point in any subvariety from Me,g−2

in πM(π−1
d−2(w)) is greater than κ−1.

(c) At most κ elements from πM(π−1
d−2(w)) ⊂ Me,g−1 contain x.

Moreover, each such curve is rigid in the following sense: Let
C ⊂ Me,g−1 denote such a curve. Introduce the corresponding
operator DC as defined in (2.12). The kernel of DC has no non-
trivial elements that vanish at x and at all entries of w.

(d) The distance from x to the immersion singular point of any sub-
variety from Me,g−1 in πM(π−1

d−2(w)) is greater than κ−1.
(e) The space Zw is a 3-dimensional image variety.
(f) The space Z(x,w) is a 1-dimensional image variety.

Subsection 5.5 of the Appendix has the proof of this last proposition. By
the way, Lemma A.13 in this same section of the Appendix asserts that there
is a residual set of almost complex structures with the following property:
If J comes from this set, then the set Xx can be chosen so that any w ∈ Xx

version of M(x,w) is a smooth, 2-dimensional manifold.
Use Je3 in what follows to denote the residual set in Je2 that is described

by this last proposition.
3.4. Curves in Mw near an entry of w. Assume in what follows that
the almost complex structure is from Je2. Suppose that w ∈ ×d−2X is a
regular point and let w denote an entry of w. Fix an orthonormal frame for
T1,0X|w to identify the space of complex, 1-dimensional subspace in T1,0X|w
with CP

1. By definition, all curves in Mw contain the point w. As all curves
in Mw are smooth, each has a tangent plane at w, and the assignment of
tangent plane to curve defines a smooth map

(3.9) φw : Mw → CP
1.

Use Yw ⊂ Mw to denote the set of critical points of φw.
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Proposition 3.8. There exists a residual subset in Je3 whose significance
is as follows. Take the complex structure from this smaller set. Let x ∈ X.
The residual set Xx from Proposition 3.7 can be chosen so that the following
is also true: Take w from this set and there exists an entry w of w such that
x is not on a curve from Yw.

This proposition is proved in Subsection 5.7 of the Appendix.
Use Je4 to denote the residual set in Je3 that is described by

Proposition 3.8.

4. Proofs of Propositions 1.1–1.3

This section supplies the proofs to the propositions in Section 1.

4.1. Proof of Proposition 1.1. Introduce the set Je1 as described in
Proposition 3.4. It is a consequence of Propositions 3.5 that the conclu-
sions of Proposition 1.1 hold with Σ = Σe if Je∗ is a subset of Je1.
To elaborate, suppose that Θ ∈ Me − Me,g. Let n denote the num-
ber of elements in Θ and let p denote an ordering of Θ. Introduce the
n-tuple ΞΘ,p = ((e1, k1), . . . , (en, kn)) where the i ∈ {1, . . . , n} version
of (ei, ki) are defined as follows: Use p to order the pairs that com-
prise Θ from 1 to n. Use C to denote the subvariety from the i-th pair
in Θ. Then ei = eC and ki = genus(C) where C is the subvariety
from the i-th pair in Θ with its ordering defined by p. Next, introduce
X denote the set of distinct elements in the set {ΞΘ,p : Θ ∈ Me −
Me,g and p is an ordering of Θ}. Proposition 3.4 guarantees that X is a
finite set. Meanwhile, Proposition 3.3 finds a residual subset in Je1 such that
if J is from this subset, then all of the spaces in {M(e′,k′)}(e′,k′)∈Ξ andΞ∈X are
smooth manifolds of the asserted dimensions. Take J from this set. Given
Ξ ⊂ X , let MΞ = ×(e′,k′) ∈ ΞMe′,k′ , let MΞ,d ⊂ MΞ × (×dX) denote
the subspace whose elements are of the form ((C1, . . . , Cn), (x1, . . . , xd))
with {xm}1≤m≤d ⊂ ∪1≤i≤nCi. Here, n denotes the number of elements in
Ξ. Proposition 3.5 implies that these spaces are all image varieties in that
each is the image of map from a smooth manifold whose dimension is 2d
more than that of MΞ. It is a consequence of Proposition 3.4 that this
number is at most 4d − 2 except in the case when MΞ = Me,g,d, in which
case it is 4d. This the case, the compactness result from Proposition 3.1
implies that the image in ×dX of the map from (×Ξ∈X MΞ,d) − Me,g,d

to ×dX that comes from the projection of (×Ξ∈X MΞ) × (×dX) is a
measure zero set. Indeed, if h ∈ ×dX is not in this set, then Proposi-
tion 3.1 implies that there are no subvarieties from Me − Me,g that con-
tain all points of h. It also implies that π−1

d (h) ⊂ Me,g,d is compact.
This last point implies that π−1

d (h) is finite if h is not a critical point
of πd.
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4.2. Proof of Proposition 1.2. Take the almost complex structure from
the set Je1 as described in Proposition 3.4. The proofs of the assertions
made in the first bullet has four steps.

Step 1 : Let Scrit ⊂ ×dX denote the set of critical values of the map πd.
This set is measurable and it has measure zero. If πd(K) ⊂ Scrit, then πd(K)
is measurable, and it too has measure zero.

Step 2 : Suppose that πd(K) is not contained in Scrit. Introduce n ∈
{1, 2, . . .} to be the smallest integer with the property that π−1

d (h)∩K has at
most n elements when h ∈ πd(K)− (πd(K)∩Scrit). The set πd(K)− (πd(K)∩
Scrit) has a stratification as U1 ⊂ U2 ⊂ · · · ⊂ Un = πd(K) − (πd(K) ∩ Scrit)
where Uk is such that h ∈ Uk if and only if the set π−1

d (h) ∩ K has at most
k elements. Let h ∈ Un − Un−1 and suppose that (C, h) ∈ K. As h is not a
critical point of πd, and as K is open, there is a neighborhood of (C, h) to
which πd restricts as a diffeomorphism onto its image in ×dX. This implies
that Un − Un−1 is open, and thus measurable with positive measure.

Introduce Vn−1 to denote the complement in Un−1 of the closure of Un. If
Vn−1 = ø, then Un−1 has measure zero.

Step 3 : Suppose that Vn−1 �= ø, and let n′ denote the largest integer
k with the property that Vn−1 ∩ Uk �= ø. By definition, n′ < n. Let h ∈
Vn−1 ∩ (Un − Un′−1) and suppose that (C, h) ∈ K. As h is not a critical
point of πd, and as K is open, there is a neighborhood of (C, h) to which πd

restricts as a diffeomorphism onto its image in ×dX. Moreover, there exists
such a neighborhood whose image is disjoint from Un. This implies that
Vn−1 ∩ (Un − Un′−1) is also open. Thus, it too is measurable with positive
measure.

Introduce Vn′−1 to denote the complement inside the set Vn−1 ∩ Un′−1 of
the closure of Vn−1∩(Un′−Un′−1). If Vn′−1 is empty, then Un′−1 has measure
zero.

Step 4 : If Vn′−1 is not empty, replace n with n′ in Step 3 to prove that
there exists n′′ < n′ such that Vn′−1∩(Un′′ −Un′′−1) is also open. Continuing
with this looping algorithm will decompose πd(K) as a finite union of open
sets and measure zero sets.

Turn next to the assertion made by the proposition’s second and third
bullets. Let n denote the integer from Step 1 above. It then follows from
Lemma 2.1, that the |φh(υ)| ≤ c0n[ω] · e supX |υ|.

To see that the function φ(·)(υ) is measurable, return to the proof of the
first bullet. This step decomposes πd(K) into a finite union of open sets and
measure zero sets. Let V denote one of the open sets. It is a consequence
of the way V is defined that any given h ∈ V has a neighborhood with the
following property: Let U denote the neighborhood in question. Then πd

restricts to K ∩ π−1
d (U) as a covering map with some nU ≤ n sheets. For

example, if V = Un − Un−1, then nU = n. This implies that φ(·)(υ) varies
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smoothly on U . Taking all such U into consideration shows that φ(·)(υ) is
measurable.

Given the bound on φ(·)(υ), and given that it is measurable, it then follows
that ΦK(·) defines a current. It is closed, non-negative and type 1–1 because
it is a weighted average of such currents.

The fact that ΦK is non-trivial when πd(K) has positive measure follows
from the fact ΦK(ω) is no less than [ω] · e times the measure of πd(K), this
because the integral of ω on any given curve C from Me,g is equal to [ω] · e.

4.3. Proof of Proposition 1.3: The definition of K. Fix e as in Propo-
sition 3.4, and set d = 1

2 ιe and g = 1
2(e·e+c·e)+1. Introduce Je4 as defined in

Proposition 3.8 and take the almost complex structure from this last set. Use
this complex structure to define Me,g,d. The set K for use in Proposition 1.3
will be chosen from a family of sets supplied by the upcoming Definition 4.1.
The definition of this family requires some preliminary stage setting; and this
is done in a two-part digression that follows directly. The first part explains
how to construct a fiberwise finite open set in Me,g from any given open set
with compact closure. The second part establishes notation.

Part 1 : This part of the digression would not be necessary were the fol-
lowing known: There is a residual subset of Je4 such that if J is in this set,
and if K ⊂ Me,g,d has compact closure, then there is an upper bound to
the number of points in π−1

d (·) ∩ K. As was explained to the author by S.
Givental this assertion is true for the generic smooth map from Me,g,d to
×d X as a consequence of what is said in [B]. (Y. Eliashberg and J. Mather
separately pointed the author to arguments for this assertion). It is a good
bet that a generic choice of J makes πd generic in the appropriate sense; but
a proof that such is the case appeared less than straightforward.

In any event, what follows constructs a fiberwise finite, open subset of a
given open set in Me,g,d with compact closure. Let O ⊂ Me,g,d denote the
given open set with compact closure. Introduce SO ⊂ Me,g,d to denote the
set of critical points of πd in the closure of O. The set π−1

d (πd(SO)) ∩ O
is a closed set, so its complement is open. Let O0 denote this complement.
The map πd : O0 → ×dX has no critical points, so it is locally a covering
map onto the complement of πd(SO) in πd(O). Fix a locally finite, open
cover of πd(O0). Such a cover exists with the following two properties: First,
there exists K ≥ 1 such that any given point in πd(O0) is contained in at
most K sets from this cover. Second, let U denote a set from this cover.
Then π−1

d (U) interects O0 as a disjoint union of open sets that are mapped
diffeomorphically onto U by πd. A cover of πd(O0) of this sort is said in
what follows to be fiberwise finite. Let U now denote such a fiberwise finite
cover of πd(O0). Assign to each open set U ⊂ U one of its πd-inverse image
sets in O0. Use OU ⊂ K0 to denote the associated set. Set K to be ∪U∈UOU .
This is an open, fiberwise finite subset of O that is mapped by πd onto
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the complement in πd(O) of the closed, measure zero set πd(SO). A subset
K ⊂ O as just described is said to be a πd-finite core of O.

Part 2 : Let Λ ⊂ ×d−2X denote a chosen finite set of distinct regular
values. With Λ chosen, reintroduce the sets {Zw}w∈Λ from Proposition 3.7.
Let πw

M : Mw
X → Me,g denote the composition of the map induced by the

projection from Mw × X to Mw followed by the tautological inclusion of
Mw into Me,g. Use ZΛ to denote the subset ∪w∈ΛZw in Me,g. Meanwhile,
introduce for each w ∈ Λ and each entry w of w, the set Yw as defined in
Proposition 3.8. Then use YΛ to denote ∪w∈Λ(∪w:wis an entry of wYw).

Definition 4.1. Fix r > 0, s > 0. Define the set Or,s.Λ ⊂ Me,g,d to be the
set whose pairs have the form (C, h) where

• C has d-distance greater than r from ZΛ, from YΛ, and from Me −
Me,g.

• h = (x1, x2, z) with (x1, x2) ∈ X ×X and z ∈ ×d−2X such that
(a) The distance from z to some point in Λ is less than s.
(b) The distance from both x1 and x2 to any entry of z is greater than

rs.
(c) The distance from x1 to x2 is greater than rs.

Fix a πd-finite core of Or,s.Λ and denote the latter by Kr,s.Λ.

With regard to the size of s, keep in mind that the entries of any given
point from the set Λ are pairwise disjoint as each point in Λ is a regular
point. This understood, there exists s0 > 0 such that if s < s0, then the set
of points in ×d−2X with distance 100 s or less from a point in Λ is a union
of disjoint balls, with each centered on a point in Λ. This upper bound for
s is assumed implicitly for what follows.

As is argued momentarily, the conclusions of Proposition 1.3 are satisfied
if K is taken to be a suitable r, s and Λ version of Kr,s.Λ. What follows directly
explains why Kr,s.Λ for small r and s satisfies the criteria in Proposition 1.2
so as to guarantee that the K = Kr,s.Λ version of ΦK is a closed, non-negative
type 1-1 current. To this end, note first that Kr,s.Λ is open. Meanwhile, Kr,s.Λ

is fiberwise finite by construction. The arguments given in the upcoming
Section 4.4 of this section establish that Kr,s.Λ is non-empty when r and s
are small. Granted this, then small r and s versions of Kr,s.Λ meet all of the
criteria for Proposition 1.2.

4.4. Proof of Proposition 1.3: The lower bound. Fix x ∈ X and
adapted coordinates (z, w) centered at x. Choose t > 0, but such that the
ball of radius t centered at the origin in C

2 is well within the domain of
these coordinates. Fix a smooth, non-increasing function χ : [0,∞) → [0, 1]
with value 1 on the interval

[
0, 1

4

)
and value 0 on

[
1
2 ,∞

)
. Use χt to denote

the function χ(t−1| · |) on C
2. The lower bound asserted by Proposition 1.3
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follows if

(4.1) c−1
0 s4(d−2)t4 ≤ ΦKr,s,Λ

(χtidz ∧ dz̄).

The verification of (4.1) for suitable r, s and Λ requires the following
preliminary result.

Proposition 4.1. There exist a finite set Λ ⊂ ×d−2Xof regular values and
σ > 104 whose properties are herewith described. Here is the first property:
Suppose that w,w′ are distinct elements in Λ and let wand w′ denote respec-
tive entries of w and w′ . Then dist(w,w′) > σ−1. Moreover, any pair of
curves C ∈ Mw and C ′ ∈ Mw′

are such that d(C,C ′) ≥ σ−1 . To state
the remaining properties, let x ∈ X denote any given point. There exists
w ∈ Λ and an entry w of w such that the following is true: Let B ⊂ ×d−2X
denote the ball of radius σ−2 centered at w and use B ⊂ X to denote the
ball of radius σ−3 centered at x. Fix adapted coordinates (z, w) centered at
x to identify B with a neighborhood of the origin in C

2. A radius σ−3disk
Ox ⊂ CP

1 exists such that

• Each θ̂ ∈ Ox has a lift θ = (θz, θw) to S3 with |θz| > σ−1.
• Fix z ∈ B, θ ∈ Ox and points x1 �= x2 ∈ B with distance less than

1
4σ

−3 from x and such that x2 − x1 ∈ C
2 − 0 projects to θ̂. Set y =

(x1, x2, z) ∈ ×dX . Then π−1
d (y) ∈ Me,g is non-empty, and each curve

in π−1
d (y)has the following three properties:

(a) The curve has d-distance greater than σ−1 from Me − Me,g,Zw

and Yw.
(b) The curve intersects the ball of radius σ−3entered at x as the image

of a map from the disk about the origin in C to C
2 of the form

u→ x1 + θu+ r with
(i) |r| ≤ σ|u|(|x1| + |u|) and |dr| ≤ σ(|x1| + |u|),
(ii) θ = (θz, θw) ∈ C

2 is a unit vector with image θ̂ in CP
1.

This proposition is proved momentarily.
The four steps that follow directly derive the left hand inequality in (4.1)

for suitable r and s using the set Λ from Proposition 4.1.

Step 1 : Let σ denote the constant given by Proposition 4.1. Take s < σ−2

and take r < σ−3 to define Kr,s,Λ.
Step 2 : With x ∈ X given for use in (4.1), fix w ∈ Λ and an entry w of w

such that the triple (x,w,w) obeys the conclusions of the second bullet in
Proposition 4.1. Define B ⊂ ×d−2X, B ⊂ X and Ox ∈ CP

1 as in Proposi-
tion 4.1. The following geometric considerations are used in the subsequent
steps.
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• If z ∈ B, then each point in B has distance greater than s2 from each
entry of z.

• If x1 and x2 are in B and if their distance apart is greater than 1
64σ

−2
ε ,

then their distance apart is greater than rs.
• Fix z ∈ B, and also a pair {x1, x2} ⊂ B and set y = (x1, x2, z) ∈
×dX. If C ∈ π−1

d (y) then it has d-distance greater than r from ZΛ,YΛ

and Me −Me,g.

(4.2)

These conclusions all follow directly from the second bullet of Proposition
4.1 given the upper bounds given in Step 1 for r and s.

Step 3 : Fix z ∈ B. Given x1 ∈ B, write its C
2 coordinates as (z′, w′) ∈ C

2.
Granted this notation, fix x1 so that its coordinate z′ obeys |z′| ≤ 1

32σ
−2.

Meanwhile, require that the coordinate w′ obey |w′| ≤ 1
64 t. Fix a second

point, x2 ∈ B, with distance greater than 1
64σ

−2 from x1 which is described
by the second bullet of Proposition 4.1 for some choice of θ̂ ∈ Ox. Suppose
that y = (x1, x2, z) is not a critical value of πd. With (4.2) understood, it
follows that the second bullet of Proposition 4.1 supplies C ∈ Me,g such
that (C, y = (x1, x2, z)) is in Kr,s,Λ.

Step 4: What with item (b) of the second bullet of Proposition 4.1, the
norm of the restriction of |dz| to C’s intersection with the ball of radius t
centered on x is greater than c−1

ε . Given the aforementioned lower bound
for |dz|, and given what is said in Lemma 2.1, it follows that the integral of
χtdz ∧ dz̄ over C must be greater than c−1

ε t2.
Step 5 : The final remarks in Steps 3 and 4 have the following implications:

The integral in (4.1) is no less than the product of four factors: First, the
factor of c−1

ε t2 given by the final remark in Step 4. Second, with z ∈ B fixed
and x1 ∈ B fixed as in Step 3, the volume of the set of x2 as described in
Step 3. The latter volume is at least c−1

ε . By way of an explanation, note
that the set of θ̂ to choose from has diameter greater than c−1

ε , and as the
distance from x1 can vary in an interval of length at least c−1

ε so there is an
c−1
ε volume’s worth of choices for the point x2. Third, with z ∈ B fixed, the

volume of the set of x1 considered in Step 3. The latter is no smaller than
c−1
ε t2. Finally, the volume of B. The latter is at least c−1

ε s4(d−2).
Multiply these four factors to get what is asserted by (4.1).
The proof of Proposition 4.1 requires an auxilliary lemma that asserts a

somewhat weaker version of what is asserted in Proposition 4.1.

Lemma 4.1. There exists a finite set Λ0 ⊂ ×d−2X of regular points, and
σ0 > 104 whose significance is now explained. Fix a point x ∈ X. Then there
is a point w ∈ Λ0 with the following properties: Use B ⊂ ×d−2X to denote
the ball of radius σ−1

0 at w and use B ⊂ X to denote the ball of radius σ−2
0

centered at x. Fix adapted coordinates (z, w) centered at x to identify B with
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a neighborhood of the origin in C
2. A radius σ−1

0 disk O ⊂ CP
1 exists such

that

• Each θ̂ ∈ O has a lift θ = (θz, θw) to S3 with |θz| > σ−1
0 .

• Fix z ∈ B, θ̂ ∈ O and points x1 �= x2 ∈ B with distance less than 1
4σ

−2
0

from x and such that x2−x1 ∈ C
2−0 projects to θ̂. Set y = (x1, x2, z) ∈

×dX. Then π−1
d (y) is non-empty, and each curve in π−1

d (y) has the
following two properties:

(a) The curve has d-distance greater than σ−1
0 from Me −Me,g.

(b) The curve intersects the ball of radius σ−2
0 centered at x as the

image of a map from the disk about the origin in C to C
2 of the

form u→ x1 + θu+ r with
(i) |r| ≤ σ|u|(|x1| + |u|) and |dr| ≤ σ(|x1| + |u|),
(ii) θ = (θz, θw) ∈ C

2 is a unit vector with image θ̂ in CP
1.

Proof of Lemma 4.1. The first task is to define the set Λ0. To this end, fix
x ∈ X and choose a point from the residual set Xx that is supplied by
Propositions 3.7 and 3.8. Use wx to denote this point. As argued momen-
tarily, there is an open neighborhood, Ux ⊂ X, of x and a constant κx > 0
such that the following is true:

• x′ has distance greater than κ−1
x from each entry of wx.

• The distance from x′ to any point in any subvariety from Me,g−2 in
πM(π−1

d−2(wx)) is greater than κ−1
x .

• At most κx elements from πM(π−1
d−2(wx)) ⊂ Me,g−1 contain x′.

• The distance from x′ to the immersion singular point of any subvari-
ety from Me,g−1 in πM(π−1

d−2(wx)) is greater than κ−1
x .

(4.3)

Indeed, the existence of an open set and κx such that the first, second, and
fourth bullets hold follows directly from items (a), (b) and (d) of the second
bullet in Proposition 3.7. As explained next, the third bullet in (4.3) follows
from item (c) of the second bullet in Proposition 3.7. To see how this comes
about, assume that no open set and κx exist that make the third bullet
hold. This requires a sequence {xk}k=12,... ⊂ X and a divergent sequence
{nk}k=1,2,... with the following property: There are nk elements in Me,g−1

that contain xk and all entries of wx. Given Proposition 3.1 and (2.14), and
also item (b) of the second bullet in Proposition 3.7, there must exist a
curve C ∈ Me,g−1 that contains x and all entries of w; and whose version
of kernel(DC) has a non-trivial element that vanishes at x and all entries of
w. But, such an event is impossible given item (c) of the second bullet of
Proposition 3.7.

To finish the task of defining Λ0, note that the collection {Ux}x∈X is
an open cover of X. Take a finite subcover, and set Λ0 to denote the
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corresponding finite subset of {wx}x∈X . Set κ0 to denote the supremum
of the corresponding finite subset of the numbers {κx}x∈X .

With Λ0 now defined, consider next the constant σ0. Assume that no such
σ0 exists with the asserted properties so as to derive some nonsense. This
assumption requires a divergent, increasing sequence {sk}k=1,2,... ⊂ [1,∞)
with the following significance: Given the index k, there exist points xk ∈
X,wk ∈ Λ, and adapted coordinates (zk, wk) centered on xk for which there
is no disk Oxk

∈ CP
1 as described in the statement of the proposition. To

elaborate, suppose that Ô ∈ CP
1 is any given disk of radius greater than

s−1
k with the property that each θ̂ ∈ Ô has a lift to S3 ⊂ C

2 as (θz, θw) with
|θz| > s−1

k . Then the following two conditions must hold:

Condition 1 : There is a point zk ∈ ×d−2Xwith distance less than s−1
k

from wk.
Condition 2 : There are points x1k �= x2k ∈ C

2 with distance less than
1
2s

−2
k from the origin such that x1k − x2k projects to a point θ̂k ∈ Ô. In

addition, one or more of the next three assertions is true.
• π−1

d (x1k, x2k, zk) = ø.
• There is a curve in π−1

d (x1k, x2k, zk) with d-distance less than s−1
k

from Me −Me,g.
• There is a curve in π−1

d (x1k, x2k, zk) whose intersection with the ball
of radius 2s−2

k centered at xk is not the image of a map from C to
C

2 of the form u → x1k + θu + r where |r| ≤ 7
8sk|u|(|x1k| + |u|) and

|dr| ≤ 7
8sk(|x1k| + |u|).

The derivation of nonsense from this data has five steps.

Step 1 : This first step asserts that the n = 0 version of what is said
in (2.2) is stable with respect to deformations of the pseudoholomorphic
subvariety. The details are given by the lemma that follows. Note that the
lemma does not require that J ∈ Je3 or that the class e obey the conditions
from Proposition 3.4.

Lemma 4.2. Suppose that e is a given class in H2(X; Z) and that J is an
ω-tamed almost complex structure. Fix x ∈ X and suppose that C ⊂ X is an
irreducible, J-holomorphic subvariety that contains x and whose fundamental
class is Poincare’ dual to e. Fix an adapted coordinate chart centered at x
so as to identify a neighborhood of x in X with a ball about the origin in
C

2. Suppose that R > 1 and that C appears in the radius R−1 ball about the
origin in C

2 as the image of a map from C to C
2 that has the form

u→ θu+ r

where |r| < R|u|2 and |dr| < R|u|, and such that θ ∈ C
2 has norm 1.

Fix ε > 0 and there is a neighborhood of (C, 1) in Me whose elements
have the form (C ′, 1) where C ′ intersects the ball of radius 1

2R
−1 about the
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origin, and this intersection is the image of a map from C to C
2 of the form

u→ x′ + θ′u+ r′ with
• |x′| < ε,
• |r′| < R|u|(|x′| + |u|) and |dr′| < R(|x′| + |u|),
• θ′ ∈ C

2 is a unit vector with |θ′ − θ| < ε.

Proof of Lemma 4.2. The assertion follows from what is said in [Wo, Ye,
McS] about limits of sequence of pseudoholomorphic maps. �

Step 2 : One can assume without loss that {xk}k=1,2,... converges. This
the case, introduce x ∈ X in what follows to denote the limit. Fix adapted
coordinates (z, w) at x. The sequence of loci {wk = 0}k�1 appear in this
coordinate chart as a sequence of submanifolds in C

2 that are very nearly
complex lines. The corresponding sequence of points in CP

1 has a convergent
subsequence. Pass to a subsequence and relable consecutively from 1 so that
these points converge. If necessary, rotate the (z, w) coordinates so that
the limit is the w = 0 complex line. The sequence {wk}k=1,2... can also be
assumed to converge. The limit, w, must be a point in Λ0 such that the
(x,w, κ0) obey the assertions of all bullets in (4.3).

Step 3 : According to the second and third bullet in (4.3), there are at most
c0 singular subvarieties through x and all entries of w. The singularities of
each such subvariety avoids x. This last conclusion follows from the second
and fourth bullets of (4.3). Since the singularities of these subvarieties avoid
x, they all have unique tangent planes at x. The collection of these tangent
planes define a set Ix ⊂ CP

1 of at most c0 points. To summarize: If (C, 1)
is any element in Me such that C contains x and all entries of w, then C
has a well defined tangent plane in T1,0X|x. This last conclusion has the
following implication: If (C, 1) is as just described, then C must lie in Me,g

if its tangent plane at x defines a point in CP
1 − Ix.

As Ix is finite, there is a disk Ox ⊂ CP
1 of radius c−1

0 with the following
property: Any given point in Ox has distance greater than c−1

0 from Ix; and
any such point lifts to a point θ = (θz, θw) ∈ C

2 with |θ| = 1 and |θz| > c−1
0 .

Let O′
x ⊂ Ox denote the concentric disk with 1

2 the radius of Ox.
Step 4 : Fix a point θ̂ ∈ O′

x and a lift, θ, to a point in C
2 with norm 1.

For each index k, fix points x1k �= x2k with distance less than 3
4s

−2
k from pk

and such that x1k − x2k projects to the point θ̂. According to Proposition
2.1, there is a set Θk ∈ Me that contains x1k, x2k and all entries of zk.
The sequence {Θk}k=1,2,... has a subsequence that converges in Me. Let Θ
denote any limit of this sequence, and let C = ∪(C′,m′)∈ΘC

′. This subvariety
C must contain x and all entries of w. As w is x-regular, the limit Θ must
have the form (C, 1) where C is a subvariety which is non-singular at x. The
fact that C is non-singular at x implies that each C ∈ Me,g. To explain
these last remarks, note that (2.2) asserts that C intersects a ball of radius



192 C.H. TAUBES

c−1
0 centered at x as the image of a map from a disk about the origin in C to

C
2 that has the form u→ θu+r(u) where |r| ≤ c0|u|2 and where |dr| ≤ c0|u|.

Since θ is not in Ix, the subvariety C must be in Me,g. This implies that
each large k version of Θk has the form (Ck, 1) with Ck ∈ Me,g. Given that
{Ck}k=1,2,... converges to C and C ∈ Me,g, this in turn implies that each
such Ck has d-distance at least c−1

0 from Me −Me,g.
Step 5 : Lemma 4.2 asserts that each large k version of Ck must intersect

the ball of radius c−1
0 about x as the image of a map from a disk about

the origin in C to C
2 that has the form u → x1k + θu + rk where |rk| ≤

c0|u|(|pk − x1k| + |u|) and |drk| ≤ c0|pk − x1k| + |u|). Given that such a Ck

exists for any θ̂ ∈ O′
x and any x1k, x2k as described in Step 4, this conclusion

is not compatible with the demands made by Condition 2. �
With Lemma 4.1 in hand, turn now to the

Proof of Proposition 4.1. The proof has four steps.

Step 1 : Fix x ∈ X and let wx0 denote a point from Lemma 4.1’s set Λ0

for which the conclusions of the lemma hold for the pair (x, wx). Introduce
the set Xx ∈ X as described in Propositions 3.7 and 3.8. Fix a point wx ∈ Xx

that is very close to wx0, and in particular, well inside Lemma 4.1’s ball B.
Let w denote the entry of wx that is given by Proposition 3.8.

Fix an adapted coordinate chart (z, w) centered at x so as to identify a
neighborhood of x with a ball about the origin in C

2. Let M(x,wx) denote
the space of curves in Me,g that contain x and all entries of wx. Any given
curve C ∈ M(x,wx) has a well defined tangent plane at x. The identifica-
tion between the neighborhood of x in X and C

2 supplied by the adapted
coordinates identifies this plane with a plane through the origin in C

2, and
the latter defines a point in CP

1. This assignment of curve to point in CP
1

defines a map φx: M(x,wx) → CP
1.

Step 2 : Fix ε, and let M(x,wx),ε ⊂ M(x,wx) denote the subset of curves
with d-distance at least ε from Me −Me,g. Given Item (f) of Proposition
3.7, what follows is a consequence of the fact that M(x,wx),ε has compact
closure in Me,g: If ε is suitably generic, then φx(Zw∩M(x,wx),ε) is a compact,
1-dimensional image variety in CP

1. In particular, this is also the case with
the latter’s intersection with the closure of Lemma 4.1’s disk O ⊂ CP

1.
What follows is a consequence of this observation. There exists a constant

c1 ≥ 106 that depends only on x, wx and ε; and there exists a disk Ô ⊂ O
with radius c−1

1 such that all points in Ô have distance c−1
1 or more from

φx(Zwx ∩M(x,wx),ε), and distance c−1
1 or less from the point in CP

1 defined
by (1, 0) ∈ C

2.
This last conclusion has the following consequence: Any curve C ∈

M(x,wx),ε with φx(C) ∈ Ô has d-distance at greater than c−1
2 from Zwx

where c2 > 106 also depends only on x, wx and ε.
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What with Proposition 3.8, the fact that M(x,wx),ε is compact implies
that any curve C from this set has d-distance at least c−1

3 from Yw. Here,
c3 > 106 also depends only on x, wx and ε.

Step 3 : Let B ⊂ X denote the set supplied by Lemma 4.1. What follows
is a consequence of the last two conclusions from Step 2 with the fact that
M(x,wx),ε is compact. There exist concentric balls Bx ⊂ B and Bx ⊂ B and
a concentric disk Ox ⊂ Ô with the following property: Let (x′, z′) denote a
point in Bx × Bx. Let C ⊂ Me,g denote a curve with d-distance at least 2ε
from Me −Me,g that contains x′ and each entry of z. Suppose, in addition
that the tangent plane to C at x′ defines a point in Ox. Then C has d
distance at least 1

2c
−1
2 from Zwx and at least 1

2c
−1
3 from Yw. With regard

to C ′s tangent plane, the latter defines a vector in T1,0X|x′ ; but given that
x′ is close to x, such a vector is very nearly in the span of the coordinate
vectors { ∂

∂z ,
∂

∂w} and thus defines a point in CP
1.

Step 4 : The collection {Bx}x∈X defines an open cover of X, and so there
is a finite subcover. Let U ⊂ X denote the finite set that labels this subcover.
Define Λ’ to be the corresponding finite set from {wx}x∈U . The set Λ’ obeys
all but the first requirement set by Proposition 4.1. In particular, it may be
the case that there are distinct pairs from Λ’ that do not lie in Proposition
3.7’s set X2. However, given that each x ∈ X version of Xx is residual,
and given that X2 is residual, it follows from what is said in the previous
steps that there exists a set {w′

x}x∈U that does obey all of Proposition 4.1’s
requirements, and is such that each x ∈ U version of w′

x is as close as desired
to the corresponding wx. This last conclusion follows from two observations.
Here is the first: If δ > 0 has been fixed in advance, and if w′

x is very close
to wx, then the all curves in the w′

x version of Zw with d-distance at least
1
2ε from Me −Me,g will have d-distance less than δ from Zwx . By the same
token, if w′

x is very close to wx, then the former has an entry, w′, that is very
close to w; and any curve in Yw ⊂ Mw′

x with d-distance at least 1
2ε from

Me − Me,g will have d-distance less than δ from Yw. To state the second
observation, suppose that x, x′ are distinct pairs in U×U . Let X(x,x′) ⊂ ×UX
denote the subset of points with the property that the pair of entries labeled
by x and x′ sit in X2. There is no constraint on the points in the other entries.
This set is residual. As a consequence, the subset in ∩(x,x′)∈U×U X(x,x′) with
distinct entries is a residual subset in ×UX with the following property: Any
pair of entries from any point in this set defines a point in X2.

Take Λ to be such a set {w′
x}x∈U . �

4.5. Proof of Proposition 1.3: A start on the upper bound. To
obtain the desired the upper bound, introduce the notation used in (4.1).
The upper bound asserted by Proposition 1.3 follows if

(4.4) ΦKr,s,Λ
(χtidz ∧ dz̄) < cr,st

4
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holds with cr,s here denoting a constant that depends on r and s, but
not on t nor on x. As is explained in this and the next subsection, the
bound in (4.4) holds if r is first chosen small, and then s is chosen with an
r-dependent upper bound. Let σ denote the constant from Proposition 4.1.
The constraints s < σ−2 and r < σ−3 used to prove (4.1) are also assumed
implicitly.

The upcoming lemmas are used to define this r-dependent upper bound.
These lemmas together define an (x, t)-independent constant κ∗∗r > 1; and
the proof of (4.4) requires that

(4.5) s < κ−2
∗∗r.

This bound on s is the minimum of a various upper bounds that are given
in Lemmas 4.5–4.12.

To prove (4.4), introduce Bt(x) to denote the ball of radius t centered at
x. The value of Φ(χtidz ∧ dz̄) is no greater than

(4.6) c0

∫
y∈πd(Kr,s,Λ)

⎛
⎜⎝ ∑

C∈π−1
d (y):C∩Bt(x) 
=ø

∫
C
χtω

⎞
⎟⎠

where it is understood that πd in this and subsequent formulae has domain
Kr,s.Λ. What with Lemma 2.1, this last expression is itself no greater than

(4.7) c0t
2

∫
y∈πd(Kr,s,Λ)

⎛
⎜⎝ ∑

C∈π−1
d (y):C∩Bt(x) 
=ø

1

⎞
⎟⎠ .

To continue, associate to each point w ∈ Λ, the ball Bw ⊂ ×d−2X of radius s.
Associate to each z ∈ Bw the set X2

z ⊂∈ X ×X of pairs (x1, x2) such that
y = (x1, x2, z) ∈ πd(Kr,s). Granted this notation, write (4.7) as

(4.8) c0t
2
∑
w∈Λ

∫
z∈Bw

⎛
⎜⎝
∫

(x1,x2)∈X2
z

⎛
⎜⎝ ∑

C∈π−1
d (x1,x2,z):C∩Bt(x) 
=ø

1

⎞
⎟⎠
⎞
⎟⎠ .

There are six parts to the discussion that follows in this subsection. Part 6
uses what is said in Parts 1–5 to derive an upper bound for the contribution
to (4.8) from the points w ∈ Λ whose entries all have distance 4s or more
from x. There is at most one point in Λ that does not have this property. The
next subsection bounds the contribution from a point w ∈ Λ with an entry
having distance less than 4s from x. This subsection and the next use cr,s to
denote an (x, t)-independent constant greater than 1, but dependent on r
and s. Its value can be assumed to increase between subsequent appearances.

Part 1 : To set the stage for Lemma 4.3, recall from the discussion just
prior to Propostition 3.7 the definition of the space Mw with w a given
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point w ∈ ×d−2X. By way of reminder, this is the space of curves in Me,g

that contain all entries of w. As such, it is a smooth submanifold of Me,g,d−2

when w is a regular point; and thus when w ∈ Λ. Given ε > 0, let Mw,ε ⊂
Mw denote the subspace of curves with d-distance greater than ε from
Me −Me,g. Lemma 4.3 also refers to the subspace Mw,ε

X ⊂ Mw ×X that
consists of the pairs (C, x) with C ∈ Mw,ε and x ∈ C. Use πw

M and πw
X to

denote the respective projection induced maps from this space to Mw and
to X. Lemma 4.3 introduces one final bit of notation; this being πM;d−2 to
denote the map from Me,g,d−1 to Me,g,d−2 that is induced by the projection
map from Me,g × (×d−1X) to Me,g × (×d−2X) that comes by writing the
×d−1X factor as X × (×d−2X) and then forgetting factor of X.

Lemma 4.3. Given r > 0 but small, there exists κr > 1010 with the following
significance: Fix w ∈ Λ and let B ⊂ ×d−2X denote the ball of radius κ−2

r
centered on w.

• If z ∈ B, then Mz,r/4 is a smooth submanifold in Me,g.
• If z ∈ B then Mz,r/4

X is a smooth submanifold of Mz,r/4×X. Moreover,
if C is in Mz,r/2 and if it has d-distance 1

16 r or more from πw
M(Zw),

then C has distance 1
32 r or more from the πz

M image of any critical
point of the map πz

X : Mz,r/2
X → X.

• There exists an embedding ψX : Mw,r/4
X ×B → Me,g,d−1 onto an open

set that
(a) maps any given z ∈ B version of Mw,r/2

X ×z diffeomorphically onto
an open set in π−1

d−2(z) that contains Mz,r/2
X ;

(b) restricts to Mw,r/4
X × w as the inclusion map into the fiber of

πd−2(w);
(c) is such that the composition Ψ = πM,d−2 ◦ ΨX is an embedding

from Mw,r/4 × B into Me,g,d−2.

Proof of Lemma 4.3. Given that w is a regular point, the implicit function
theorem can be used in a straightforward way to obtain the constant κr and
the map ψX . The first two bulleted items follow directly from the existence
of ψX . �

The subsequent parts assume implicitly that s obeys the bound s < κ−2
r

with κr as described in Lemma 4.3.
Part 2 : Suppose that z ∈ ×d−2X has distance s or less from a point in Λ.

Lemma 4.3 guarantees that Mz,r/2 is a smooth, 4-dimensional submanifold
of Me,g. Let C denote a curve in this submanifold, and letN → C denote C’s
normal bundle. Introduce the operator DC as given in (2.12). The tangent
space to Mz at a curve C can be identified with the vector space kerC,z ⊂
C∞(C;N) that consists of the sections in the kernel of DC that vanish at
each entry of z. Use the L2 inner product on C∞(C;N) to define inner
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products and the norm on kerC,z. The norm is denoted by ‖ · ‖2 in what
follows. Note that ‖ · ‖2 dominates any given Ck norm on the elements of
kerC,z.

Lemma 4.4. Given r > 0, there exists κ > 1 with the following significance:
Fix a point z ∈ ×d−2X with distance less than s < κ−2

r from a point in Λ.
Let C denote a given curve from Mz,r/2. There is a diffeomorphism from
the radius κ−2 ball in kerC,z onto an open set in Mz,r/4 that contains the set
of curves in Mz,r/2 with d-distance less then κ−3 from C. Moreover, there
exists a diffeomorphism of the following sort: Introduce the map expC that
appears in (2.13). The map in question sends a given small normed vector
η ∈ kerC,z to expC(η+ φC,z(η)) where φC,z : kerC,z → C∞(C;N) is such that

• φC,z(·) = 0 at all entries of z.
• ς = η + φC,z(η) obeys (2.14).
• Any given Ck-norm of φC,z(η) is bounded by cr,k‖η‖2

2 where cr,k
depends only on k and r; and in particular, not on η, C, nor z.

Proof of Lemma 4.4. Given that Mz,r/2 is a smooth manifold, there exists
RC,z > 1 such that a map of the sort described by the first two bullets of
the lemma exists with domain the ball of radius R−2

C,z in kerC,z and with
‖φC,z(η)‖∞ ≤ RC,z‖2

2. Likewise, the kth order derivatives are bounded by a
contant RC,z,k. The fact that these constants can be chosen to depend only
on r, and for the latter, k, follows directly when Lemma 4.3’s map ψX is
used to parametrize Mz.

Part 3 : Introduce again the subspace Mz,r/2
X ⊂ Mz,r/2 ×X to denote the

subspace of pairs (C, x) such that x ∈ C. Lemma 4.3 guarantees that this is
a smooth, 6-dimensional submanifold of Mz,r/2 ×X. A pair (C, x) ∈ Mz,r/2

X

is a critical point of the map πz
X to X if the subspace

(4.9) kerC,z,x = {η ∈ kerC,z : η(x) = 0}

has dimension greater than 2. This follows by virtue of the fact that the
tangent space to (C, x) ∈ Mz

X is the vector space

(4.10) {(η, v) ∈ kerC,z × TX|X : η(x) − Πv = 0}

where Π here denotes the orthogonal projection from TX|C to the normal
bundle N . Let (kerC,z,x)⊥ ⊂ kerC,z denote the orthogonal complement to
kerC,z,x.

The next lemma concerns the points in the complement of the critical
locus of πz

X . The lemma refers to the distance between a given point in
Mz,r/2

X and the critical locus of πz
X . This distance is defined using the sum

of the d-distance from Mz,r/2 and the Riemannian distance from X. �
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Lemma 4.5. Given r > 0 but small and given δ > 0, there is a constant
κ > 1 with the following significance: Suppose that z ∈ πd−2X has distance
s < κ−2

r or less from a point in Λ. Let (C, x) ∈ Mz,r/2
X denote a pair with

distance δ or more from the critical locus of πz
X . Then ‖η‖2 + supC |η| ≤

κ|η(x)| if η ∈ (kerC,z,x)⊥.

Proof of Lemma 4.5. This follows from three observations: First, the bound
in question holds with κ replaced by some (C, x) and z dependent contant
since any two continuous norms on a finite dimensional vector space are
equivalent. The latter constant can be chosen to be independent of (C, x)
because the critical locus of πz

X on Mz,r/2
X is compact. More to the point,

there is a uniform bound as (C, z) varies since it stays uniformly far from
the critical locus. The fact that it can be chosen to be independent of z is
proved using the map ψ from Lemma 4.3 to parametrize Mz,r/2

X . �

The critical points of πz
X are of two sorts. The first sort consists of the

points of the form (C, x) where x is an entry of z. Use Zz,r/2 ⊂ Mz,r/2
X to

denote the complement in the critical locus of πz
X of the latter set.

Part 4 : Suppose that x ∈ X has distance at least 4s from all entries of
w. Let Cz,x ⊂ Mz,r/2 denote the subspace of curves with the following two
properties:

• The curve lies in the image via πz
M of (πz

X)−1(x) ⊂ Mz,r/2
X .

• The curve has d-distance greater than 1
16 r from πw

M(Zw).

(4.11)

The definition of Cz,x is designed expressedly to keep all C ∈ Cz,x versions of
(C, x) away from the critical locus of πz

X . �
The next lemma states a consequence of this last observation.

Lemma 4.6. Fix r > 0. There is a constant κ∗r > κr such that if s < κ−2∗r
then there exists another constant, κr,s > 1, with the following significance:
Fix w ∈ Λ and suppose that z ∈ ×d−2X has distance less than s from w and
that x ∈ X has distance at least 4s from all entries of w.

• The space Cz,x is a smooth, dimension 2 submanifold in Mz,r/2.
• Fix τ ∈ (0, κ−2

r,s ). The submanifold Cz,x is contained in a union of
κr,sτ

−2 balls in Mz,r/4 with d-radius τ .

Proof of Lemma 4.6. The assertion that Cz,x is a submanifold follows using
the inverse function theorem from the fact that it lacks critical points of πz

X .
The assertion made by the second bullet follows directly from what is said
by the final bullet in Lemma 4.3 using the Vitali covering lemma.



198 C.H. TAUBES

Part 5 : Let κ∗r and κr,s denote the constants supplied by Lemma 4.6.
Fix w ∈ Λ, take s < κ−2∗r and suppose again that z ∈ ×d−2X has distance
s or less w. Given t positive but less than the minimum of s and κ−2

r,s , let
Bt(x; z) ⊂ Mz,r/2 denote the set of curves of the following sort:

• The curve contains all entries of z.
• The curve has d-distance at least 3

4 r from Me −Me,g.
• The curve has d-distance at least 1

4 r from πz
M(Zz,r/2).

• The curve intersect the ball of radius t centered at x.

(4.12)

This set is the image in Mz,r/2 via the projection map from Mz,r/2 ×X of
the set of pairs (C ′, x′) ∈ Mz,r/2

X that obey

• C ′ has d-distance at least 1
4 r from πz

M(Zz,r/2) and 3
4 r from Me−Me,g.

• x′ ∈ Bt(x).

(4.13)

Suppose that x has distance at least 4s from all entries of w. Any pair
(C ′, x′) that appears in (4.13) has distance at least 1

4 r from the critical locus
of πz

X . The upcoming Lemma 4.7 asserts a consequence.
To prepare for the lemma, recall that each C ∈ Cz,x has the associated

vector space (kerC,z,x)⊥. This space has dimension 2 because (C, x) is not a
critical point of πz

x. Moreover, the collection of these spaces define a rank
2 vector bundle over Cz,x. Use Nz,x to denote this bundle. It follows from
Lemma 4.5 that the assignment to a pair (C, η) with C ∈ Cz,x and η ∈
(kerC,z,x)⊥ of |η(x)| defines a norm on (kerC,z,x)⊥; and that these norms
define a fiber norm on the vector bundle Nz,x. Disk subbundles of fixed
radius in Nz,x are defined using this fiber norm.

Lemma 4.7 identifies a fixed radius disk subbundle in Nz,x with a neigh-
borhood in Mz,r/4 of Cz,x. The identification involves the map expC from
(2.13). The lemma refers also to the constant κ∗r from Lemma 4.6. �

Lemma 4.7. Fix r > 0 and then s < κ−2∗r . There exists κ ≥ 1 that depends
only on r and s and has the following significance: Fix w ∈ Λ and suppose
that x ∈ X has distance t < κ−2 from all entries of w. Fix a point z ∈ ×d−2X
with distance less than s from w. There is an embedding from the radius κt
disk bundle in Nz,x onto a neighborhood in Mz,r/4 of Cz,x with the properties
listed below. Let λz,x denote this embedding. Then

• λz,x maps the zero section to Cz,x as the identity map.
• The set Bt(x; z) is an open set in the image of λz,x with compact

closure in this image.
• Let C ∈ Cz,x and η ∈ (kerC,z,x)⊥ = Vz,x|C . The image of η via λz,x can

be written as
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expC(η + φC,z,x(η)) where φC,z,x(·) maps the ball {η ∈ (kerC,z,x)⊥ : |η(x)| <
2κ1} smoothly into C∞(C;N). Moreover, if η is in its domain, then any
given Ck norm of φC,z,x(η) is bounded by a multiple of |η(x)|2 that depends
only on k, ε, and r.

Proof of Lemma 4.7. Given what is said in Lemmas 4.3–4.6, these conclu-
sions all follow in a straightforward manner using the implicit function the-
orem. �

Part 6 : Fix r > 0 and s < κ−2∗r with the latter constant from Lemmas 4.6
and 4.7. Fix a point w ∈ Λ and suppose that x ∈ X has distance at least
4s from all entries of w. Let κ denote the constant supplied by Lemma 4.7
and assume that t < κ−2. What follows derives an upper bound for the
contribution to the integral in (4.8) from the subset in ×dX whose points
can be written as (x1, x2, z) with (x1, x2) ∈ ×2X and with z ∈ ×d−2X a
point with distance less than s from w.

The derivation has four steps.

Step 1 : If (x1, x2, z) is as just described, then (x1, x2) ∈ X ×X lie on a
curve C ′ ⊂ Bt(x; z). Lemma 4.7 supplies the following data: First, a curve
C ∈ Cz,x and a vector η ∈ (kerC,z,x)⊥ that has norm |η(x)| ≤ κt. Second,
points p1 and p2 ∈ C such that x1 = λC,z,x(η(p1)) and x2 = λC,z,x(η(p2)).
What with Lemma 4.5, this implies in particular that both x1 and x2 are
constrained so as to lie in a tubular neighborhood in X of C whose radius
is bounded by cr,st.

Step 2 : According to Lemma 4.6, there exists a set U ⊂ Cz,x containing
at most cr,st

−2 curves such that any curve in C has d-distance at most cr,st
from a curve in U . This implies that any pair (x1, x2) as described in Step 1
must lie in a radius cr,st tubular neighborhood of some curve from U .

Step 3 : The volume in X of the radius cr,st tubular neighborhood of a
curve from U is bounded by cr,st

2. Thus, the volume of the set of pairs
(x1, x2) in X ×X that both lie in this tubular neighborhood is bounded by
cr,st

4.
Step 4 : It follows from what is said in Steps 2 and 3 that the volume in

X ×X of the set of pairs that lie on some curve from Bt(x; z) is bounded
by the product of two factors: The first is the upper bound, cr,st

4, for the
volume of the relevant radius tubular neighborhood in X×X of C×C when
C is a curve from U . The second is the upper bound cr,st

−2 to the number
of curves in U . Thus, the volume in X × X of the set of pairs that lie on
some curve in Bt(x; z) is bounded by cr,st

2.
Step 5 : Since the volume in ×d−2X of the set of points z under consider-

ation is bounded by c0s4(d−2), it follows that the contribution to (4.8) from
the subset in ×dX as described at the outset is no greater than cr,st

2 times
(4.8)’s explicit t2 factor; thus by cr,st

4.
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4.6. Proof of Proposition 1.3: Finishing the upper bound. It remains
still to bound (4.8) for points x ∈ X with distance 4s or less from some entry
of an element from Λ. The seven parts of this subsection derive a suitable
bound. Note that all parts of this subsection use the following convention:
Given r > 0, what is denoted by cr is a constant whose value is greater
than 1010 and depends only on r. Its value can increase between successive
appearances.

To set the stage for what follows, fix w ∈ Λ and a given entry, w, of w.

Part 1 : Given a z ∈ ×d−2X and an entry z of z, reintroduce from Propo-
sition 3.8 the map φz and its critical locus Yz in the smooth part of Mz.
The following lemma is a corollary to Lemma 4.3.

Lemma 4.8. Given r > 0 but small, the constant κr that appears in
Lemma 4.3 can be chosen so that the following additional conclusions hold:
Fix w ∈ Λ and let B ⊂ ×d−2X again denote the ball of radius κ−2

r centered
on w. Fix an entry w of w. Let z ∈ B and let z denote the entry of z with
distance less than s < κ−2

r from w. Then Mz,r/2 consists of smooth points.
Moreover, if C ∈ Mz,r/2 has d-distance 1

16 r or more from Yw then it has
d-distance greater than 1

32 r from Yz.

Proof of Lemma 4.8. This is a consequence of what is said about the map
ψ from item (c) of the third bullet in Lemma 4.3. �

Part 2 : Let z be as described in Lemma 4.8 and let C ∈ Mz denote a
curve that is not a critical point of φz. This being the case, the differential
of φz at C maps kerC,z surjectively to the tangent space TCP

1|φz(C). Use
kerC,z,φ ⊂ kerC,z to denote the kernel of the differential at C of φz, and use
(kerC,z,φ)⊥ to denote the orthogonal complement in kerC,z to kerC,z,φ. �

The lemma that follows uses φz∗ to denote the differential at C of φz.

Lemma 4.9. Given r > 0 but small, the constant κr in Lemma 4.8 can
be chosen so that the following is also true: Suppose that z is as described
in Lemma 4.8, and suppose that C ∈ Mz,r/2 has distance d-distance 1

16 r or
more from Yw. If η ∈ (kerC,z,φ)⊥ then ‖η‖2 + supC |η| ≤ κr|φzη|.

Proof of Lemma 4.9. The argument for this differs only cosmetically from
the argument used to prove Lemma 4.5. �

Part 3 : The contents of this part of the argument are summarized by
the upcoming Lemma 4.10. This lemma refers to the constant κr from
Lemma 4.9.

Lemma 4.10. Given r > 0, the constant κr in Lemma 4.9 can be chosen so
that given also Δ > 0, there exists κ > 1 whose significance is as follows:
Suppose that s < κ−2

r and that z ∈ ×d−2X is a point with distance at most s
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from w. Given θ̂ ∈ CP
1, there exists a set Qθ̂ ⊂ Mz,r/4 of at most κ curves

such that

• Each curve in Qθ̂ is mapped by φz to θ̂.
• Each curve in Qθ̂ has d-distance at least 1

32 r from Yw.
• Each curve in Mz,r/2 that is
(a) mapped by φz to the disk of radius κ−1 in CP

1 centered at θ̂ and
(b) has d-distance at least 1

32 r from Yw

has d-distance less than Δ from some curve in Qθ̂.

Proof of Lemma 4.10. Consider first this assertion for the case when z = w.
If only z = w is considered, then the only issue is that of κ’s existence. As
explained next, such a constant exists for any value of r as a consequence
of the fact that the set of curves in Mw,r/2 with d-distance at least 1

16 r
from the critical point set of ϕw is compact. To start the explanation, let
N = N (r) denote this same compact set. The fact that N is compact implies
the following: Give ε > 0, there is a finite collection, Qε ⊂ N , such that each
point in N has d-distance ε or less from a curve in Qε, and such that each
point in φw(N ) has distance ε or less from a point in φw(Qε).

To continue, let θ̂ ∈ CP
1. The fact that N is compact and ϕw is smooth

has the next assertion as a consequence: Suppose that ε < c−2
r . Let D ⊂ CP

1

denote the disk of radius cr ε centered on θ̂. Introduce Qε,D ⊂ Qε to denote
the inverse image of D via φw. Then any point in N with φw image in the
disk of radius ε centered on θ̂ has d-distance at most ε from a point in Qε,D.
Meanwhile, the fact that each point in Qε is uniformly far from a critical
point of φw has the following consequence: Assume that ε < c−2

r . Then each
point in Qε,D has d-distance less than crε from a point in Mz,r/4 which is
mapped by φw to θ̂ and which has d-distance greater than 3

64 r from Yw. This
understood, replace each point in Qε,D by a point of the sort just described
and let Qε,θ̂ denote the resulting set. Each point in N that is mapped by

ϕw to the disk of radius ε centered on θ̂ has d-distance less than crε from
some point in Qε,θ̂. This understood, fix some ε < c−2

r Δ and set Qθ̂ to
denote the corresponding set Qε,θ̂. Take κ to be the maximum of ε−1 and
the number of elements in Qε to obtain the conclusions of the lemma for the
case z = w.

Granted the existence of κ for the case z = w, the existence of Lemma 4.3’s
map ψ implies that there are values for κr and κ that make the lemma hold
when z has distance κ−2

r or less from w. Here one uses the fact that points
in the N ( 1

1024 r) are uniformly far from the critical points of φw to see that
the diffeomorphism ψ can be modified so that the following is also true: The
restriction to this set intertwines φz with φw if z has distance less than c−1

r
from w. �
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Part 4 : The contents of this part of the argument are summarized by
the next lemma. The lemma refers to the r-dependent constant κr from
Lemma 4.10.

Lemma 4.11. Given r > 0 and given s < κ−2
r , there exist a constant κ∗ > κr

so that the following is true: Let z ∈ ×d−2X denote a point with distance
less than s from w and let x′ ∈ X denote a point with distance at least
rs from all entries of z. Fix a point θ̂ ∈ CP

1 and fix δ < κ−2∗ . Introduce
Nz,x′,θ̂,δ ⊂ Mz,r/2 to denote the set of curves that have d-distance at least
1
16 r from Yz, contain the point x′, and are mapped by φz to the disk of radius
δ centered on the point θ̂. The volume in X of the points that lie on curves
in Nz,x′,θ̂,δ is bounded by κ∗δ2.

Proof of Lemma 4.11. Let κ denote the constant that appears in Lemma 4.4,
and then set Δ = 1

2κ
−4. Invoke Lemma 4.10 to obtain a set Qθ̂ with the prop-

erties described by the lemma. Let C denote a curve from Qθ̂. Lemma 4.4
describes a diffeomorphism from the radius κ−2 ball in kerC,z onto an open
set in Mz,r/4 that contains the subset of curves in Mz,r/2 with d-distance less
than κ−3 from C. Let OC denote the latter set of curves and let OC,δ ⊂ OC

denote the subset of curves that are mapped by by ϕz to the radius δ disk
centered on θ̂. Let OC,δ ⊂ X denote the subset of points that lie on some
curve from OC,δ. It follows from Lemmas 4.4 and Lemma 4.9 that the volume
of OC,δ is no greater than crδ

2.
If δ ≤ c−1

r , then Lemma 4.10 implies that Nz,x′,θ̂,δ ⊂ (∪C∈Qθ̂
OC,δ). Given

that there are at most cr elements in Qθ̂, it follows from the conclusion of
the previous paragraph that the volume of the set of points that lie on some
curve from Nz,x′,θ̂,δ is no greater than crδ

2. �

Part 5 : The next lemma adds some to what is asserted by Lemma 4.2.

Lemma 4.12. Fix ε > 0 and there is a constant, kε > 1010 with the fol-
lowing significance: Fix a point p ∈ X and an adapted coordinate chart
centered at p so as to identify a neighborhood of p with a ball about the
origin in C

2. Let C ∈ Me,g denote a curve with d-distance ε or more from
Me−Me,g that contains p. Then C intersects the ball of radius k

−2
ε centered

p as the image of a map from a disk in C about the origin to C
2 that has

the form u → θu + r(u) where θ ∈ C
2 has norm 1 and where r(u) is such

that |r(u)| ≤ kε|u|2 and |dr|υ| ≤ kε|u|.

Proof of Lemma 4.12. This follows from Lemma 4.2 given that the set of
curves under consideration has compact closure in Me,g. �

Given r > 0, let κr denote the constant from Lemma 4.10. It is assumed
in what follows that s is less than the minima of κ−2

r and (Kr/4)−4 with K(·)
the constant from Lemma 4.12.
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Part 6 : With (4.8) in mind, suppose that x ∈ X has distance 4s or less
from the entry w of w. It is sufficient to bound the w ∈ Λ contribution to
(4.8) when t < rs2. To this end, it proves useful to separate the integral over
Bw into two parts, that where the entry of z near w has distance on the
order of t or less from x, and that where the distance from this entry to x
has distance much greater than t from x.

To make a quantitative statement with regards to the first part, fix for
the moment R > 104 so as to consider the contribution to the w ∈ Λ term
in (4.8) from the subset of points z ∈ Bw whose entry, z, near w is such that
dist(z, x) ≤ Rt. A suitable value for R is specified in the next part of this
subsection.

Given that the number of curves in π−1
d (x1, x2, z) has a bound that is

independent of x1, x2 and z, it follows that the sum inside the w ∈ Λ integral
in (4.8) is bounded by a fixed, t independent constant, c0. Meanwhile, the
integral over the allowed set of pairs (x1, x2) is no greater than the square
of the volume of X, thus by c0 also. Finally, the integral over the region of
Bw of interest is no greater than c0s4(d−3)R4t4 Thus, the contribution to the
w ∈ Λ term in (4.8) from the subset of points z ∈ Bw with dist(z, x) < Rt

is no greater than c0s4(d−3)R4t6.
Part 7 : This part bounds the contribution to the w ∈ Λ term from the

subset of points z ∈ Bw whose entry near w has distance much greater than
t from x. As before, use z to denote the entry of z in question.

To start the analysis, introduce adapted coordinates (z, w) centered at z
such that their identification of a neighborhood of z with a ball about the
origin in C

2 makes x the point (d, 0) with d > 0. Keep in mind that d > c−1
0

dist(z, x) and so d > c0Rt. What follows is a key observation that is used in
the analysis:

If d > 104t, then the set of complex 1-dimensional subspaces of C
2 that

intersect the ball of radius t > 0 centered at x is contained in a disk in
CP

1 of radius less than c0t/d with center the image of (1, 0) in CP
1.

(4.14)

Assume in what follows that R is such that d > 104t.
Let x1 and x2 denote points in X that lie on a curve C ∈ Mz,r/2 that

intersects the ball of radius t centered at x. Given that these points appear
in (4.8), their distance apart is at least rs. Keeping in mind that t < rs2, this
implies that at least one of them has distance Δ ≥ ts−1 � t from x. No
generality is lost by assuming that this is the point x1. This point also has
distance at least rs from z.

With z and x1 fixed, it follows from (4.14) and Lemma 4.12 that the set of
curves that contribute to any x2 ∈ X version of (4.8) lie in the set Nz,x1,θ̂,δ

with θ̂ here denoting the image of the point (1,0) and with δ < crt/d. This
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understood, then Lemma 4.11 has the following consequence: If t/d ≤ c−2
r ,

then the volume of the set of points x2 ∈ X that can appear in (4.8) with
x1 and z fixed as above is no greater than crt

2/d2. Meanwhile, with z fixed,
the volume of the set of points x1 that can appear in (4.8) is bounded by
the volume of X.

Granted the constraint d > c2r t, granted the preceding conclusions, and
given that d ≥ c−1

0 dist(z, x), the contribution to the integral in (4.8) from
triples (x1, x2, z) with z ∈ Bw such that dist(z, x) > crt is no greater than

(4.15) crt
2s4(d−3)

∫
dist(·,w)<s

1
dist(·, x)2 ≤ crt

2s4d−10.

Given what is said in Part 6, this implies that w ∈ Λ contribution to (4.8)
is no greater than cr s4d−10t4. �

5. Appendix: Generic almost complex structures

The purpose of this appendix is to supply the proofs to the various propo-
sitions in Section 3.

As a preview for what is to follow, note that the standard proofs of gener-
icity assertions about almost complex structures invoke at some point the
Sard-Smale theorem [Sm]. This is a generalization of Sard’s theorem that
applies to Fredholm maps between Banach spaces. In particular, its appli-
cation requires introducing some sort of Banach space of almost complex
structures on X. It is an unfortunate fact that the space of smooth almost
complex structures on X is not a Banach space. The standard approach
replaces the latter with a space of complex structures with bounded deriva-
tives to some finite, but suitably large order. The Sard-Smale theorem is
then invoked using such a space to obtain a residual set of complex struc-
tures with finite differentiability. This residual set of finitely differentiable
almost complex structures is seen to be a countable intersection of open
sets, each with open and dense intersection with the subspace of smooth,
almost complex structures. As such, its intersection with the set of smooth
almost complex structures is residual in the latter space. This is the usual
route taken to obtain the desired residual set of smooth almost complex
structures, and it is the route used here.

5.1. Moduli spaces of pseudoholomorphic maps. This part of the
appendix sets the stage for what follows by setting up the machinery that is
used in the subsequent parts of the appendix to prove the various genericity
assertions that are made in Section 3. In particular, this first part of the
appendix talks about moduli spaces of pseudoholomorphic maps as opposed
to moduli spaces of pseudoholomorphic subvarieties. Most of what is done
here consists of variations of what can be found with perhaps different nota-
tion in many sources (see, e.g., [McD]). Even so, the detailed discussion
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is warranted by virtue of the fact that pseudoholomorphic subvarieties are
of interest here, and the treatment in the literature focuses for the most
part on pseudoholomorphic maps. The discussion here also uses a ‘Morrey
space’ as the Banach space for maps into X. The norm involves only the L2

properties of the differential of a map; and as a consequence, norm bounds
do not require estimates for higher order derivatives.

The discussion that follows has five parts culminating in Proposition A.1.
Part 1 : Fix a smooth, oriented surface of genus k, here denoted by Σ,

and fix a class e ∈ H2(X; Z). Choose a ‘reference’ complex structure, j0, on
Σ and a compatible area form so as to define a Riemannian metric. Norms
and covariant derivatives are defined using this metric. Select a reference
smooth metric on X for the same purpose.

Fix υ ∈ (0, 1). The choice of such a constant determines a norm on the
space of smooth maps from Σ to X. This norm is denoted in what follows
by ‖ · ‖∗; and it is defined by the rule

(A.1) ‖ϕ‖2
∗ = sup

p∈Σ
sup

d∈(0,1]
d−υ

∫
dist(p,·)<d

|ϕ∗|2.

Here, ϕ∗ denotes the differential of ϕ. The next lemma describes the basic
facts needed concerning this norm.

Lemma A.1. There exists κ > 1 and given υ ∈ (0, 1), there exists κυ > 1;
and these have the following significance: Let ϕ denote a smooth map from
Σ into X. Then the L2 norm of ϕ∗ is bounded by κ‖ϕ‖∗ and the norm of ϕ
in the exponent 1

2υ Holder space is bounded by κυ‖ϕ‖∗.

Proof of Lemma A.1. The L2 bound on ϕ∗ follows directly from the defini-
tion. The Holder norm bound follows from Theorem 3.5.2 in [Mo].

Given maps ϕ, ϕ′ from Σ to X, define their ∗-distance to be

d∗(ϕ,ϕ′) = sup
p∈Σ

distX(ϕ(p), ϕ′(p)) + sup
p∈Σ

sup
d∈(0,1]

d−υ

∫
dist(p,·)<d

|ϕ∗ − ϕ′
∗|2.

(A.2)

Introduce L∗(ΣeX) to denote the metric completion using d∗ of the space of
smooth maps from Σ to X that pushes forward the fundamental class of Σ as
the Poincare’ dual of e. It is a consequence of Lemma A.1 that maps in this
space are Holder continuous with exponent 1

2υ. As a consequence, L∗(Σe, X)
has the structure of a smooth Banach manifold. Let E∗ ⊂ L∗(Σe, X) denote
the subspace of maps that are somewhere 1-1. This is to say that there is at
least one point in the image that has single point in its pre-image. This is
an open set in L∗(Σe, X). Let E ⊂ E∗ denote the subset of smooth maps.

Let ϕ ∈ E∗. Since ϕ is continuous, it pulls back vector bundles over X so
as to give a vector bundle over Σ. In particular, ϕ∗TX is a vector bundle
over Σ with exponent 1

2υ Holder continuous transition functions. Moreover,



206 C.H. TAUBES

the first derivatives of these transition functions are square integrable on
their domain of definition, and are such that their integral over any disk
of radius d > 0 is bounded by c0d

υ/2‖ϕ‖∗. This understood, the notion of
a Sobolev class L2

1 section of ϕ∗TX makes good sense. More to the point,
there is an infinite dimensional space of sections of ϕ∗TX on which the norm
defined by

(A.3) ‖v‖2
1,2,υ = sup

p∈Σ
sup

d∈(0,1]
d−υ

∫
dist(p,·)<d

(|∇v|2 + |v|2)

is finite. The completion of the latter space is denoted in what follows by
L2∗(Σ;ϕ∗TX). The assignment to any given map ϕ ∈ L∗(Σe, ϕ

∗TM) of the
corresponding Banach space L∗(Σ;ϕ∗TX) defines a smooth vector bundle
over E∗; this its tangent bundle.

Let ιe = e · e − c · e and fix an integer m > 10100ιe. Let J denote the
Fréchet space of smooth, ω-compatible almost complex structures on X and
let Jm-denote the corresponding Banach space of m-times differentiable,
almost complex structures. When J ∈ Jm, use TJ(1,0)X to denote the (1,0)
part of TXC as defined by J . The assignment to a pair (ϕ, J) ∈ E∗ × Jm

of L∗(Σ, ϕ∗TJ(1,0)X) for k ∈ {0, 1, 2} defines an m − 1 times differentiable
vector bundle over the Banach space E∗ × Jm. �

Part 2 : Given non-negative integers p and q, use T p,q
0 Σ to denote the

space of differentials of type (p, q) on Σ as defined by the reference complex
structure j0. Suppose that the genus, k, of Σ is greater than 1. Teichmuller
theory asserts the existence of 3k− 3 dimensional complex vector subspaces
in C∞(Σ,Hom(T 1,0

0 Σ;T 0,1
0 Σ)) with the following property: Let V denote the

subspace, and let j denote any given almost complex structure on Σ whose
derivatives to order m − 2 are square integrable. There is an m − 3 times
differentiable homeomorphism of Σ that pulls back j as a complex structure
whose forms of type (1, 0) appear in T ∗ΣC as the graph of an element
from V with pointwise norm less than 1. Conversely, any element from V
with pointwise norm less than 1 defines a complex structure on Σ, this the
complex structure whose forms of type (1, 0) appear in T ∗ΣC as the graph
of the given element. In the case k = 1, there exists a 1-complex dimensional
subspace of this sort.

To say a sentence more about the constraints on V , introduce T0(1,0)Σ
to denote the holomorphic tangent bundle of Σ and identify in the usual
way Hom(T 1,0

0 Σ;T 0,1
0 Σ) with the bundle T0(1,0)Σ⊗T 0,1

0 Σ. A vector subspace
V ⊂ C∞(Σ,Hom(T 1,0

0 ;T 0,1
0 )) will suffice if projection to the cokernel of

∂̄ : C∞(Σ, T0(1,0)) → C∞(Σ, T0(1,0) ⊗T 1,0
0 ) restricts as an isomorphism to V .

Fix such a subspace when k ≥ 1 and let V1 denote the set of ele-
ments in this subspace with pointwise norm less than 1. View V1 as a
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finite dimensional Banach manifold with tangent space modeled on the vec-
tor space V with the norm given by the supremum norm for sections of
Hom(T 1,0

0 Σ;T 0,1
0 Σ).

As noted above, an element in V1 defines a complex structure on Σ. If
j ∈ V1 denotes a given element, the corresponding almost complex structure
on TΣ is also denoted by j in what follows. Meanwhile, the corresponding
space of differentials of type (p, q) is denoted by T (p,q)

j Σ and the (1,0) tangent
space of Σ is denoted by Tj(1,0). Note that an element in the tangent space
to V1 at a given j ∈ V1 can be viewed in a canonical way as a section over Σ
of Tj(1,0) ⊗ T 0,1

j . This view is used at times without accompanying remarks.
In the case of genus zero, set V1 to be the zero dimensional Banach space.
Part 3 : Let (ϕ, J, j) denote a given element in E∗×Jm×V1. Associated to

the triple (ϕ, J, j) is the Banach space of sections of ϕ∗TJ(0,1)X⊗T 0,1
j Σ → Σ

with norm whose square is given by the version of (A.1) that uses the section
in question instead of ϕ∗. This norm is denoted by ‖ · ‖2;υ. The association
of this Banach space to any given triple (ϕ, J, j) defines an m − 1 times
differentiable vector bundle over E∗×Jm×V1. This bundle is denoted below
by V.

What follows describes a canonical, m− 1 times differentiable section of
V. It is denoted by d, and it is defined by the following rule: If (ϕ, J, j) is
such that ϕ is smooth, it is the element in Cm(Σ;ϕ∗TJ(0,1)X ⊗ T 0,1

j Σ) that
is obtained from the section

(A.4) v → (J |ϕ + i)ϕ∗(j − i)v

of Hom(TΣC, ϕ
∗TJ(1,0)X) by restriction to Tj(1,0)Σ. Here, ϕ∗ denotes the

differential of ϕ. Note that its definition is such that ϕ∗ intertwines j and J
if and only if d = 0 at (ϕ, J, j).

Let Pm denote the zero locus of d. The implicit function theorem asserts
that Pm is a m− 1 times differentiable Banach manifold on a neighborhood
of any element where d vanishes transversely. It is left for the reader to verify
that such is the case along the whole of Pm.

The implicit function theorem identifies the tangent spaces to Pm at a
given point (ϕ, J, j). This the space of sections (ϕ′, J ′, j′) of ϕ∗TJ(1,0)X ⊕
End(TX)⊕V with ϕ′ in L∗(Σ;ϕ∗TX) and J ′ in Cm that obey an equation
that has the schematic form

(A.5) (J |ϕ + i)∇ϕ′(j− i)+(∇ϕ′J) ·ϕ∗(j− i)+J ′ϕ∗(j− i)+(J |ϕ + i)ϕ∗j′ = 0.

What follows is a consequence of the inverse function theorem: Given
(ϕ, J, j) ∈ Pm, there exists δ > 0 and an m − 1 times differentiable home-
omorphism with m − 1 times differentiable inverse from the radius δ ball
in vector space of solutions to (A.5) onto a neighborhood of (ϕ, J, j) in Pm

that maps the origin to (ϕ, J, j), and whose differential at the origin is the
identity map.
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To say more about this homeomorphism, and to connect with what is said
in Part 1 of Section 2, let (ϕ, J, j) denote a given element in Pm. A look at
(A.5) reveals that the vector space of elements (ϕ′, J ′ = 0, j′ = 0) in TPm|J
is isomorphic to the subspace of sections of L∗(Σ;ϕ∗TJ(1,0)X) that obey
a certain first order differential equation given by a Fredholm differential
operator whose domain is the L2

1 completion of the space of sections over Σ
of the bundle ϕ∗TJ(1,0)X and whose range is the L2 completion of the space
of sections of (ϕ∗TJ(1,0)X)⊗ T 0,1

j Σ. To elaborate, let ϕ′
(1,0) denote the (1,0)

part of ϕ′. When written in terms of η, this is the operator that is denoted
by D in (2.5) with it understood that the complex structure on C0 is that
defined by j. In general, an element (ϕ′, J ′ = 0, j′) is in TPm|J if and only if

(A.6) Dϕ′
(1,0) + (J |ϕ + i)ϕ∗j′ = 0.

The notation used here is admittedly sloppy because j′ in (A.6) is to
be viewed as a section Tj(1,0) ⊗ T 0,1

j . Let D∗ denote the operator from
L2

1(Σ, ϕ
∗TJ(1,0)X) ⊕ V to the Hilbert space L2(Σ, ϕ∗TJ(1,0)X ⊗ T 1,0

j Σ) that
is defined by the left-hand side of (A.6). This is a Fredholm operator. Intro-
duce D∗ to denote the latter operator and let ker(D∗) and coker(D∗) denote
its respective kernel and cokernel. Note in this regard that this vector space
coker(D∗) is canonically isomorphic to the cokernel of the operator DC in
(2.9).

The implicit function theorem applied to (A.5) finds a smooth map from
a ball about the origin ker(D∗) × TJm|J to coker(D∗) that maps the point
(0, 0) to 0, and with the following significance: Let B denote the afore-
mentioned ball and let f denote the map. Then 0 is a regular value for f
and f−1(0) is homeomorphic to a neighborhood of (ϕ, J, j) in Pm via an
m− 1 times differentiable map with m− 1 times differentiable inverse. This
homeomorphism is the restriction to f−1(0) of a map, Ψ, from B into a
neighborhood of (ϕ, J, j) in E∗×Jm×V1. To say slightly more about f , note
that it has a Taylor’s expansion of the form

(A.7) f(v, J ′) = f0,1J
′ + f1,0v + · · ·

where f0,1 and f1,0 are linear maps and the unwritten terms are higher order.
A particularly important point for what follows is that f0,1 is surjective. Note
also that the tangent space to Pm at (ϕ, J, j) is isomorphic to the kernel in
ker(D∗) × TJm|J of the linear map (v, J ′) → f0,1J

′ + f1,0v.
To say a bit more about Ψ, identify a neighborhood of J in Jm with

a ball about the origin in the space of m-times differentiable sections of
Hom(T 1,0

J X;T 1,0
J X). Then Ψ can be viewed so as to send any given pair

(v, J ′) ∈ B to an element that can be written as

(A.8) Ψ(v, J ′) = (ϕ(v, J ′), J ′, j(v, j)).

The following lemma is a useful result concerning the elements in Pm.



TAMED TO COMPATIBLE 209

Lemma A.2. Suppose that J ∈ Jm has continuous derivatives to order
m′ ≥ m or is infinitely differentiable. If (ϕ, J, j) ∈ Pm, then ϕ has continuous
derivatives up through order m′ − 2 or is infinitely differentiable as the case
may be.

Proof of Lemma A.2. This follows using standard elliptic regularity tech-
niques as can be found, for example, in Chapter 6 of [Mo]. �
This lemma implies that Pm has a second Banach space topology, this com-
ing from its inclusion in Cm−2(Σ;X)×Jm ×V1. The upcoming Lemma A.3
asserts that these two topologies are equivalent.

Let P ⊂ Pm denote the subset of triples (ϕ, J, j) such that ϕ and J are
smooth. Introduce πJ : Pm → Pm to denote the restriction of the projection
map from E∗×Jm×V1. Lemma A.2 implies that P = π−1

J (J ). The space P
has a Frêchet topology from the C∞ topology on the space of smooth maps
from Σ to X and on J . It also has the topology coming from the inclusion
in Pm. A part of the Lemma A.3 asserts that these two topologies are also
equivalent.

Lemma A.3. The Banach space topology on Pm coming from its inclusion
in the space Cm−2(Σ;X) × Jm × V1 is equivalent to that coming from its
inclusion in E∗×Jm×V1. By the same token, the C∞-Frêchet space topology
on P is equivalent to the topology coming from its inclusion as a subspace
of E∗×J ×V1. The C∞-Frêchet space topology endows P with the structure
of a smooth, Frêchet manifold.

Proof of Lemma A.3. The fact that the two topologies on Pm are equivalent
follows from the fact that the elliptic regularity techniques from Chapter 6
in [Mo] control the norms of the derivatives a map from an element in
Pm in terms of the L∗ norm of the map and the norms of the derivatives
of the almost complex structure. These same norm bounds imply that the
C∞ Frêchet topology on P is the same as the topology that comes from its
inclusion in E∗ ×J × V1. The structure on P of a smooth Frêchet manifold
comes via the implicit function theorem in the same way that the latter
endows Pm with the structure of an m − 1 times differentiable Banach
manifold. �

Part 4 : It is a consequence of (A.5) that the differential of the map πJ
from Pm to Jm has at all points a Fredholm differential. Set g = 1

2(e · e +
c · e) + 1. The index of the differential of πJ is ιe − (g − k) if k ≥ 1. In the
case k = 1, the index is ιe − g + 2, and in the case k = 0, it is ιe − g + 3.
As m − 2 is greater than this index, the Sard-Smale theorem [Sm] finds a
residual set in Jm of regular values. If J comes from this set, then π−1

J (J) is
a manifold of differentiablility class m−1 and dimension equal to the index.

Let de = ιe − (g−k). As argued next, the inverse image of a regular value
of πJ is empty if de < 0. This is an automatic consequence of the definition
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of a regular value in the case when k > 1. In the cases k = 1 and k = 0, the
inverse image of a regular value has free group action, the torus S1 × S1 if
k = 1, and the group Sl(2; C) in the case k = 0. These actions are free by
virtue of the fact that the maps from Σ are almost everywhere one-to-one. If
de < 0, then the inverse images in these cases have dimension less than the
dimension of the relevant Lie group. As a consequence, these spaces must
also be empty when de < 0.

Let (ϕ, J, j) denote a given element in Pm and introduce the operator
D∗ that is depicted in (A.6). Identify the tangent space to (ϕ, J, j) with the
kernel in ker(D∗)×TJm|J of the linear part, (v, J ′) → f0,1J

′ + f1,0v, of the
right-hand side of (A.7). Given the form of Ψ′ in (A.8), it follows that (ϕ, J, j)
is a critical point of πJ if and only if the operator D∗ has non-trivial cokernel.

Part 5 : When j ∈ V1, use ‖j‖∞ to denote its L∞ norm when viewed as a
section of Hom(T 1,0

0 , T 0,1
0 ). Given R ≥ 1, introduce as notation Pm

R to denote
the subspace of triples (ϕ, j, J) in Pm with ‖ϕ‖∗+‖j‖∞<R. This is an open
set. In addition, Pm

R ⊂ Pm
R+1 and ∪R∈{1,2,...}Pm

R = Pm. These sets are the
focus of the next lemma.

Lemma A.4. Fix R∈{1, 2, . . .}. Let J ∈ Pm denote a regular value for the
restriction of πJ to Pm

R+1. Then there is an open neighborhood of J in Pm

whose elements are regular values for the restriction of πJ to Pm
R .

This lemma is proved momentarily.
Given that the set of positive integers is countable, what follows is a

consequence of Lemma A.4.

Proposition A.1. The map πJ between the Fréchet manifolds P and J
has a residual set of regular values in J .

Proof of Proposition A.1. For any given R, the set of regular values for πJ ’s
restriction to Pm

R+1 is a residual set, so in particular it is dense. This and
Lemma A.4 imply that there is an open and dense set of regular values for
πJ ’s restriction to Pm

R . This being the case, there is a Cm open and dense set
of regular values for πJ ’s restriction to P ∩ Pm

R . This set is the intersection
between P and the afore-mentioned open dense set in Jm. A Cm open set
in P is, by definiton, a Fréchet open set. A straightforward argument using
mollifiers shows that a Cm open and dense set in P is also open and dense
in the C∞ Fréchet topology. It follows as a consequence that there is a
Fréchet open and dense set in P of regular values for the restriction of πJ
to (P ∩ Pm

R ). The intersection of the countable set of integer R versions of
these open and dense sets is the desired residual set. �
Proof of Lemma A.4. Suppose that J ∈ Jm is a regular value for the restric-
tion of πJ to Pm

R+1. Let (ϕ, J, j) denote a point in π−1
J (J) ∩ Pm

R and let D∗
denote the operator from L2

1(Σ, ϕ
∗TJ(1,0)X)⊕V to L2(Σ, ϕ∗TJ(1,0)X⊗T 1,0

j Σ)
that is defined by the left-hand side of (A.6). This operator has trivial
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cokernel, and so there exists δ > 0 such that if (ϕ′, J ′, j′) is in Pm and
D∗(ϕ,ϕ′) + ‖J ′ − J‖C2 + ‖j′ − j‖∞ < δ, then the (ϕ′, J ′, j′) version of D∗
also has trivial cokernel. Note in this regard that this assertion depends
only on the C2 norm of J ′ − J , not the full Cm norm. Also keep in mind
that the forgetful map from Cm to C2 is a compact mapping when n > 1.
Lemma A.2 implies that π−1

J (J) ∩ Pm
R has compact closure in π−1

J (Pm
R+1).

Granted these last two points, there exists a positive constant δ such that
the (ϕ′, J ′, j′) ∈ Pm

R version of D∗ has trivial cokernel if J ′ ∈ Jm has Cm

distance less than δ from J . �

5.2. The topologies on Me,k and Pm. This part starts to explain the
relation between P and the space Me,k. To set the notation, fix for the
moment an almost complex structure J ∈ Jm. As in the case when J
is smooth, a closed set C ⊂ X with finite, non-zero 2-dimensional Haus-
dorff measure is said to be a J-holomorphic subvariety if it has no iso-
lated points; and if the complement of a finite set of points in C is a
m − 2 times differentiable submanifold with J-invariant tangent space.
Introduce Me,k|J to denote the space of irreducible, J-holomorphic sub-
varieties whose model curve has genus k. If (ϕ, J, j) is an element in Pm,
then ϕ(Σ) ∈ Me,k|J . Conversely, if C ∈ Me,k|J , then there exists a map
ϕ : Σ → X with continuous derivatives through order m − 2 and an
element j ∈ V1 such that (ϕ, J, j) ∈ Pm, and such that C = ϕ(Σ). In
particular, Σ with its complex structure defined by j is a model curve
for C.

The space Me,k|J has a topology given by (3.2). As is argued next, this
topology is essentially equivalent to the topology on π−1

J (J) that comes by
viewing the latter as a subset of Pm. The proposition that follows makes
this precise.

Proposition A.2. Fix a point (ϕ, J, j)∈Pm and let C =ϕ(Σ) denote
the corresponding subvariety in Me,k|J . Given ε > 0, there exists a
neighborhood, N , of (ϕ, J, j) in Pm with the following property: If (ϕ′, J ′, j′) ∈
N , then ϕ′(Σ) has d-distance less than ε from C. Conversely, given a
neighborhood, N , of (ϕ, J, j) in Pm, there exists ε > 0 with the following
property: If J ′ ∈ πJ (N ) has Cm-distance less than ε from J, and if C ′ ∈
Me,k|J ′ has d-distance less than ε from C, then there exists (ϕ′, j′) ∈ E∗×V1

with ϕ′ m−2 times differentiable, and which is such that (ϕ′, J ′, j′) ∈ N and
ϕ′(Σ) = C ′.

Proof of Proposition A.2. The first assertion follows from the continuity of
the evaluation map from Σ × Pm to X, this the map that sends any given
pair (p, ϕ) to ϕ(p). The proof of the converse assertion has 10 parts.
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Part 1 : The arguments are shorter if J is assumed to be a smooth
almost complex structure. To see that it is sufficient to prove only the latter
case, remark that if J is only m times differentiable, there are elements
in Pm as close as desired to (ϕ, J, j) with smooth almost complex struc-
tures. As explained momentarily, this follows from (A.7) and (A.8). Mean-
while, if (ϕ′′, J ′′, j′′) is sufficiently close in Pm to (ϕ, J, j), then the subvariety
C ′′ = ϕ′′(Σ) will lie everywhere very close to C. This understood, it enough
to prove the converse statement of the proposition with (ϕ, J, j) replaced by
an element in Pm very close to it but with smooth almost complex struc-
ture. The fact that there are elements in Pm with smooth almost complex
structure near any given element (ϕ, J, j) can be seen as follows: Identify a
neighborhood of J in Jm with a neighborhood of the origin in the space of
m-times differentiable sections of Hom(T 1,0

J X;T 0,1
J ). Let C denote the affine

subspace in this space of sections that represent smooth almost complex
structures. This affine space is dense in the space of all m-times differen-
tiable sections. Restrict the map f in (A.7) to the subspace of its domain
consisting of points of the form (0, J ′) with J ′ ∈ C. Given that C is dense,
and given that f0,1 in (A.7) is surjective, it follows that there is a finite
dimensional linear subspace C0 ⊂ C of dimension equal to that of coker(D∗),
whose origin is as close as desired to the zero section of Hom(T 1,0

J X;T 0,1
J )

and with the following property: The map f0,1 restricts to C0 as an isomor-
phism with inverse bounded by c0 with c0 here independent of the distance
between C0 and the zero section of Hom(T 1,0

J X;T 0,1
J ) if this distance is less

that c−1
0 . Granted that such is the case, it follows by degree theory that

there are elements of the form (0, J ′) ∈ f−1(0) with J ′ ∈ C0.
The remaining parts of the proof assume implicitly that J is smooth.
Part 2 : Fix δ > 0 but very small; in particular much less than the distance

between any two singular points of C. Let Bδ ⊂ X denote the union of
balls of radius δ about these singular points. The intersection of C with
the interior of X −Bδ is a properly embedded J-holomorphic submanifold.
If δ is suitably generic, then C will have transversal intersection with the
boundaries of the closures of Bδ and also Bkδ for k = 2, 3, and 4. Moreover,
C’s intersection with Bkδ −B(k−1)δ for each such n will be a disjoint union
of embedded annuli. Assume that such is the case.

Let Cδ denote C ∩ (X−Bδ) and likewise define Ckδ. Note that the integral
of ω over C4δ is less than [ω] · e by at most c0δ2. Take δ so that this is less
than 10−100[ω] · e. Note also the following: Given δ0 ∈ (0, δ1), then ϕ−1(B4δ)
is contained in the union of disks of radius δ1 about the ϕ-inverse images of
the singular points of C if δ is sufficiently small. Let D(δ0) ⊂ Σ denote this
union of disks.

Let N → Cδ denote the normal bundle to Cδ. There exists ε1 > 0 such
that if J ′ has Cm distance less than ε1 from J , then the constructions in
Section 5d in [T3] can be used to find δ′ > 0 and an embedding, expC , from
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the radius δ′ subdisk bundle in N onto a neighborhood of Cδ in X − Uδ/2

with the following properties:
• It restricts to the zero section as the identity map.
• The image of each fiber disk is J ′-pseudoholomorphic.

(A.9)

Let Nδ′ ⊂ N denote this subdisk bundle, and use expC to identify it with
its image in X.

Part 3 : Suppose that C ′⊂X is J ′-pseudoholomorphic. If C ′ intersects
X − Bδ so as to lie entirely in Nδ, then it will intersect each fiber disk
with each intersection having positive intersection number. Moreover, the
number of such intersections is the same for each such disk. It follows as
a consequence that C ′ has precisely one intersection with each fiber disk.
Indeed, if such is not the case, then the integral of ω over C ′ ∩ Bδ will be
larger than [ω] · e and this is not possible since ω is positive on each tangent
plane of C ′. Granted that C ′ intersects each fiber disk once, it intersect
Nδ′ |C2δ

as the graph of a section of Nδ′ . Let η denote this section. Since ϕ
maps Σ − ϕ−1(B2δ) in a 1–1 fashion to C − Bδ, the composition η ◦ ϕ is a
section over Σ − B2δ of ϕ∗N with pointwise norm less than δ. Moreover, it
must obey the inhomogeneous version of (2.14); this an equation of the form

(A.10) DCη + r1 · ∂η + r2 = e

where r1 and r2 are as in (2.14) and where the norm of e is bounded by c0ε
if J ′ is ε-close to J in the Cm topology.

Granted what was just said, the assertion that follows can be proved
using the elliptic regularity arguments of the sort found in Chapter 6 of
[Mo]: If C ′ has d-distance ε < 10−4δ′ from C, then η defines an m− 2 times
differentiable section of ϕ∗N over Σ − B3δ with Cm−2 norm bounded by
cδε. Here, and in what follows, cδ > 1 is a constant that depends on δ and
also C, but nothing else of relevance. Its value can be assumed to increase
between consecutive appearances.

The fact that C ′ ∩ (X − B3δ) is the image of η ◦ ψ implies that the
singularities of C ′ are contained in B3δ. This understood, the pull back via
η◦ψ of the restriction of J to T (C ′ ∩ (X−B3δ)) defines a complex structure,
j′δ, on Σ−ϕ−1(B3δ). Given that the Cm−2 norm of η is bounded by cδε, this
complex structure differs from j by an endomorphism of T (Σ − ϕ−1(B3δ))
whose Cm−3 norm is bounded by cδε.

Part 4 : The subvariety C ′ can, in any event, be written as ϕ′(Σ) where
(ϕ′, J ′, j′) ∈ Pm. Let Σ′

δ denote (ϕ′)−1(C ′ ∩ (X − B3δ/2)). The composition
(η ◦ ϕ)−1 ◦ ϕ′ is an m − 2 times differentiable homeomorphism between Σ′

δ

and its image inside Σ − ϕ−1(B3δ). Let ψδ denote this map. If ε < c−1
δ ,

then the image of ψδ contains Σ − ϕ−1(B4δ) and thus Σ − D(δ0). Note
that the complement in Σ of ψ−1

δ (Σ − D(δ0)) must be a disjoint union of
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embedded disks that contains the points mapped by ϕ′ to the singulari-
ties of C ′. Moreover, each disk in this union is mapped by ϕ′ to a compo-
nent of B4δ. Let D′(δ0) denote this union of disks. The map ψδ sets up a
1–1 correspondence between the disks that comprise D(δ0) and those that
comprise D′(δ0) by identifying the boundary circles of these two sets. Keep
in mind that the maps ϕ and ϕ′ send partnered components of D(δ0) and
D′(δ0) to the same component of B4δ.

The task ahead is to extend the map η ◦ϕ over each component of D(δ0)
in a controlled fashion. This is done in this part and in Parts 5–7 to come.
The following notation is used here and in Parts 5–7. The symbol D denotes
a component of D(δ0), and D′ ⊂ D′(δ0) the partner of D.

Suppose first that ϕ|D is an embedding. In this case, the exponential map
expC can be extended across D and likewise the section η. This done, then
ϕ′(D′) can be written as expC(η ◦ ϕ). Granted this, no generality is lost by
assuming in what follows that the differential of ϕ vanishes at the center of
each component of D(δ0).

It is necessary to find a new parametrization of ϕ(D) and likewise ϕ′(D′).
The desired parametrization of D is described by the next lemma. This
parametrization involves a new choice of coordinates for a neighborhood of
the singular point of ϕ(D).

Lemma A.5. Given J and C, there exist κ > 104 and an integer n > 1
with the following properties: Suppose that Δ < κ−1 and that J ′ has Cm

distance less than Δ from J . There are m− 1 times differentiable, complex
coordinates (z, w) centered at ϕ(0) such that

• The coordinates are valid where both |z| < κ−1 and |w| < κ−1.
• The w = 0 disk is J ′-pseudoholomorphic, as are the constant z disks.
• The bundle T (1,0)

J ′ is spanned by the 1-forms

dz − αdz̄ and dw − γdz̄

where α and γ are m−1 times differentiable functions that vanish on
the w = 0 locus and otherwise obey |α| ≤ c−1

0 , |γ| ≤ c−1
0 , |dα| ≤ c0

and |dγ| ≤ c0.
• The subvariety ϕ(D) intersects the |z| < κ−2 part of this coordinate

chart as an m−1 times differentiable map from a disk in C about the
origin of radius bounded by κ−2/n that has the form

u→ (z = un(1 + rz), w = unrw)

where |rz| ≤ Δ and |drz| ≤ κΔ; while |rw| ≤ Δ and |drw| ≤ κΔ.

Proof of Lemma A.5. Coordinates of this sort are obtained using the argu-
ments in Section 5d of [T3]. To elaborate, let p denote the singular point in
ϕ(D). Fix an orthonormal frame for TJ(1,0)|p so as to identify the space of
1-dimensional subspaces through the origin in TJ(1,0)|p with CP

1. What is
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said in Section 5d of [T3] can used to associate to each θ ∈ CP
1 an embedded,

pseudoholomorphic disk with center p and tangent plane θ at p. Moreover,
each such disk will intersect the closed, radius c−1

0 ball centered at p as disk
and intersect the boundary transverally. Finally, any two θ �= θ′ disks will
intersect only at p. Each such disk has a finite number of intersections with
ϕ(D), each with positive intersection number. Use n to denote the mini-
mum of these intersection numbers. Fix θ ∈ CP

1 whose disk has intersection
number n.

Use what is said in Section 5d of [T3] to find complex coordinates, (z,w)
centered on p, defined for |z| < c−1

0 and |w| < c−1
0 and such that the following

is true: First, the bundle T 1,0
J is spanned by dz − adz̄ and dw − gdz̄ where

a and g vanish on the w = 0 locus, and are such that their derivatives are
bounded in norm by c0. Second, dw|p vanishes on the complex line θ. Note
that it follows from the form of this basis for T 1,0

J that the w = 0 disk is J-
pseudoholomorphic, as are the constant z disks. Finally, each such constant
z disk has intersection number n with ϕ(D) and each of these intersections
will have intersection number 1.

Granted the preceding, and granted that dz − adz̄ is a form of type (1, 0)
it follows that the function zϕ = z(ϕ(·)) must obey the equation

(A.11) ∂̄zϕ − a∂̄z̄ϕ = 0.

Because a = 0 where w = 0, there exists a holomorphic coordinate, u, that
is defined on a neighborhood of the center of D with u = 0 this same center
point, and is such that zϕ(u) = un(1+ rz) where |rz| ≤ c−1

0 |u| and |drz| ≤ c0.
The proof that this is the case is an exercise using Taylor’s expansion given
that (A.11) implies via Aronzajn’s unique continuation principle [A] that
the function u→ zϕ(u) cannot vanish to infinite order at any point.

Meanwhile, let wϕ = w(ϕ(·)). Then |wϕ|(u) must be bounded by c0|u|n
because of the minimality of n. Furthermore, given that dw − gdz̄ is of
type (1, 0), the function wϕ obeys the analog of (A.11) with a replaced by g
and with only the left most zϕ replaced by wϕ. Given that γ also vanishes
at the origin, a Taylor’s theorem argument shows that w = c(un+k + rw)
where c ∈ C − 0, k is a non-negative integer and |rw| ≤ c0|u|n+k+1 and
|drw| ≤ c0|u|n+k. Note that k must be finite or else ϕ will map D as a
multiple cover onto the w = 0 locus, and this is forbidden because ϕ is
assumed to be almost everywhere 1–1. (Keep in mind here that distinct J-
holomorphic subvarieties cannot be tangent to infinite order.) If k = 0 it
is necessary to take a different choice for θ. To explain, the linear change
of coordinates to z′ = z and w′ = w − cz makes w′ = c′(un+k + e′) where
k > 0 and where c′ �= 0 and |e′| ≤ c0|u|n+k+1. Even so, the w′ = 0 disk
will no longer be J-holomorphic. However, the constructions in Section 5d
of [T3] can be used to construct a different version of w′, this given by
w′ = w− cz + v(z) with |v| ≤ c0|z|2 so that the w′ = 0 disk is J-holomorphic.
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Given that J ′ is sufficiently close in the C2n norm to J , the construc-
tions in Section 5d of [T3] can be used to perturb the coordinates to get
coordinates (z, w) which are as described by the lemma. �

Part 5 : This part begins the task of constructing the desired coordinates
for ϕ′(D′). The basic construction is, to some extent, similar to what was
done in the previous part of the proof for ϕ(D). There is, however, the added
complication that ϕ′(D′) may have more than one singular point.

To start, let D∗⊂C denote a disk about the origin that is contained in
the disk from the fourth bullet of Lemma A.5. The latter disk is where the
coordinate u from this fourth bullet is defined. Use ρ in what follows to
denote the radius of D∗. No generality is lost by assuming ρ < 10−4δ0 and
ρ < δ. The freedom to choose ρ conveniently and in particular small will be
exploited in the subsequent discussions. These discussions use kρ to denote
a constant that is greater than 104 and that depends on ρ, C, and J , but not
on J ′ nor C ′. The value of kρ can be assumed to increase between subsequent
appearances. On the subject of parameters, the discussion that follows will
also involve a parameter r, this with values in (0, 1

8ρ). The discussion uses εr
to denote a positive constant that depends on r, C, and J , but not on either
C ′ or J ′. This constant εr can be assumed to decrease between successive
appearances.

In what follows, D∗ is identified with its image in D via the coordinate
map. Let λ : D∗ → C

2 denote the map depicted in this same fourth bullet
of Lemma A.5, and use zλ : D∗ → C to denote the composition of first λ
and then the coordinate function z. Introduce U ⊂ C to denote zλ(D∗).
The fourth bullet of Lemma A.5 asserts that U contains the disk about the
origin of radius ρn(1− c−1) and is contained in the concentric disk of radius
ρn(1 + c−1) where c > 104.

Consider now (z ◦ϕ′)−1(U). If ε < c−1
0 , then (z ◦ϕ′)−1(U) is an embedded

disk in D′ with m − 3 times differentiable boundary. This follows from the
fact that the section η is defined on D–D∗ if ε < k−1

ρ . The Riemann mapping
theorem finds a m − 3 times differentiable homeomorphism σ : D∗ → (z ◦
ϕ′)−1(U) so that the composition, ϕ′◦σ, is a J ′-holomorphic map from D∗ to
ϕ′(D′). Let λ′ denote the latter map and introduce zλ′ to denote z ◦λ′. This
zλ′ , like zλ, is also a function on D∗ with image equal to U . By composing
λ′ with a suitable Möbius transformation of D∗, a version of zλ′ can be had
that maps the origin in D∗ to the origin in U . This condition on λ′ and zλ′

is assumed in what follows as it plays an important role.
To say more about zλ′ , note that given r ∈ (0, 8−1ρ), there exists εr with

the following significance: If ε < εr, then the critical values of zλ′ must lie
in the disk of radius rn centered on the origin. This again follows from the
fact that the coordinate z on D′ where |z| > r looks very much like that on
D for the reason that this part of D′ is parametrized by η ◦ ϕ if ε is small,
which is to say less than εr. For this same reason, the function zλ′ on the
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annulus in D∗ where |zλ′ | > r has a single valued nth root which gives a
bonafide coordinate on this annulus. The latter coordinate plays a role also
in what follows.

Lemma A.5 also supplies the coordinate w for its neighborhood of ϕ(0).
Introduce wλ′ : D∗ → C to denote the composition w ◦ λ′. Use αλ′ and γλ′

to denote the respective C-valued functions on D∗ that come by composing
the respective functions α and γ from the third point of Lemma A.5 with
the map λ′. Given the basis for T 1,0

J ′ in from the third bullet of Lemma A.5,
it follows that the pair (zλ′ , wλ′) must obey the equations

(A.12) ∂̄zλ′ − αλ′ ∂̄z̄λ′ = 0 and ∂̄wλ′ − γλ′ ∂̄z̄λ′ = 0

on D∗. Note that both αλ′ and γλ′ are bounded in absolute value by c0|wλ′ |.
�

This last equation leads to the following lemma concerning the size of the
derivatives of zλ′ and wλ′ .

Lemma A.6. There exists κ > 1 with the following significance: Suppose
that J ′ has C2n distance less than κ−1 from J and that ρ < κ−2. Suppose in
addition that ε < ρn. Then the functions zλ′ and wλ′ on the radius 7

8ρ disk
in D∗ centered on the origin obey

|zλ′ | + |wλ′ | + ρ(|dzλ′ | + |dwλ′ |) ≤ κρn.

Proof of Lemma A.6. The bound on the absolute values of zλ′ and wλ′ follow
from the fact that zλ and wλ obey similar bounds. To see about the bounds
on the higher derivatives, reintroduce the functions α and γ from the third
bullet in Lemma A.5. The functions αλ′ and γλ′ are obtained from the latter
by evaluating them at z = zλ′ and w = wλ′ . This understood, and given
the bounds on the norms of zλ′ and wλ′ , the bounds on the derivatives
follow from (A.12) using the elliptic bootstrap arguments from Chapter 6 in
[Mo]. �

Part 6 : This part constitutes a digression for two results about quasi-
conformal maps that will be used in conjunction with (A.12) to say more
about zλ. The first lemma refers to the hyperbolic radius of a disk in D∗.
This is the radius as measured by the hyperbolic metric on the disk D∗,
this the metric obtained from the unit radius disk in C with line element
(1 − |u|2)−1|du| via pull-back by a holomorphic diffeomorphism from D∗
that maps the origin to the origin. The hyperbolic radius has the advantage
of being invariant under the action of the group, Sl(2; R), of holomorphic
diffeomorphisms of D∗.

Lemma A.7. Given d ∈ (0, 1), there exists a constant κ > 1 whose signif-
icance is given in what follows. Fix r < 1

8ρ and let Ur ⊂ U denote the disk
of radius rn centered on the origin. Suppose that x : D∗ → U is a twice dif-
ferentiable map with the following three properties. First, x restricts to the
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boundary of D∗ as a degree n−1 covering map of the boundary of U . Second,
x is such that |∂̄x| ≤ (1 − d)|∂x| at all points in D∗. Finally, the critical
values of x lie in Ur. Then x−1(Ur) is contained in a disk with hyperbolic
radius less than κ(r/ρ)d/d−2ρ.

Proof of Lemma A.7. Let Ar = x−1(U − Ur). This is a topological cylinder
with C1 inner boundary and outer boundary that of D∗. Meanwhile, the
Riemann mapping theorem finds s ∈ (0, 1) with the following significance:
Let Û ⊂ C denote the annulus centered at the origin with outer radius 1 and
inner radius s. The Riemann mapping theorem finds a holomorphic, degree
n covering map, g: Û → U − Ur. Note that s ∼ ρ−1r because the boundary
of U is nearly a round circle of radius ρn. It follows from the path lifting
property of covering spaces that there is a lift, x̂: Ar → Û such that x = g◦x̂.
The map x̂ is 1–1 and so a uniformly, quasi-conformal homeomorphism from
the domain Ar to the domain Û . Indeed, given that g is holomorphic, the
chain rule finds |∂̄x̂| ≤ (1 − d)|∂x̂|.

The Riemann mapping theorem also finds s′ ∈ (0, 1) and a holomorphic
homeomorphism to Ar from the cylinder Â ⊂ C with outer radius 1 and
inner radius s′. It is a consequence of Theorem 7.1 in [LV] that

(A.13)
d

2 − d
| log(s)| ≤ | log(s′)| ≤ 2 − d

d
| log(s)|.

The number 1
2π | log(s′)| said to be the modulus of Ar. This understood, and

given that r/ρ � 1, then what is claimed by the lemma follows from the
upper bound (A.13) using the inequalities given in Theorem 2.4 in [McM]
that relate the hyperbolic diameter to the modulus. �

The next lemma states the second of what is needed from quasi-conformal
mapping theory. The lemma uses D∗ to denote the closure in C of the disk
D∗.

Lemma A.8. Fix ε > 0 and 0 < ρ′ < 1
8ρ. There exists constants κ1, κ2 >

100 with the following significance: Suppose that A ⊂ D∗ is a closed annulus
with outer boundary that of D∗ and with C1 inner where |u| < 1

2ρ
′. Suppose

in addition that u : A → D∗ is a twice differentiable, 1–1 embedding whose
image is the annulus in D∗ where κ−1

1 ρ′≤ |u|, and is such that |∂̄u|<κ−1
2 |∂u|.

This function u must restrict to the annulus in D∗ where ρ′≤ |u| ≤ (1− ε)ρ
so as to have the form u(u) = θu+ r with |θ| = 1 and with |r| < ε.

Proof of Lemma A.8. Suppose that no such constants exist. There would in
this case exist numbers ε and ρ′ as in the statement of the lemma, plus
sequences {Ak ⊂ D∗}k=1,2,... and {uk}k=1,2,... of the following sort: First,
each Ak is an annulus of the sort under consideration. Meanwhile, each
uk : Ak → D∗ is a map as described in the statement of the lemma, and in
particular one that sends Ak to the annulus in D∗ where k−1ρ′≤ |u| and is
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such that |∂̄uk| ≤ k−1|∂uk|. It follows from Lemma A.7 and what is said in
Chapter II.5 of [LV] that the sequence {uk} will have a subsequence (hence
renumbered consecutively from 1) that converges uniformly in the C0 and
L2

1;loc topologies on compact subsets of D∗−{0} to a 1− 1 holomorphic self
map of D∗ that sends 0 to 0. The latter must have the form u → θu for
θ ∈ C having norm 1. It follows as a consequence that |uk − θu| < ε for all
k sufficiently large on the annulus where ρ′ < |u| < (1 − ε)ρ. �

Part 7 : Since zλ′ obeys the equation on the left hand side of (A.12) with
|αλ′ | � 1, when ρ < c−1

δ and ε < εr, Lemma A.7 can be applied to see
that the critical points of zλ′ lie inside a disk in D∗ centered at the origin
with radius no greater than c0(r/ρ)3/4ρ. This said, fix r < c−1

0 ρ to guarantee
that these critical points lie inside the disk D∗∗ ⊂ D∗ with radius 10−4ρ.
View zλ′ as a C-valued function on D∗ −D∗∗, and it follows that the latter
has an nth root that gives a bonafide m− 2 times differentiable coordinate
for D∗ − D∗. Use uλ′ to denote this coordinate. It is a consequence of the
left-hand equation in (A.12) that the map u→ uλ′(u) obeys

(A.14) ∂̄uλ′ − αλ′

(
ūλ′

uλ′

)n−1

∂̄ūλ′ = 0.

This equation is used in conjunction with Lemmas A.6–A.8 to prove

Lemma A.9. Given δ, ρ, and also ε1 > 0, there exists κ2 > κ1 > 100 with
the following significance: Suppose that J ′ has Cm distance less than κ−1

1

from J , that ρ < κ−1
1 , and that C ′ has d-distance less than κ−1

2 from C. Then
uλ′(u) has the form uλ′(u) = θu+ r on the annulus where 10−4ρ < |u| < 7

8ρ
with θ ∈ C having norm 1 and with |r| < ε1 and |dr| < ε1.

Proof of Lemma A.9. It is a consequence of what is said in Lemma A.6 that
the function αλ′ in (A.9) has absolute value no greater than ρn when ε < ρn.
As noted earlier, given r > 0, there exists εr > 0 such that if ε < εr, then
zλ′ has none of its critical values where rn < |zλ′ | ≤ ρn. This and what was
just said about αλ′ imply via Lemma A.7 that zλ′ has no critical points on
the part of D∗ where c0(r/ρ)1/c0ρ < |u| ≤ ρ. Given this last fact and the
aforementioned bound on |αλ′ |, Lemma A.8 supplies constants c1, c2 > 1
such that if ρ < c−1

1 and ε < c−1
2 , then uλ′ can be written on the annulus

where 10−5ρ < |u| < 15
16ρ as uλ′(u) = θu + r where θ ∈ C has norm 1 and

|r| < ε1. This understood, it remains yet to bound |dr1|. To do so, use (A.14)
to see that r obeys an equation of the form

(A.15) ∂̄r − αλ′

(
z̄λ′

zλ′

)1−1/n

∂̄r̄ − αλ′

(
z̄λ′

zλ′

)1−1/n

θ̄ = 0.

Let α denote the function that appears in the third bullet of Lemma A.5.
Given that αλ′ = α(zλ′ , wλ′), given the first derivative bounds from Lemma
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A.6, and given that |r| < ε1, the elliptic boot-strapping techniques from
Chapter 6 in [Mo] applied to (A.15) give the desired bound on |dr|. �

Part 8 : Compose that map u → (zλ′ , wλ′) with a rigid rotation of the
disk so as to make the constant θ from Lemma A.9 equal to 1. Use the same
notation, zλ′ and wλ′ for the result of this composition.

If ρ < c−1
0 , if r < c−1

0 ρ then there is a constant, εr > 0 such that if ε < εr,
two parametrizations of the 2n10−4nρn < |z| < (7

8)n part of D′ are available.
The first is via the map

(A.16) u→ (z = zλ(u) + ηz(u), w = wλ(u) + ηw(u)).

where ηz, ηw, and their derivatives to order m− 3 are bounded by cρε. The
second is via the map

(A.17) u→ (z = zλ′(u), w = wλ′(u))

The latter has the advantage that it extends over the whole of D∗. The plan
is to use this extension to extend (A.16) over D∗ too.

The first step in this task uses Lemmas A.5 and A.9 to bound the distance
between their respective images. In particular, these lemmas assert that the
z-coordinates of the images by these respective maps can be written as

(A.18) u→ zλ(u) + ηz(u) = un + e and u→ zλ′(u) = un + e′

where |e|+ |e′| can be assumed bounded by 10−10nρn, and |de|+ |de′| can be
assumed to be bounded by 10−10nρn−1 if ρ < c−1

δ and ε < c−1
0 ρn.

Granted (A.18), the parametrization of the 10−3n < |z| < (3
4)n part of D′

given by the map u→ (zλ′(u), wλ′(u)) can be composed by a rigid rotation,
u→ λu with λn = 1 so that

(A.19) zλ(u) + ηz(u) = zλ′(v(u)) and wλ(u) + ηw(u) = wλ′(v(u))

where u→ v(u) is a map that has the form v(u) = u+z(u) with |z| < 10−10ρ
and |dz| < 10−10. As a consequence, the parametrization given by (A.16) can
be extended by writing it as

(A.20) u→ (z = zλ′(u+ βρz(u)), w = wλ′(u+ βρz(u))

where u → βρ(u) is given by β(ρ−1|u|) where β : [0, 1] → [0, 1] is a smooth
function that equals 1 on [12 , 1], equals 0 on [0, 1

4 ] and is such that |dβ| < 8.
Use ϕ♦ : Σ → C ′ to denote the parametrization that results by construct-

ing just such an extension for each component of D(δ0).
Part 9 : It is a consequence of what is said in Part 3 that the restriction

of the map ϕ♦ to Σ − (∪D⊂D(δ0)D∗) has L∗ distance at most Kρε from ϕ’s
restriction to this same domain if ε < K−2

ρ . Meanwhile, if ρ< c−1
δ and if

ε < K−2
ρ , it follows from Lemmas A.5 and A.6 that the restriction of ϕ♦ to

where |u| ≤ 2ρ in any disk D ⊂ D(δ0) has L∗ distance at most c0ρ3 from
ϕ’s restriction to this same domain. It follows as a consequence that ϕ♦ has
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L∗ distance bounded by c0ρ
3 from ϕ on the whole of Σ if ρ < c−1

δ and if
ε < K−1

ρ .
It remains yet to investigate the distance from the complex structure, j,

to the almost complex structure on Σ that makes ϕ♦ a J ′-holomorphic map.
Let j♦ denote the latter. View both j and j♦ as sections over Σ of End(TΣ).
Viewed this way, Part 3 says that the Cm−2 norm of j − j♦ is bounded by
K−1

ρ ε on Σ − (∪D⊂D(δ0)D∗).
Now let D ⊂ D(δ0) so as to consider j − j♦ on the |u| ≤ 2ρ part of D.

Consider first the behavior of j. The fourth item in Lemma A.5 implies the
following: Given Δ > 0, there exists RΔ > 1 such that if J ′ has C2m distance
less than 1/RΔ from J , then

(A.21)
∣∣∣∣J
(
ϕ∗

∂

∂u

)
− ϕ∗

∂

∂u

∣∣∣∣
/ ∣∣∣∣ϕ∗

∂

∂u

∣∣∣∣ ≤ Δ.

Meanwhile, (A.12) and Lemma A.6 imply that there exists R′
Δ> 1 such

that if ρ < 1/R′
Δ, then (A.21) also holds with J ′ replacing J and with

ϕ♦ replacing ϕ. These two versions of (A.21) with what was said in the
preceding paragraph imply that |j − j♦| ≤ c0Δ.

Part 10 : Introduce the reference almost complex structure j0 from Part 2
of Section 5.1 of this Appendix and the corresponding decomposition TΣC =
T 1,0

0 Σ⊕T 0,1
0 Σ into forms of type (1, 0) and (0, 1) as defined by j0. This done,

view j and also j♦ as homomorphism from T 1,0
0 Σ to T 0,1

0 Σ with everywhere
norm less than 1. The homomorphism j comes from the disk V1, but this
is not necessarily the case for j♦. The next lemma is used to deal with this
event. This lemma refers to the d∗ distance between self maps of Σ. This
distance is defined as in (A.2) using Σ in lieu of X.

Lemma A.10. Given an almost complex structure, j, from V1, and given
τ > 0, there exists κτ > 1 such that the following is true: If j# is an m −
3 times differentiable almost complex structure on Σ with |j − j#| < κ−1

τ ,
then there exists a homeomorphism of Σ which is m− 3 times differentiable
with m-3 times differentiable inverse, with d∗ distance at most τ from the
identity, and that pulls back j# to a complex structure given by an element
in V1 with distance at most τ from j.

Proof of Lemma A.10. Let exp : TΣ → Σ denote the metric’s exponential
map. The desired homeomorphism will have the form exp(v) where v is a
suitably chosen section of TΣ. To elaborate, a map from Σ to itself of this
sort will pull back j# to give an element from V1 if the (1, 0) part of v obeys
an equation with the schematic form

(A.22) ∂̄v1,0 + (1 − ΠV )a = 0
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where the notation is as follows: First, ΠV is the L2 orthogonal projection
to V . Second, a is a section of T 0(1,0)Σ⊗T 0(0,1)Σ that is determined apriori
by v, j and j#; it obeys

• |a| ≤ (1 − c−1
0 )|∂v| + c0 supΣ |j − j#|,

• |a[v] − a[v′]| ≤ (1 − c−1
0 )|∂(v − v′)| + c0|v − v′| |∇v|.

(A.23)

Granted (A.23), a straightforward construction using the contraction map-
ping theorem in conjunction what is said in Theorems 3.5.2 and 5.4.2 in
[Mo], and in Chapter 6 in [Mo], finds a Holder continuous section, v, of TΣ
such that exp(v) gives the desired homeomorphism. �

Given τ > 0 this lemma can be applied with j# = j♦ when Δ from Part
9 is less than c−1

0 κτ . Let ψτ denote the resulting homeomorphism and let jτ

denote the resulting almost complex structure. Then (ϕ♦ ◦ ψτ , J ′, jτ ) ∈ Pm

is such that ϕ♦ ◦ ψτ maps Σ to C ′ and has d∗ distance at most c0(τ + ρ2)
from ϕ. Meanwhile, and jτ − j has norm less than τ .

This last conclusion implies what is asserted in Proposition A.2.

5.3. The manifold structure on Me,k. This part of the appendix focuses
on the manifold structure for the space Me,k. The discussion contains proofs
for Proposition 3.2 and 3.3.

To start, fix J ∈ Jm and introduce Me,k|J as defined in the previous
part of this appendix. The first task is to define the coordinate charts in
Me,k|J that give the latter its manifold structure when J ∈ J is from a
suitable residual set. As explained below, this set can be taken to be the set
of regular values for the map πJ . In any event, fix a subvariety C ∈ Me,k|J
and a point (ϕ, J, j) ∈ Pm such that ϕ(Σ) = C.

Lemma A.11. Suppose that k > 1. Then there exists a neighborhood in
π−1
J (J) of (ϕ, J, j) such that the map from the latter to Me,k|J defined by the

rule (ϕ′, J, j′) → ϕ′(Σ) defines a 1–1 homeomorphism onto an open neigh-
borhood of C. In the case when k = 0 or k = 1, this map is 1–1 up to the
action of the group of j-holomorphic diffeomorphisms of Σ.

By way of explanation with regard to the k = 0 and k = 1 cases, note
that in the case k = 0, the vector space V is zero dimensional, and there is
just a single complex structure to consider, j. Let (ϕ1, J, j) denote any given
point in Pm. Then composition of ϕ1 with a j-holomorphic diffeomorphism
of S2 produces a new element, (ϕ2, J, j) ∈ Pm such that ϕ1(Σ) = ϕ2(Σ). To
say something about the case k = 1, fix an element (ϕ1, J, j1) ∈ Pm. There
exists now a 2-dimensional torus of j1-holomorphic diffeomorphisms of Σ;
and any such diffeomorphism can be composed with ϕ1 to produce a new
element (ϕ2, J, j1) ∈ Pm with ϕ1(Σ) = ϕ2(Σ). If j1 is sufficiently close to j in
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V1, then the respective groups of j1 and j-holomorphic diffeomorphisms are
canonically isomorphic. Such an isomorphism is used to define the action of
the space of j-holomorphic diffeomorphism on a neighborhood of (ϕ, J, j) in
π−1
J (J).

Proof of Lemma A.11. The existence of a neighborhood of (ϕ, J, j) that
maps onto a neighborhood of C follows from Proposition A.2. Proposition
A.2 asserts that the map in question is an open map. It remains only to
establish that the neighborhood can be chosen so as to guarantee that the
map is 1–1. To see why this is, suppose that (ϕ1, J, j1) and (ϕ2, J, j2) are both
close to (ϕ, J, j) and are such that ϕ1(Σ) = ϕ2(Σ). In particular, suppose
that ε > 0 has been specified and that D∗(ϕ,ϕ1)+||j−j1||∞ < ε, and (ϕ2, j2)
obey this same inequality. This being the case, the map ϕ1 can be written
as expϕ(ϕ′

1) where exp : TX → X is the metric’s exponential map and ν1

is a section of ϕ∗TX with norm ||ϕ′
1||1,2;υ ≤ c0ε. Likewise, the map ϕ2 is

defined by a corresponding section, ϕ′
2, of ϕ∗TX. Let D∗ denote the (ϕ, J, j)

version of the operator in (A.6). It follows from what is said surrounding
(A.7) and (A.8) that the pair (ϕ′

2−ϕ′
1, j2− j1) can be written as v+w where

v = (ϕ′, j′) ∈ ker(D∗) and w = (ϕ′′, j′′) obeys

(A.24) ||ϕ′′||1,2;υ + ||j′′||∞ ≤ c0ε||ϕ′||1,2;υ.

To continue, let η denote the (1, 0) part of ϕ′. To say that v ∈ ker(D∗)
asserts neither more nor less than the fact that (η, j′) obeys (A.6). This
understood, let Δ ⊂ Σ denote the set of critical points of ϕ. Write ϕ∗TX on
C −Δ as the direct sum N ⊕N⊥ as in Part 2 of Section 2.3 and write D in
block diagonal form with respect to this splitting as done in (2.11). Write η
as η = (η0, η1) with η0 a section of N and with η1 a section of N⊥. Given
that ϕ1(Σ) = ϕ2(Σ), the following is a consequence of (A.24): Fix δ > 0
and let D(δ) ⊂ C denote the union of the disks of radius δ with centers at
the points in Δ. With δ fixed, then the norm of η0 on C − D(δ) must be
everywhere much less than that of η1 if ε is small. In particular, given δ > 0
and τ > 0, there exists εδ,τ > 0 such that if ε < εδ,τ , then it must be the
case that |η0| ≤ τ |η1| at all points in C −D(δ).

To see what to make of this, note first that (2.11) and (A.6) imply that
• ||j′||∞ ≤ cδτ ||ϕ′||1,2;υ,
• |∂̄η1| ≤ cδτ |η1| at all points in C −D(δ).

(A.25)

Given that the operator D in (2.5) is elliptic, and given (A.6), the first
bullet of (A.25) prevents ϕ′ from having the preponderence of its L2 norm
concentrated in D(δ). Given the second bullet in (A.25), this is possible
when δ < c−1

0 and T < c−1
0 only if η1 differs by less than c−1

0 ||η1||1,2;υ from
its L2 orthogonal projection to the kernel of ∂̄. This means that η1 = 0 when
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the genus, k, of Σ is greater than 1; for ker(∂̄) = 0 in this case. Granted this
and the remarks in the preceding paragraph, this implies (ϕ′, j′) = 0 when
ε < c−1

0 . This is to say that (ϕ1, j1) = (ϕ2, j2).
Consider next the case when k = 0. In this case, Σ = S2 and there is just

a single complex structure up to diffeomorphisms. This the case, V = {0}
and j1 = j2 = j. Composing ϕ2 with a j-holomorphic diffeomorphism results
in a J-holomorphic map with the same image as the original. This group of
holomorphic diffeomorphisms is generated by the elements in the kernel of
∂̄. This understood, composition of ϕ2 with a suitably small diffeomorphism
produces a version of η1 that is L2 orthogonal to the kernel of ∂̄ and thus is
equal to zero. This version of ϕ2 is therefore equal to ϕ1.

Consider next the case of k = 1. In this case, the map ϕ2 can be composed
with a suitablly small normed, j2-holomorphic diffeomorphism of Σ so that
the resulting version of η1 is again L2 orthogonal to the kernel of ∂̄. The
result of this composition makes ϕ2 equal to ϕ1 and so j2 = j1 as well. �

This last lemma plays the central role in the

Proof of Proposition 3.2. What follows proves the proposition also for the
cases when J ∈ Pm after modifying the assertion about the manifold struc-
ture as follows: The manifold structure is of differentiability class m− 1.

Consider first the case when k > 1. Fix (ϕ, J, j) ∈ Pm so that ϕ(Σ) = C.
Then Σ with the complex structure j is the model curve. Lemma A.11 finds a
neighborhood of (ϕ, J, j) ∈ π−1

J (J) on which the map that sends an element
(ϕ′, J, j′) ∈ π−1

J to ϕ′(Σ) defines a homeomorphism to a neighborhood of C
in Me,k|J . Use ΦJ to denote the latter map.

Meanwhile, it follows from what is said in Part 3 of Section 5.1 of this
appendix that there exists such a neighborhood that is homeomorphic to the
zero locus of an m−1 times differentiable (or infinitly differentiable if J ∈ P)
map from a ball about the origin in the kernel of DC to the cokernel of DC .
Moreover, the latter map sends 0 to 0, and the homeomorphism in question
sends 0 to (ϕ, J, j). The map from the ball in kernel(DC) is the restriction of
f in (A.7) to elements of the form (v, 0), and the relevant homeomorphism
is the restriction to such elements of the map Ψ in (A.8). This restriction is
denoted in what follows by ΨJ .

If DC has trivial cokernel, the domain of the homeomorphism ΦJ ◦ΨJ is
a ball about the origin in a vector space of dimension ιe = e · e − c · e. As
a consequence, this homeomorphism defines a coordinate chart for a neigh-
borhood of C. To see that the coordinate transition function between two
such charts is suitably differentiable, remark first that the inverse function
theorem gives π−1

J (J) the structure of an m − 1 times differentiable man-
ifold (or infinitely differentiable if J ∈ P) at the points (ϕ, J, j) where the
cokernel of D(·) is trivial. The manifold coordinate charts are given by the
homeomorphism ΨJ . As a consequence, the coordinate transition functions
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for two such overlapping charts in π−1
J (J) are m − 1 times differentiable

or infinitely differentiable as the case may be. This implies directly that
the corresponding coordinate transition functions between the intersecting
coordinate charts in Me,k|J are also m− 1 times differentiable or infinitely
differentiable.

The arguments in the cases when k = 0 or k = 1 are essentially identical
to those above with the proviso that one must take into account that the
holomorphic vector fields on Σ define elements in the kernel of the operator
DC . This is done by viewing ΦJ ◦ΨJ as a map from a ball about the origin
in kernel(DC)/kernel(∂̄) to a neighborhood of C in Me,k|J . This change
requires mostly cosmetic modifications to the arguments given above and so
the details are omitted. �
Proof of Proposition 3.3. This proposition is also proved for the case when
J is replaced by Jm but for the modification to read that Me,k|J is a
manifold of class m− 1. The proposition follows from Proposition 3.2 if all
C ∈ Me,k|J versions of DC have trivial cokernel. This is guaranteed if J is
a regular value of the map πJ . The Smale-Sard theorem [Sm] guarantees
that this is so for almost complex structures from a residual set in Jm.
Proposition A.1 guarantees that this is so for almost complex structures
from a residual set in J . �

5.4. Proof of Proposition 3.5. The proof that follow for Proposition 3.5
also prove the assertion for the J ∈ Jm versions of Me,k|J with it understood
that the adjective ‘smooth’ should be replaced by ‘m−2 times differentiable’.

To start, fix C ∈ Me,k|J and an element (ϕ, J, j) ∈ Pm such that ϕ(Σ) =
C. Consider first the case when k > 1. The arguments in the previous
part of the appendix establish the following: There is a neighborhood N ⊂
Pm with an embedding, ΨJ,C , onto a neighborhood of C that maps the
element (ϕ, J, j) to C. The embedding sends any given (ϕ′, J, j) to ϕ′(Σ).
Use ΨJ,C to identify N with ΨJ,C(N ) ⊂ Me,k|J . Define next a map, ϑ :
N × (×dΣ) → ×dX by the sending a given element ((ϕ′, J, j); (p1, . . ., pd)) to
(ϕ′(p1), . . ., ϕ′(pd)). Introduce GN ⊂ (N × (×dΣ))×dX to denote the graph
of this map; it is a codimension 4d submanifold, thus a manifold of dimension
ιe+2d. The map from GN to N×(×dX) is a suitably differentiable (m-2 times
or infinitely as the case may be) map onto a neighborhood in Me,k,d|J of its
intersection with the submanifold {C}×(×dX) in Me,k×(×dX). Note in this
regard that the map from GN restricts as an embedding onto its image from
a suitable neighborhood of any point (C, (p1, . . . , pd)), (ϕ(p1), . . . , ϕ(pd)) if
no entry of (p1, . . . , pd) maps to a singular point of C.

The collection of the maps just defined give Me,k,d|J the structure of
codimension 2d image variety. The fact that this image variety is a subman-
ifold when k = g follows from the final remark in the preceding paragraph
because all subvarieties in Me,g are non-singular.
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The story in the case k = 0, 1 is analogous but for the necessity of
replacing the neighborhood N with the a ball in the quotient of the kernel
of DC by the subvector space consisting of the kernel of ∂̄.

5.5. Proof of Proposition 3.6. The πd−2-inverse image in Me,k,d of a
point w ∈ ×d−2X is as asserted if w is a regular value the map ϑ : P ×
(×d−2Σ) → ×d−2X. This understood, then the first claim by the proposition
follows because the set of regular values of a smooth map between finite
dimensional manifolds is a residual set. It proves convenient to prove the
remaining assertions, those of the four bullets, in reverse order.

To prove the fourth bullet, use Proposition 3.5 to conclude that Me,g,d−2

is a smooth manifold. The bullet now follows because the set of regular
values of a smooth map between smooth, finite dimensional manifolds is a
residual set.

To start the proof of the third bullet, reintroduce the set X from the proof
of Proposition 1.1 in Section 4.1. Given Ξ ⊂ X , reintroduce also MΞ =
×(e′,k′)∈ΞMe′,k′ and MΞ,d ⊂ MΞ × (×dX). Recall that the latter is the
subspace whose elements are of the form ((C1, . . . , Cn), (x1, . . . , xd)) with
{xm}1≤m≤d ∈ ∪1≤i≤nCi. Here, n denotes the number of elements in Ξ. As
noted in the proof of Proposition 1.1, the set MΞ,d ⊂ MΞ × (×dX) is a
codimension 2d image variety that is given as the image of a map from a
manifold whose dimension is 2d more than that of MΞ. Use PΞ,d to denote
this manifold and use pΞ,d to denote the corresponding map. The set of points
in ×d−2X that are regular values for every Ξ ∈ X versions of pΞ,d ◦ πd−2

is a residual set. Take w is from this set. The various dimensions of the
spaces {PΞ,d}Ξ∈X , with (3.7) imply that π−1

d−2(w) is empty unless Ξ has but
one entry, and this is either (e, g), (e, g − 1) or (e, g − 2). Given this last
fact, the assertion of the third bullet of Proposition 3.6 follows directly from
Proposition 3.1.

Proposition 3.1 also implies the first part of the assertion in the second
bullet of Proposition 3.6. To prove the second part of the second bullet,
introduce first Me,g−2 to denote the closure in Me of Me,g−2. Given an
integer N ≥ 1, use ON ⊂ Me,g−2 to denote the subset of elements with
d-distance greater than N−1 from Me,g−2 −Me,g−2. Now suppose that w ∈
×d−2X is such that π−1

d−2(w) ⊂ Me,g−2,d is finite. As noted, this is a residual
set. A given point w in this set has an open neighborhood, o

N
w ⊂ ×d−2X,

that is characterized as follows: A point w′ is in o
N
w if π−1

d−2(w
′) has finite

intersection with π−1
M (ON ). Denote by ON the union of all of the various

versions of o
N
w . This is an open and dense set.

Now suppose that w ∈ ON is a point with the following property:
If C ∈ π−1

d−2(w) and πM(C) ∈ ON , then no singular point of C is an
entry of w. This set is open, and it is also dense in ON . Here is why it
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is dense: Suppose a singular point of C coincides with an entry of w. Mov-
ing this entry to any nearby point in C will not change C, and so not move
C’s singular points. Let ON ′ ⊂ON denote this open, dense set. This set is
open and dense in ×d−2X. Therefore, O′ = ∩N=1,2,...O

N ′ ⊂ ×d−2 X is a
residual set.

The proof of the assertion made by the first bullet of Proposition 3.6
requires the following additional observation: There is an open and dense
subset in ×d−2X that obeys the conclusions of the second bullet and whose
πd−2-inverse image in Me,k,d for all k < g − 2 is empty. To see why, let
O denote this set. Meanwhile, let Ô ⊂ ×d−2X denote the subset whose
πd−2-inverse image is respectively finite in Me,g−2,d and empty in all k <
g − 2 versions of Me,k,d. As argued above, Ô is dense in ×d−2X, and it is a
consequence of Proposition 3.1 that this set Ô also open. Given that O ⊂ Ô
is dense, and it is enough to prove that O is also an open subset of Ô. To
this end, remark that each N ≥ 1 version of ON ′

as defined in the preceding
paragraph is open, and so ON ′ ∩ Ô is open. Meanwhile, each w in O has a
neighborhood in Ô that lies in some N ≥ 1 version of ON ′

.
Consider now the assertion made by the first bullet of Proposition 3.6.

To start, introduce the version of the space P|J that is defined in Part (a)
in this appendix using the given almost complex structure J for the class
e and genus g − 1. Let Σ denote the genus g − 1 surface that is used to
define P|J . If (ϕ, j, J) ∈ P|J , then there are precisely 2 points in Σ that have
the same ϕ-image. The map ϕ embeds the complement of these two points,
but embeds only some neighborhood of each. Let P♦ ⊂ P|J ×Σ denote the
subset of the form ((ϕ, j, J), z) where z is one of these two special points.
This P♦ is a smooth, 2d−2-dimensional manifold, and the restriction to P♦
of the projection from P|J × Σ to its first factor is a 2-1 covering map.

For each i ∈ {1, . . . , d − 2}, use Xi ⊂ P♦ × (×d−2Σ) to denote the codi-
mension 2 submanifold of points (((ϕ, j, J), p), (p1, . . . , pd)) where p = pi.
Since P♦× (×d−2Σ) has dimension 4d− 6, so each i ∈ {1, . . . , d− 2} version
of Xi has dimension 4d− 8. Meanwhile, define ϑ : P♦ × (×d−2Σ) → ×d−2X
by the rule

(A.26) (((ϕ, j, J), p), p1, . . . , pd−2) → (ϕ(p1), . . . , ϕ(pd−2)).

This is a smooth map. For each i ∈ {1, . . ., d−2}, let ϑi denote the restriction
of ϑ to Xi. Let O ⊂ ×d−2X denote the open, dense set that is defined two
paragraphs back, and let O# ⊂ O denote the residual set of points that are
simultaneous regular values for ϑ and for each ϑi. In particular, if w ∈ O#,
then there are at most a countable set of points ϑ−1(w) that lie in Xi, and
these points have no accumulations.

The last remark has the following consequence: Let w ∈ O#. Then there
is at most a countable subset of subvarieties from Me,g−1,d−2 in π−1

d−2(w)
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that have their singular point at an entry of w. Moreover, this subset must
be finite. Indeed, were this set infinite, then any limit point must converge in
Me × (×d−2X) to a point in Me,g−2,d−2 that lies in the πd−2-inverse image
of w and has a singular point at an entry of w. But the condition that w ∈ O
forbids this event.

5.6. Proof of Proposition 3.7. The proof has 13 parts. Part 1 proves the
assertion of the first bullet. Part 2 proves item (a) of the second bullet, and
parts 2–7 prove item (b) of the second bullet. With regard to the other items
in the second bullet, part 8 proves item (c), part 9 proves item (d), Part 10
proves item (e) and parts 11–13 prove item (f).

Part 1 : This part of the proof considers the first bullet in the proposition.
To this end, fix n ∈ {0, 1, 2} and let Me,g−n,2d−4 ⊂ Me,g−n × (×d−2X) ×
(×d−2X). In the case n = 0, this is a smooth manifold of dimension 6d− 8;
and for n > 0, it is an image variety of dimension 6d−8−2n. Write the map
π2d−4 as πd−2 × πd−2. It maps a 6d− 8− 2n dimensional manifold to one of
dimension 8d− 16. Thus, if d > 4, then there is an open and dense subset of
pairs (w,w′) ∈ (×d−2X)× (×d−2X) such that both are regular points, they
have distinct entries, and such that there is no curve in {Me,g−n}n=0,1,2

that contains all entries of both w and w′. This the case, it follows from
Proposition 3.1 that there exists κ > 1 such that the d-distance between
any curve in Mw and any curve in Mw′

is at least κ−1.
Part 2 : This part begins the arguments for the assertions that are made

by the second bullet. To this end, remark that item (a) is straightforward,
so the first concern is that of item (b).

Introduce the version of the space P that is defined in part (a) in this
appendix using the cohomology class e and genus g−2. Define ϑ1 : P×Σ → X
so as to send a given point ((ϕ, j, J), p) → ϕ(p). Introduce next the map
ϑd−2 : (P × Σ) × (×d−2Σ) → ×d−2X that sends any given ((ϕ, j, J), p),
(p1, . . . , pd−2) to (ϕ(p1), . . . , ϕ(pd−2)).

Fix J ∈ ϑ, a regular value for the map from P to J . If x is a regular
value of ϑ1 on P|J ×Σ, then ϑ−1

1 (x) is a submanifold of dimension (2d− 6)
in P|J × Σ and so the image via ϑd−2 of ϑ−1

1 (x) × (×d−2Σ) is the image of
a smooth map from a manifold of dimension 4d− 10 into one of dimension
4d−8. As a consequence, there is a residual set in ×d−2X with the property
that there is no subvariety in J ’s version of Me,g−2 that contains x and all
entries of w. Moreover, if w is a regular, value, there are but a finite number
of curves in Me,g−2 that contain all entries of w and so there is a positive
lower bound to the distance between x and the union of all such curves.
These observations establish item (b) of Proposition 3.7 when x is not a
critical value of ϑ1 on P|J × Σ.

What follows explains how to deal with critical values of ϑ1. To this
end, suppose that the set of critical points of ϑ1 on P|J × Σ is an image
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variety with at least codimension 3. This means that any given critical point
has a neighborhood in this critical locus that is the image of a manifold
with components of dimension 2d − 5 or less. Thus, there is a residual set
C ⊂ ×d−2X with the following property: Let w denote a point from C. Then
ϑ−1

d−2(w) has no points of the form ((ϕ, j, J), p, (p1, . . . , pd−2)) where the point
((ϕ, j, J), p) is a critical point of ϑ1.

With this last point in mind, suppose that a given point ((ϕ, j, J), z) ∈
P|J ×Σ is not in the critical point locus of ϑ1 on P|J ×Σ, but even so maps
via ϑ1 to x. Such a point has a neighborhood in P|J×Σ that intersects ϑ−1

1 (x)
as a codimension 2d− 6 submanifold. Granted the preceding, it follows that
there exists a residual set in ×d−2X with the property that if w is in this
set, then there is point ((ϕ′, j′, J), z′) from this neighborhood and no point
(p1, . . . , pd−2) ∈ ×d−2Σ which maps via ϑd−2 to w. It then follows from what
was said in the preceding paragraph that if w is also from the residual set C
and is a regular value, then there is a positive lower bound to the distance
from x to any curve in Me,g−2 that goes through all entries of w.

Given the conclusions from these last three paragraphs, item (b) of Propo-
sition 3.7 follows with a proof of the following claim:

There exists a residual set in J such that if J comes from this set,
then the critical point locus of the corresponding version of ϑ1

is a dimension 3 image variety.

(A.27)

By the way, a 3-dimension critical locus is expected given the following
observation: If d is large, then the subset of non-surjective linear maps from
R

2d−6 to R
4 is a dimension 3 image variety in the Euclidean space of (2d−6)

by 4 matrices.
Part 3 : This part of the proof, and Parts 4–7 set up the machinery to

analyze the critical point structure of the map ϑ1 for generic J . The con-
structions made here and in Parts 4–7 to analyze the set of critical points
of ϑ1 are also used subsequently with minor modifications to prove items
(c)–(f) of Proposition 3.7 and to prove Proposition 3.8.

The analysis that follows of ϑ1’s critical locus uses the notation from part
(a) of this appendix, and in particular the spaces E∗, Jm, Pm and the vector
bundle V. Fix n ∈ {0, 1, 2, 3} and introduce Fn → Pm to denote the restric-
tion from (E∗×Jm ×V1) × Σ of the space of n-dimensional orthonormal
frames in the bundle (TE∗⊕V )⊕TΣ. Note that this fiber bundle has a free
action of the orthogonal group SO(2d− 4 − n). View Fn and the bundle V
as sitting over Pm × Σ.

Define a fiber preserving map over Pm × Σ from the fiber bundle Fn

to the vector bundle ⊕2d−4−n(V ⊕ ϑ∗1TX) by the following rule: At a given
((ϕ, j, J), p), this map sends an n tuple (((ϕ1, j1), v1) . . . , ((ϕ2d−4−n, j2d−4−n),
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v2d−4−n) to the element whose component in the ϑ∗1TX part of the ith
summand is ϕi|p + ϕ∗vi and whose component in the V part of the ith
summand is the (ϕi, ji) version of the section of ϕ∗TJ(1,0)X ⊗ T 0,1

j Σ that is
defined by the left-hand side of (A.6). Use X to denote this map.

By way of motivation for introducing Fn and the map X, note that a
given element ((ϕ, J, j), p) ∈ P|J ×Σ is a critical point of the map ϑ1 if and
only if there is a dimension 2d − 7 linear subspace in T (P|J × Σ)|((ϕ,j,J),p)

with the following property: If ((ϕ′, j′), v) is in this space, then the vector
ϕ′|p + ϕ∗v = 0 in ϕ∗TX|p. Here, ϕ∗ denotes the differential of ϕ, viewed as
a homomorphism from TΣ to ϕ∗TX. Keep in mind for what follows that a
given (ϕ′, j′) ∈ C∞(Σ, ϕ∗TX) ⊕ V lies in the tangent space at (ϕ, j, J) to
P|J if and only if (A.6) holds.

As is explained momentarily, the locus where X hits the zero section is
an m− 3 times differentiable manifold with a free action of SO(2d− 4− n).
Given that this is true, then the projection induced map from X−1(0) to Jm

is a Fredholm map. Furthermore, if m is large, the Sard-Smale theorem can
be invoked to conclude that there is a residual set of regular values in Jm.
An argument like that given to prove Proposition A.1 proves that there is a
residual set of regular values in J for the map from X−1(0)|J to J . Let J∗
denote such an almost complex structure. The inverse image over J∗ in Fn

is empty when n < 3, and it is a manifold with a free action of SO(3) whose
quotient has dimension 3 if n = 3. By construction, the image in P|J∗ × Σ
of this manifold via the projection map is the critical locus of the restriction
to P|J∗ × Σ of ϑ1.

Part 4 : The locus X−1(0) is a submanifold near a zero of X if the dif-
ferential of X is surjective at the point. This understood, what follows
analyzes this differential. To start, let ((ϕ, j, J), p), p = (((ϕ1, j1), v1) . . . ,
((ϕ2d−4−n, j2d−−4−n), v2d−4−n)) denote a given zero of X. A tangent vec-
tor to the SO(2d − 4 − n) quotient at the orbit of this zero lifts to give
the following three-part data set: The first part of the data is an ele-
ment w = (ϕ′, j′, J ′) ∈ TPm, this a solution to (A.5). The second part
is a tangent vector v to Σ at p; and the third part is a 2d − 4 − n tuple
q = (((λ1, k1), x1), . . . , ((λ2d−4−n, k2d−−4−n), x2d−4−n)) in (TE∗|ϕ×V )×TΣ|p
that is orthogonal to the span of p.

What follows says what it means for the differential of X at this given
zero in Fn to be surjective: Fix data {(gi, wi)}1≤i≤2d−4−n, with gi a section
of ϕ∗TJ(1,0)X ⊗ T 0,1

j Σ and wi ∈ (ϕ∗TX)|p. First,

(A.28) λi|p+ϕ∗xi+∇vϕi|p+(∇vϕ∗)vi = wi for each i ∈ {1, . . . , 2d−4−n}.
Second, the data {gi}1≤i≤2d−4−n gives the inhomogeneous term in a system
of differential equations that are described next. To this end, fix a point
p′ ∈ Σ, a holomorphic coordinate u for a disk centered at p and coordinates
for a ball in R

4 centered on ϕ(p′). This done, then the image of ϕ appears
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as a map u→ ϕ(u) from a disk centered at the origin in C to a ball centered
at the origin in R

4. Use (ϕi, ji) and (λi, ki) to denote the C∞(Σ;ϕ∗TX)⊕V
components from the respective ith entries of p and q. Write ϕi as a map
u → ϕi(u) ∈ R

4 and write λi as a map u → λi(u) ∈ R
4. Meanwhile write

ϕ′ as a map u → ϕ′(u). Then equation (A.6) for the pair (ϕi, ji) and for
(A.5) for (ϕ′, j′, J ′) and the constraint on (λi, ki) can be written on these
coordinates as

• (∂̄ϕi)J(1,0) + (∇ϕiJ) · (∂̄ϕ)J(0,1) + ji(∂ϕ)J(1,0) = 0.
• (∂̄ϕ′)J(1,0) + (∇ϕ′J) · (∂̄ϕ)J(0,1) + j′(∂ϕ)J(1,0) + J ′(∂̄ϕ)J(0,1) = 0.
• (∂̄λi)J(1,0) + (∇λiJ) · (∂̄ϕ)J(0,1) + ki(∂ϕ)J(1,0) + ji(∂ϕ′)J(1,0)

+ j′(∂ϕi)J(1,0) + (∇ϕiJ) · (∂̄ϕ′)J(0,1) + (∇ϕ′J) · (∂̄ϕi)J(0,1)

+ (∇ϕiJ) · ((∇ϕ′J) · (∂̄ϕ)J(1,0))J(0,1)

+ (∇ϕ′J) · ((∇ϕiJ) · (∂̄ϕ)J(1,0))J(0,1) + (∇⊗2
(ϕi,ϕ′)J) · (∂̄ϕ)J(0,1)

+ J ′ · (∂̄ϕi)J(0,1) + (∇ϕiJ
′) · (∂̄ϕ)J(0,1)

+ (∇ϕiJ) · ((J ′(∂̄ϕ′)J(1,0))J(0,1) + jiJ
′(∂ϕ)J(0,1) = gi.

(A.29)

Here, (·)J(1,0) and (·)J(0,1) denote the respective (1, 0) and (0, 1) parts of
the indicated vector, this as defined by J .

Part 5 : To see about solving (A.28) and (A.29) for a given set
{(gi, wi)}1≤i≤2d−4−n, note first that the operator that sends (λi, ki) to the
section of ϕ∗TJ(1,0)X ⊗ T 0,1

j Σ given near p′ as

(A.30) (∂̄λi)J(1,0) + (∇λiJ) · (∂̄ϕ)J(0,1) + ki(∂ϕ)J(1,0)

has finite dimensional cokernel. Consider first the case where this cokernel is
trivial. Granted that such is the case, then each i ∈ {1, . . . , 2d−4−n} version
of the equation in the third bullet of (A.29) can be solved given any choice of
tangent vector (ϕ′, J ′, j′) to P at (ϕ, J, j). As a consequence, it is enough to
consider the case of (A.28) and (A.29) when all i ∈ {1, . . . , 2d−4−n} versions
of gi are zero. Moreover, the equation in the second bullet of (A.29) can be
solved given any choice of J ′. This understood, the question is whether a
given value for the 2d − 4 − n tuple (λ1|p, . . . , λ2d−4−n|p) can be obtained
from a solution of solution {gi = 0}1≤i≤2d−4−n versions of the equation in
the third bullet of (A.29) as defined using a suitable choice of J ′ and then a
suitable solution (ϕ′, J ′, j′) to the second bullet in (A.29).

To see that the answer to this question is affirmative, take p′ = p so that
the third bullet in (A.29) describes the constraint on the data set (λi, ki)
near p. Fix a small disk D ⊂ C in the domain of the coordinate u very near
the origin on which the map ϕ restricts as an embedding. Take D to contain
the origin in C if ϕ’s differential there is injective. Note in this regard that
ϕ can have at most one critical point. In any event, choose J ′ so that its
pull-back as an endomorphism of ϕ∗TX has support on D and such that it
acts as zero on the tangent space to ϕ(D). This implies in particular that
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J ′(∂̄ϕ) = 0 and J ′(∂ϕ) = 0. This the case, then ϕ′ and j′ are taken to be
zero also, and so the second bullet in (A.29) is satisfied. Meanwhile, the first
and third read

• (∂̄ϕi)J(1,0) + (∇ϕiJ) · (∂̄ϕ)J(0,1) + ji(∂ϕ)J(1,0) = 0.
• (∂̄λi)J(1,0) + (∇λiJ) · (∂̄ϕ)J(0,1) + ki(∂ϕ)J(1,0) + J ′ · (∂̄ϕi)J(0,1)

−J ′ · ∇ϕi(∂̄ϕ)J(0,1) = 0.

(A.31)

Part 6 : To exploit this last equation, let o ⊂ Σ denote the critical point
of ϕ if such a point exists; and let N ⊂ ϕ∗(TX)|Σ−o denote the local normal
bundle, thus the orthogonal complement to the image of TΣ|Σ−o via ϕ’s
differential. In the case o exists the subbundle N nonetheless extends over
o as a subbundle in ϕ∗TX. This extension is defined by using the n = 1
version of (2.2) near o to extend N over o as the span of ∂

∂w . In any case,
let Π: ϕ∗(TX)|D → N |D denote the orthogonal projection and let ηi denote
Πϕi. What follows explains why no constant c > 0 and no unit vector
α = (αi)1≤i≤2d−4−n ∈ R

2d−4−n exist such that the following is true: Set
α · η=

∑
1≤i≤2d−4−n αiηi. Then |α · η| bounds c times the norm of Π · ((∂̄(α ·

η)J(0,1)) on a neighborhood of the origin in C if α · η|0 = 0. Indeed, suppose
that this assertion were false. Then it follows from the top bullet in (A.31)
that |

∏
·d(α · η)| ≤ c|α · η| and so α · η vanishes on the whole of D. As a

consequence, the projection of α · ϕ =
∑

1≤i≤2d−4−n αiϕi to N must vanish
on the whole of Σ− o, and so α · ϕ defines a tangent vector on Σ− o to the
image of ϕ. Given the top line of (A.31), this implies that α · ϕ defines a
holomorphic vector field on Σ. It must therefore vanish identically.

What follows is a direct consequence of the preceding conclusion. There
exists in any given open set in any given neighborhood of the origin a set
of distinct points, none the origin, and with the following property: Let W
denote this set. Let φ denote the map from ⊕2d−4−nR to ⊕u∈WN |u whose
entry in the factor labeled by any given u ∈ W sends (α1, . . . , α2d−4−n) to
the point (∂̄(α · η))|u. Then this map φ is an injection. Fix such a set W ,
but one with no element at the origin

Let (u, u′) → G(u, u′) denote the restriction to D × D of the Green’s
function for the operator on Σ that appears on D as in (A.29). Since (A.30)
depicts a first order, elliptic operator with symbol that of ∂̄, so G(·, ·) can be
described as follows. Fix adapted coordinates (z, w) centered at ϕ(p). Then

(A.32) G(u, u′) = 1
2π

1
u−u′ + O(1).

To continue, suppose that J ′ has support in a union of radius Δ << 1
disks that are centered on the points in the set W . The radius, d, should be
much less than the distance between the points in W and much less than
the distance to the origin. Require in addition that if u ∈ W , then J ′ on
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the radius Δ disk centered at u is as follows: Use parallel transport from
the center of the disk along the radial geodesics to identify the fibers of
ϕ∗Hom(TJ(0,1)X ⊗ TJ(1,0)X) over this radius Δ disk with its fiber over u.
This done, then

(A.33) J ′ = χΔJ
′|u

where χΔ is a positive function with value 1 at the center of the disk, with
integral equal to 1. It follows from (A.32) that the solution to any given
i ∈ {1, . . . , 2d− 4−n} version of the equation in the second bullet of (A.31)
appears in D as

(A.34) Π(λi)J(1,0)|0 = Δ2

(∑
u∈W

1
u(J ′ · (∂̄ηi)J(0,1))|u + ri

)

where

(A.35) |ri| ≤ c Δ
∑
u∈W

|J ′|u|sup|(·)−u|<Δ|∇(∂̄ηi)J(1,0)|.

Here, c ≥ 1 depends on W , but not on Δ if the latter is small.
Given what was said about the map φ, it follows from (A.34) and (A.35)

that J ′ can be chosen when Δ is small so that the vector (λ1|0, . . . , λ4d−2−n|0)
∈ ⊕2d−4−n(ϕ∗TX)|p has any desired value.

Part 7 : What follows explains how to modify the preceding argument for
the case when (A.30) has a non-trivial cokernel. Again take J ′ so that its pull-
back as an endomorphism of ϕ∗TX has support on D and such that it acts
as zero on the tangent space to ϕ(D). This done, then the second equation
in (A.29) is satisfied with ϕ′ = 0 and j′ = 0. The third equation in (A.29)
has left side given by the left side of (A.31) but with the inhomogeneous
term gi on the right-hand side. The operator that is depicted in (A.30) is
Fredholm, and so its cokernel is the kernel of its L2 adjoint. Let x denote
an element in the kernel of this adjoint with L2 norm equal to 1. Such an
element constrains J ′ in the sense that

(A.36) 〈x, J ′ · (∂̄ϕi)J(0,1) − J ′ · ∇ϕi(∂̄ϕ)J(0,1)〉2 = 〈x, gi〉2.
Here, the notation has 〈, 〉2 denoting the L2 inner product on C∞(Σ;
ϕ∗TJ(1,0)X ⊗ T 0,1

j Σ).
To see how to procede, digress momentarily and let u′ ∈ D denote a given

point. Define a linear functional on C∞(Σ;ϕ∗(Hom(TJ(0,1);TJ(1,0))) by the
rule

(A.37) J ′′ → 〈x, J ′′ · (∂̄ηi)J(0,1)〉|u′

Let q denote the dimension of the cokernel of the operator that is depicted
in (A.30), and let {xα}1≤α≤q denote an L2 orthonormal basis for this cok-
ernel. Given u′ ∈ D, denote the xα and ηi version of (A.37) by L(α,i);u′ . Fix
r > 0 but much smaller than the diameter of the disk D. Let Ar ⊂ D denote
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the annulus with inner radius r and outer radius 2r. Fix a set W ⊂ Ar as
done previously. Denote this set by Wr to distinguish it from a subsequent
choice of another version ofW . Fix again Δ = Δr > 0 but much smaller than
the distance between the points in Wr. For each u ∈ Wr, let Dr(u) denote
the disk of radius Δr centered at u. There exists a set Wr(u) ⊂ Dr(u) of
less than c0q points with the following property: The map from the span of
{xα}1≤α≤q to ⊕u′∈Wr(u)(ϕ∗TJ(1,0)X⊗T 0,1

j Σ)|υ′ that sends x→ ⊕u′∈Wr(u)x|u′

is injective. This understood, it follows that the set of linear functionals

(A.38) {L(α,i);u′ : 1 ≤ α ≤ q, 1 ≤ i ≤ 2d− 4 − n, and u′ ∈ ∪u∈WrWr(u)}
are linearly independent if Δr is sufficiently small. Fix next a very small,
but positive number d � Δr such that the disks of radius d

′ centered on
the points in each u ∈Wr version of Wr(u) are disjoint.

With the digression now over, what follows directly explains why it is
sufficient to consider the case of (A.29) where all {gi}1≤i≤2d−4−n are zero.
The key observation in this regard is that the set in (A.38) are linearly
independent. It follows as a consequence that (A.36) can be satisfied for each
index i and each cokernel element x with J ′ chosen to have support in the
various radius d disks centered at the points in ∪u∈WrWr(u). In particular,
in the radius d disk centered on a point u′ from this set, J ′ can be written
as in (A.33) with u′ replacing u and d replacing Δ. This is because such a
choice for J ′ allows the left-hand side of (A.36) to be written as

(A.39) d
2

⎛
⎝∑

u∈Wr

∑
u′∈Wr(u)

〈x, J ′ · (∂̄ηi)J(0,1)〉|u′ + ei

⎞
⎠

where 〈, 〉 denotes the inner product on ϕ∗TJ(1,0)X ⊗ T 0,1
j Σ and where ei

obeys

(A.40) |ei| ≤ c0d
∑

u∈Wr

∑
u′∈Wr(u)

||J ′|u′ ||(∇∂̄ηi)J(0,1)|.

Granted such a choice for J ′, the obstruction to simultaneously satisfying
the inhomogeneous counterpart to the various i ∈ {2d − 4 − n} versions of
the lower equation in (A.31) vanishes.

Before leaving this topic, note that the choice for J ′ as just described can
be made so that

(A.41) |J ′| ≤ c0d
−2||gi||1c(r)

where c(r)≥ 1 depends on r. Here, ‖·‖1 denotes the L1 norm on C∞(Σ;ϕ∗TJ(1,0)X⊗
T 0,1

j Σ). It is a consequence of (A.34) that for very small d, such a choice
leads to a collection {λi}1≤i≤2d−4−n that obeys

(A.42) |λi|(0) ≤ c0‖gi‖1r
−1c(r).
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Now consider solving the lower equation in (A.31) so as to obtain any
given value of ⊕1≤i≤2d−4−nϕ

∗TJ(1,0)X|0. To do this, fix s � r and a set W
as before, but now chosen to lie in the annulus As where s ≤ |u| ≤ 2s. Fix
Δ > 0 as before, but much less than s. Write J ′ as a sum of two contributions,
J ′ = J ′

s + J ′
r where J ′

s has support in the disks of radius Δ centered at the
points in W , and where J ′

r has support in the disks of radius d centered
on the points in ∪u∈WrWr(u). This J ′

r term is used to cancel the cokernel
obstructions given by (A.36) in the case where

(A.43) gi = −(J ′
s · (∂̄ϕi)J(0,1) − J ′

s · ∇ϕi(∂̄ϕ)J(0,1)).

Meanwhile J ′
s is given by (A.33) as in the case of vanishing cokernel. This

done, it follows from (A.34) and (A.42) that

(A.44) λi(0) = Δ2
∑
u∈W

1
u((J ′

s · (∂̄ηi)J(0,1))|u + ri) + ei

where ri is given in (A.34) and (A.35); and where ei obeys

(A.45) |ei| ≤ c0r
−1c(r)Δ2

∑
u∈W

(|(J ′
s · (∂̄ηi)J(0,1))|u| + Δ|J ′|u| sup

As

|∇∂̄ηi|).

What follows is a direct consequence of (A.35), (A.44), and (A.45). With
r fixed, and s chosen so that s� r−1c(r), and with Δ very small, any given
element in the vector space ⊕1≤i≤2d−4−nϕ

∗TJ(1,0)X|0 can be obtained be
realized as (λ1|0, . . . , λ2d−4−n|0) using a suitable choice for the collection
{J ′

s|u}u∈W .
Part 8 : This part argues for item (c) of the second bullet of Propo-

sition 3.7. To this end, introduce the version of the space P that is
defined in part (a) in this appendix using the class e and genus g − 1.
Define ϑ1 : P × Σ → X by the rule((ϕ, j, J), p) → ϕ(p). Meanwhile, use
ϑd−2 : (P ×Σ)× (×d−2Σ) → ×d−2X to denote the map that sends any given
((ϕ, j, J), p), (p1, . . . , pd−2) to (ϕ(p1), . . . , ϕ(pd−2)).

Fix J ∈ J , a regular value for the map from P to J . If x is a regular
value of ϑ1 on P|J ×Σ, then ϑ−1

1 (x) is a submanifold of dimension (2d− 4)
in P|J × Σ and so the image via ϑd−2 of ϑ−1

1 (x) × (×d−2Σ) is the image of
a smooth map from a manifold of dimension 4d − 8 into one of dimension
4d− 8. Let w ∈ ×d−2X denote a regular value. Then ϑ−1

d−2(w) is a discrete set
with no accumulation points such that a subvariety, C, that is parametrized
by this set obeys the condition set forth in item (c) on kernel(DC). It follows
from Proposition 3.1 that ϑ−1

d−2(w) is finite if w is a regular point and if there
are no subvarieties in J ’s version of Me,g−2 that contain x and all entries of
w. Given a regular value x, all of these conditions are satisfied by the points
in residual subset of ×d−2X. Thus, the requirements of item (c) from the
second bullet of Proposition 3.7 are met if x is not a critical value for ϑ1 on
P|J × Σ.
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The case when x is a critical value is handled using the same strategy as
that used in Part 2 to handle the critical values for the genus g − 2 version
of ϑ1. To elaborate, note that the genus g − 1 version of (A.27) also holds
in this case. But for minor notational changes, the proof uses the same
arguments that were used to prove the analogous claim in the preceding
Parts 3–7. Granted that J comes from this set, and so the critical locus
of ϑ1 on P|J × Σ is a 3-dimensional image variety, there exists a residual
subset C ⊂ ×d−2X with the following property: Take the point w from C,
and there are no points of the form ((ϕ, j, J), p, (p1, . . . , pd−2)) in ϑ−1

d−2(w)
where ((ϕ, j, J), p) is a critical point of ϑ1. This understood, the analysis
from the preceding paragraph can also be applied to points in the ϑ1-inverse
image of a given critical value x. The conclusions in this case are the same
as those in the preceding paragraph but for the following requirement: The
residual set in ×d−2X for item (c) of Proposition 3.7’s second bullet must
be subset of the residual set C.

Part 9 : What follows here explains why, given x∈X, there exists a resid-
ual subset in ×d−2X whose points satisfy the requirements set forth by item
(d) of Proposition 3.7’s second bullet. To this end, first choose J ∈ J , a
regular value for the map from P to J such that items (b) and (c) of the
second bullet hold; and in particular take J from the intersection of the
genus g − 1 and genus g − 2 versions of the residual set that is described
in (A.27).

Reintroduce the space P♦ ⊂ P|J × Σ from the proof of Proposition 3.6.
Recall that the projection map to from P|J ×Σ to P|J restricts to P♦ as a 2-
1 covering map. Define ϑ♦1: P♦ → X so as to send any given ((ϕ, J, j), p♦) ∈
P♦ to ϕ(p♦). If x∈X and if a given ((ϕ, J, j), p♦) ∈ ϑ−1

♦1(x) is not a critical
point of ϑ♦1, then ϑ−1

♦1(x) is a smooth, 2d − 6 dimensional manifold in a
neighborhood of ((ϕ, J, j), p♦). Let U denote such a neighborhood. The map
ϑ in (A.26) restricts to U × (×d−2Σ) as a map from a space of dimension
4d−10 to one of dimension 4d−8. This being the case, there is a dense, open
set of points in ×d−2X that are not in the image via ϑ♦1 of U×(×d−2Σ). This
observation establishes item (d) when x is not a critical value of the map ϑ♦1.

Meanwhile, the purely cosmetic modifications to the arguments in Parts
3-7 prove the following: If J ∈J is from a suitable residual set in J , then
the set of critical points of ϑ♦1 is 3-dimensional image variety in P♦. Let
C♦ denote the manifold that maps to this image variety and let f♦ denote
the corresponding map. The composition of the map ϑ in (A.26) with the
product of f♦ and the identity map on (×d−2Σ) gives a map from a manifold
of dimension at most 2d − 1 into a manifold of dimension 4d − 8. As a
consequence, the complement of the image is a residual set. This understood,
if J is chosen from a suitable residual set in J , then the observations in the
preceding paragraph can be applied to the case when x is a critical value of
ϑ♦1. For such J , there is, for any given x ∈ X, a residual subset of ×d−2X
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whose elements obey the requirements that are set forth in items (b), (c)
and (d) from the second bullet of Proposition 3.7.

Part 10 : This part of the proof considers item (e) from the second bullet
of Proposition 3.7. To this end, introduce the versions of the spaces P and
Pm that are defined in Part a) in this appendix using the class e and genus
g. Define ϑ1 and ϑd−2 to denote the respective maps from Pm×Σ×(×d−2Σ)
to X and ×d−2X that send a given element ((ϕ, j, J), p = (p, p1, . . ., pd−2))
to ϕ(p) and to (ϕ(p1), . . . , ϕ(pd−2)).

To motivate what is to come, remark that if J is a regular value for
the projection from P to J , and if w ∈ ×d−2X is a regular value for the
map ϑd−2 on P|J × Σ × (×d−2Σ), then ϑ−1

d−2(w) maps onto the space Mw
X

via the rule that sends ((ϕ, j, J), (p, p1, . . . , pd−2)) to the pair (ϕ(Σ), ϕ(p)).
Such a point lies in Zw if it is a critical point of ϑ1. This is to say that
there is a subspace of the tangent space to ϑ−1

d−2(w) of dimension at least
3 that is annihilated by the differential of ϑ1. Note in this regard that a
tangent vector to ϑ−1

d−2(w) consists of a data set of the form ((ϕ′, j′), p′) where
(ϕ′, j′) is a section of ϕ∗TX, j′ ∈V and p′ ∈ (×d−1TΣ)p. The pair (ϕ′, j′) must
obey (A.6). In addition, (ϕ′, p′) are constrained at each k ∈ {1, . . . , d − 2}
entry of p as follows: Write p′ = (u, u1, . . . , uk). Then

(A.46) ϕ′|pk
+ ϕ∗uk = 0.

The differential of ϕ1 annihilates such a tangent vector if

(A.47) ϕ′(p′) + ϕ∗v′ = 0.

To start the verification of item (3), for n = 3 or 4, let Gn → Pm denote
restriction from (E∗×Jm ×V1) × (×d−1Σ) of the fiber bundle of n dimen-
sional, orthonormal frames in (TE∗ ⊕ V ) ⊕ T (×d−1Σ). This bundle has an
action of SO(n). View this bundle as sitting over Pm × (×d−1Σ). Define
a fiber preserving map from this bundle Gn to the vector bundle ⊕n(V ⊕
(ϑ∗1TX ⊕ ϑ∗d−2T (×d−2X))) as follows: At ((ϕ, J, j), p) ∈ Pm × (×d−1Σ), the
map sends p = (((ϕ1, j1), v1), . . . , ((ϕn, jn), vn) to the element whose com-
ponent in the ith summand has ϑ∗1TX part equal to ϕi|p + ϕ∗vi and has
ϑ∗d−2T (×d−2X) part equal to the d − 2 tuple (ϕi|p1 + ϕ∗vi,1, . . ., ϕi|pd−2

+
ϕ∗vi,d−2) where the notation is such that vi ∈ T (×d−1Σ) is written as
(vi, vi,1, . . . , vi,d−2). Meanwhile, the component in the V summand is the
(ϕi, ji) version of the section of ϕ∗TJ(1,0)X ⊗ T 0,1

j Σ that is defined by the
left-hand side of (A.6). Use X to denote this map.

Introduce as notation Gn,0 to denote Gn’s restriction as a fiber bundle over
the subspace in Pm × (×d−1Σ) where the entries in the factor (×d−1Σ) are
distinct. With very minor and mostly notational modifications, the argu-
ments in Parts 3–7 from this part of the appendix prove that the differential
of X along X−1(0) in Gn,0 is surjective. This being the case, X−1(0)∩Gn,0 is
a manifold as is its SO(n) quotient. Note in this regard that the constraint
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that p have distinct entries is needed so as to employ the Green’s function
construction in Parts 6 and 7 near each of the d− 1 entries of p.

The map from X−1(0) ∩ Gn,0 to Pm that is induced by the various pro-
jections is a Fredholm map when m is large, and so there is a residual
set of regular values when m is large. The arguments used in the proof
of Proposition A.1 can be applied to prove that there is a residual set of
regular values in P as well. Let J ∈ J denote a regular value which is
also a regular value for the map from P to J . Then the space (X−1(0) ∩
Gn,0)|J is a smooth manifold with a free SO(n) action whose quotient is a
smooth manifold of dimension is 4d − 2 + n(2 − n). Use ZJ to denote this
quotient.

Fix such a regular value J ∈ J that is also a regular value for the the
map from P. Let ZJ denote the quotient of (X−1(0) ∩ Gn,0)|J by the afore-
mentioned SO(n) action. Use ϑJ,d−2 : ZJ → ×d−2X to denote the map that
is induced from the map ϑd−2. Let w denote a regular value for this map.
The inverse image via ϑJ,d−2 of w is empty if n = 4 and it is a smooth,
3-dimensional manifold if n = 3. Denote this manifold by Zw

J . This manifold
Zw

J maps to J ’s version of Mw
X ; this is because the space Mw

X is the image of
ϑ−1

d−1(w) ⊂ P|J ×(×d−1Σ) via the map that sends ((ϕ, J, j), (p, p1, . . . , pd−2))
to the pair (ϕ(Σ), ϕ(p)) ⊂ Mw × X. The latter map is denoted in what
follows by fw : Zw

J → Mw
X . The image fw(Zw

J ) ⊂ Mw
X is, by design, the

Zw
X portion of the critical point locus of the map πw

X : Mw
X → X. Note in

particular that the composition of this map fw with the map πw
M from Mw

X
to Mw maps Zw

J onto Zw and thus gives Zw the structure of a 3-dimensional
image variety.

Given that w can be chosen from a residual set in ×d−2X, it follows that
this last space has a residual set whose points satisfy the conditions that are
set forth in items (b)–(e) from the second bullet of Proposition 3.7.

Part 11 : What follows here and in Parts 12 and 13 proves item (f) from
the second bullet of Proposition 3.7. To this end, suppose that J ∈ J is
chosen so as to be a regular value of the maps from X−1(0) ∩ G3,0,X

−1(0) ∩
G4,0 and P. The space (X−1(0) ∩ G3,0)|J × Σ maps to X by the rule that
sends a point (((ϕ, J, j), (p, p1, . . . , pd−2)), p′) to ϕ(p′). As this map is SO(3)
invariant, so it descends as a map, ϑZ,1 : ZJ × Σ → X. Let ZJ,x ⊂ ZJ × Σ
denote the inverse image via ϑJ ,1 of a given point x ∈ X. Use ϑJ ,d−2 to
denote the map from ZJ,x to ×d−2X that sends ((ϕ, J, j), (p, p1, . . . , pd−2), p′)
to (ϕ(p1), . . . , ϕ(pd−2)). If x is a regular value for ϑZ,1, then ZJ,x is a smooth
manifold of dimension 4d − 7. It follows as a consequence that there is
a residual set in ×d−2X of the following sort: If w is from this set, then
ϑ−1
J ,d−2(w) is a smooth, 1-dimensional manifold. The image of this manifold

via the composition πw
X ◦ fw is the space Z(x,w).

The case when x is a critical value of ϑJ ,1 is dealt in manner that is
explained next. The upcoming Part 12 establishes
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Lemma A.12. There is a residual set of regular values in J which is char-
acterized as follows: Take J from this set. Fix x ∈ X. There exists a residual
set of regular points in ×d−2X whose points have the properties listed next.
Let w denote such a point. Then the locus ϑ−1

J ,d−2(w) ⊂ ZJ ×Σ contains no
point of the form (((ϕ, J, j), (p, p1, . . . , pd−2)), p′) with ϕ(p′) = x and p′ = p.

With Lemma A.12 in hand, introduce (ZJ × Σ)′⊂ZJ × Σ to denote the
set of points of the form (((ϕ, J, j), (p, p1, . . . , pd−2)), p′) with p′ neither p
nor any k ∈ {1, . . . , d − 2} version of pk. It is proved in the upcoming
Part 13 that there is a residual set in J such that if J comes from the
latter, then the critical locus of ϑJ,1 in (ZJ × Σ)′ is an image variety of
dimension 3. This being the case, and given Lemma A.12, there exists a
residual set in ×d−2X with the following property: If w comes from this
set, then there are no critical points of ϑJ,1 in ϑ−1

J,d−2(w) ⊂ ZJ × Σ of the
form (((ϕ, J, j), (p, p1, . . . , pd−2)), p′) with p′ = pk for any k ∈ {1, . . . , d− 2}.
For such w, the analysis employed above can be repeated to see that this
residual subset in ×d−2X has the following property: If w is from this set,
then ϑ−1

J,d−2(w) is a 1-dimensional image variety, and thus so is Z(x,w).
The conclusions of these last two paragraphs imply the following: Given

any x∈X, there is a residual set Xx ⊂ ×d−2 X whose points satisfy the
conditions that are set forth in items (b)–(f) of Proposition 3.7. Granted
the preceding, the upcoming Parts 12 and 13 find the desired residual set
in J .

As a parenthetical remark, note that Lemma A.12 has the following
immediate corollary:

Lemma A.13. There is a residual set of regular values in J which is char-
acterized as follows: Take J from this set. Fix x ∈ X. There exists a resid-
ual set of regular points in ×d−2X such that x is not a critical point of
πw

X : Mw
X → X if w comes from this set. In particular, for such w, the space

M(X,w) is a 2-dimensional smooth manifold.

Part 12 : This part proves Lemma A.12. To motivate what is to follow,
digress for a moment for an observation concerning transversality of maps.
To set the stage, suppose that Y is a smooth 4-dimensional manifold and
that {(Zi, φi)}1≤i≤5 is a set whose elements have the form (Z, φ) with Z a
smooth 3-manifold and φ : Z → Y a smooth map. Dimension counting leads
to the following observation: If the maps {φi}1≤i≤5 are suitably generic, then
∩1≤i≤5φi(Zi) = ø.

To apply this last observation, introduce now Z to denote (X−1(0) ∩
G3,0)/SO(3). Then use Z5,X ⊂ ×5Z to denote the subspace of 5-tuples with
the properties listed below. To set the notation for the upcoming list, write
a given element in the product ×5Z as {((ϕα, Jα, jα), pα, [pα])}1≤α≤5. Write
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each α ∈ {1, . . ., 5} version of pα as (pα, qα) with pα ∈ Σ and qα ∈ ×d−2Σ.
With the notation now set, here are the properties:

• Jα = Jβ for each pair α, β ∈ {1, . . ., 5}.
• ϕα(pα) = ϕβ(pβ) for each pair α, β ∈ {1, . . ., 5}.
• If α, β ∈ {1, . . ., 5} are distinct, then qα and qβ have no components

in common.
• If α, β ∈ {1, . . ., 5} are distinct, then ϕα(Σ) �= ϕβ(Σ).

(A.48)

The space Z5,X maps to Jm with the image of a given point {(ϕα, J, jα),
pα, [pα])} being J . It also maps to X with the image of this point given by
the common value of {ϕα(pα)}1≤α≤5. The next lemma says what is needed
about Z5,X .

Lemma A.14. The space Z5,X sits in ×5Z as a smooth manifold such that
the corresponding map to Jm is a Fredholm map with index 5(4d − 8) − 1.
Moreover, this map has a residual set of regular values in P.

This lemma is proved momentarily.

Proof of Lemma A.12. Choose J ∈J to be a regular value for Lemma A.14’s
map to J , and a regular value for the maps from X−1(0)∩G3,0, X−1(0)∩G4,0,
and P to J . In addition, J must be such that the assertion of the first bullet
from Proposition 3.7 holds. The manifold Z5,X |J maps to ×5(×d−2X) via
the restriction of ×5(ϑZ,d−2). As the range space has dimension 1 greater
than the domain, the inverse image of a regular value is empty. This has the
following implication: Fix x ∈ X and there is a regular point w ∈ ×d−2X
such that ϑ−1

J,d−2(w) ⊂ ZJ has no point of the form ((ϕ, J, j), (p, p1, . . . , pd−2))
with ϕ(p) = x. Indeed, there must be a residual set of such points. To see
why this is, let U ⊂ ×d−2X denote the subset of regular points w such that
ϑ−1

J,d−2(w) contains a point with ϕ(p) = x. Then the set ×5U consists of
points (w1, . . . ,w5) that are not regular values for the restriction to Z5,X |J
of the map ×5(ϑJ,d−2). The complement of this set in ×5(×d−2X) consists
of points of the form (w1, . . . ,w5) such that at least one of them is not in
U . Thus, it is the union of five sets, the first of the form ((×d−2X) − U) ×
(×4(×d−2X) and the others obtained from the latter via a cyclic permutation
of its entries. According to Lemma A.14, their union must contain a residual
set. This is possible only if (×d−2X) − U contains such a set. This last
conclusion implies what is asserted by Lemma A.12. �
Proof of Lemma A.14. The space Z5,X is a smooth submanifold of ×5Z as
described by the lemma if the map from ×5Z to (×5 (Jm×X)) is transversal
to the full diagonal at all points in Z5,X . It is argued momentarily that this is
the case, and the argument implies that the map to Jm is Fredholm with the
asserted index. The arguments used for Proposition A.1 can be employed
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yet again to see that this map has a residual set of regular values in the
space J .

The transversality proof has three steps. The first two supply some back-
ground.

Step 1: A tangent vector to a given point ((ϕ, J, j), p, [p])∈Z lifts to
X−1(0) ∩ Gn,0 as a data set ((ϕ′, J ′, j′), p′, q) of the following sort: First,
(ϕ′, J ′, j′) obeys the equation in the second bullet in (A.29). In addition ϕ′
and the tangent vector p′ = (u, u1, . . ., ud−2) ∈ T (×d−2Σ)|p are constrained
at each entry of p via (A.46) and (A.47). Second, what is written as q has the
form q = (((λ1, k1), x1), ((λ2, k2), x2), ((λ3, k3), x3)) where each (λi, ki) obeys
the gi = 0 version of the third bullet of (A.29) with it understood that the
corresponding (ϕi, ji) comes from the ith entry of p. Here, this ith entry of p
should be written as ((ϕi, ji), vi) with vi = (vi, vi1, . . .vid−2) denoting a d− 1
tuple such that any given entry is a tangent vector to Σ at the corresponding
entry of p = (p, p1, . . ., pd−2). The pair (ϕi, ji) obeys the equation in the top
bullet of (A.29), and ϕi, vi are contrained at each entry of p via the version
of (A.46) and (A.47) that has ϕi in lieu of ϕ′, and the entries of vi in lieu of
(u, u1, . . . , ud−2). Each xi = (xi, xi1, . . . , xid−2) from q is a d− 1 tuple where
any given component is tangent vector to Σ at the corresponding component
of p. The pair (λi, xi) with vi and p′ are constrained at the entries of p to
obey

• λi|p + ϕ∗xi + ∇uϕi|p + (∇uϕ∗)vi = 0
• λi|pk

+ϕ∗xik+∇uk
ϕi|pk

+(∇uk
ϕ∗)vik = 0 for each k ∈ {1, . . . , d−2}.

(A.49)

The vectors that comprise q must also be orthogonal to the span of p.
Step 2: Fix a point {((ϕα, Jα, jα), pα = (pα, p

′
α), [pα])}1≤α≤5 ∈ ×5Z. Let

J denote their common Jm component and let x ∈ X denote the one
point comprising the set {ϕα(pα)}1≤α≤5. The map to the full diagonal in
×5(Jm ×X) at this given point is transversal provided that the following is
true: Let (j1, . . . , j4) denote any given 4-tuple in TJm|J and let (y1, . . . , y4)
denote any given 5-tuple in TX|x. There must exist a tangent vector to ×5Z
such that any given α ∈ {1, . . ., 4} entry has J ′ component equal to jα + j

where j is the α = 5 entry for the J ′ component. Meanwhile the (ϕ′, u) entry
for any α ∈ {1, . . ., 4} must be such that

(A.50) ϕ′|pα + ϕα∗u = yα + y

where y is given by the α = 5 version of the left-hand side of this last
expression.

Step 3: To see that such a vector can be found, note first that each ϕα is
an embedding, so the component of yα + y along ϕα(Σ) can be realized as
ϕα∗u for some u ∈ TΣ|pα . This understood, at issue is the normal projec-
tion of the various versions of (A.50) and the various constraints on the J ′
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entries. These can all be met for the following reason: Going back to what
is said in Parts 3–7, the constraints on the J ′ component and the normal
projections of (A.46) can all be met by a suitable choice of j because the
constraints involve only the restriction of the J ′ component to a neighbor-
hood of each ϕα(Σ) that is disjoint from the point x. As these curves are all
distinct, there is no obstruction to setting j as needed. The Green’s function
construction from Parts 6 and 7 can be used near each pα with the corre-
sponding version of the middle equation in (A.29) so as to satisfy each of
the α ∈ {1, . . ., 5} versions of (A.50). Here again, j is constrained only near
each of the five images of Σ, but not at precisely the point, x, where they
intersect. �

Part 12 : To motivate the upcoming constructions suppose that J ∈ J is
a regular value for the map from X−1(0) × G3,0, X−1(0) × G3,0 and from P.
A tangent vector to a point ((ϕ, J, j), p, [p], p′) ∈ ZJ × Σ lifts to (X−1(0) ∩
G3,0)|J × Σ is a data set ((ϕ′, j′), p′, q, v′) such that (((ϕ′, j′), p′, q) are as
described in Step 1 of the proof of Lemma A.14 with the proviso that J ′ = 0.
Meanwhile, v′ is a tangent vector to p′. The differential of the map ϑJ,1 sends
such a tangent vector to the vector ϕ′(p′) + ϕ∗v′ ∈ (ϕ∗TX)|p. Since ZJ × Σ
has dimension 2d− 3, a point in ZJ ×Σ is a critical point of ϑZ,1 if and only
if there is a 2d− 6 dimensional subspace in its tangent space whose vectors
obey (A.47).

To see about the existence of such a space, return to a very large m
version of the space Z = (X−1(0)∩G3,0)/SO(3). Introduce (Z×Σ)0 ⊂ Z×Σ
to denote the subspace of points ((ϕ, J, j), p, [p], p′) where p′ is distinct from
all entries of p, and where J is a regular value for both the projection from
X−1(0) ∩ G3,0,X

−1(0) ∩ G4,0 and from Pm to Jm. Note that this is an open
set in Z × Σ.

Let K → (Z × Σ)0 denote the bundle whose fiber at a point ((ϕ, J, j), p,
[p], p′) is the space of 2d − 6-dimensional, orthonormal frames in T (Z|J ×
Σ). The latter is a smooth manifold with a smooth action of SO(2d − 6).
Introduce the vector bundle, E, over (Z×Σ)0 whose fiber at the given point
is ⊕1≤α≤2d−6ϕ

∗TX.
Use ℘ to denote the fiber preserving map from K to E that is defined

over the point ((ϕ, J, j), p, [p], p′) by the rule that follow. Let α ∈ {1, . . ., 2d−
6} and introduce kα to denote the index α component of the given frame.
This component defines the corresponding index α summand ϕ∗TX in E.
To continue, write kα as ((ϕ′, j′), p′, q, v′). The index α component of ℘ is
ϕ′(p′) + ϕ∗v′; this the left-hand side of (A.49).

As is argued momentarily, the locus ℘−1(0) is a manifold such that the
map to Jm is Fredholm with index 3. This the case, then the arguments
for Proposition A.1 can be employed to prove that there is a residual set of
regular values in J for this map. The inverse image of such a regular value is
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a 3-dimensional manifold whose image in the subspace (Z|J ×Σ)0 of ZJ ×Σ
is the intersection of the critical locus of ϑJ,1 with the subset of elements of
the form (((ϕ, J, j), p, [p], p′) such that p′ is not an entry of p.

To prove that ℘−1(0) is a manifold, it is sufficient to prove that the dif-
ferential of ℘ along ℘−1(0) is surjective. The arguments to prove this imply
directly that the corresponding map to Jm is Fredholm with index 3. To
see about this surjectivity, note that ℘’s differential maps a tangent vector
to K at a given point to the fiber of E at the image of this point via the
projection K → (Z × Σ)0. To say more, write the ϕ′ and v′ components of
the index α component of the frame over (((ϕ, J, j), p, [p], p′) as ϕ′

α and v′α.
Note that ϕ′

α has a corresponding j′α from V . The differential of ℘′ involves
only the component in TK that corresponds to a first order change in ϕ′

α

and v′α. It also involves a tangent vector, u′, at p′ that gives the first order
change of the latter point. To continue, denote this first-order change in the
data (ϕ′

α, j
′
α) and v′α as (λ′α, k′α) and x′α. Then the index α component of the

differential of ℘′ gives the element

(A.51) λ′α|p′ + ϕ∗x′α + ∇u′ϕ′
α + (∇u′ϕ∗)v′α ∈ (ϕ∗TX)|p′ .

Meanwhile, that data (λ′α, k′α) is constrained by the requirement that the
index α component of the frame over (((ϕ, J, j), p, [p], p′) define a tangent
vector to ZJ × Σ.

With the preceding understood, here is the key observation: Let J ′ denote
the component of the tangent vector to K that comes from a first-order
change in J . The requirement that J be a regular value for both the maps
from Pm and Z to Jm implies that J ′ is not yet constrained by the require-
ment that the domain for the linear map in (A.49) consist of tangent vectors
to K. As a consequence, J ′ can be chosen so the various 2d − 6 versions of
(A.49) can have any given value in ⊕1≤α≤2d−6(ϕ∗TX)|p′ . The argument for
this employs once again the Green’s function construction from Part 6 to
obtain any desired value for the part of λ′α|p′ that is normal to ϕ(Σ) at p′.
The details are messy, but in the end straight forward and so omitted.

5.7. Proof of Proposition 3.8. Let Je2 denote the residual set from
Proposition 3.6. The proof of Proposition 3.8 starts with the following
lemma.

Lemma A.15. There exists a residual set in Je2 which is characterized by
what follows. Fix an almost complex structure J from this set to define Me,g.
There is a residual subset of regular points w∈ ×d−2 X with the property
that if w comes from this set, and if w is an entry of w, then Yw is a
1-dimensional image variety in Mw.

Grant this lemma for the moment. One might expect that a pair of dis-
tinct and suitably generic 1-dimensional image varieties in a 4-dimensional
manifold will have no points in common. The proof of Proposition 3.8 argues
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that this expectation is met for distinct pairs from any given version of {Yw:
w is an entry of w} if Me,g is first defined using an almost complex struc-
ture from a certain residual set in Je2, and then w is chosen from a certain
residual set in ×d−2X.

The proof of Proposition 3.8 including Lemma A.15 has four parts.

Part 1 : To motivate what is to come, fix for the moment, an almost
complex structure J ∈ J which is a regular value for the genus g and class
e version of P. Use J to define the space Me,g. Fix a regular point, w ∈
×d−2X. This guarantees that Mw is a smooth, 4-dimensional manifold. Let w
denote an entry of w. To consider the structure of Yw, let C ∈ Mw denote
a given curve and let N → C denote its normal bundle in X. Introduce
the operator DC as defined by (2.12). The tangent space at C consists of
the subspace kerC,w = {η ∈ ker(DC): η = 0 at each entry of w}. Fix an
adapted coordinate chart, (z, w), centered at w so that the w = 0 locus is
tangent to C at the origin. This identifies the fiber of N at w with the span
of ∂

∂w and it identifies this same span with the tangent space to CP
1 at

ϕw(C). Fix a holomorphic coordinate, u, for C centered at w with du = dz
at w. The differential of ϕw at C sends a given η ∈ kerC,w to the vector
∂η|w, here viewed using these identifications as an element in TCP

1|ϕw(C).
Use ϕw∗ to denote this differential. A curve C ∈ Mw is a critical point of
ϕw if and only if the kernel of ϕw∗ contains a 3-dimensional, orthonormal
frame.

Granted the preceding, Lemma A.15 and Proposition 3.8 are proved via
an analysis of the space whose elements consist of data sets (J, (C,w),w, p)
of the following sort: First, J is an almost complex structure. Second (C,w)
are in J ’s version of Me,g,d−2. Third, w is an entry of w. Finally, p consists
of an orthonormal frame (η1, η2, η3) in the space kerC,w such that each frame
vector is in the kernel of ϕw∗.

Part 2 : The space just described is studied by reintroducing the genus g
and bundle e versions of the manifold Pm and P. The use of the latter is
not strictly speaking necessary, but it does allow for direct appeal to various
constructions from the preceding parts of this appendix. In any event, to
make contact with the problem at hand, consider now the open submanifold
of points ((ϕ, J, j), p) ∈ Pm × (×d−2Σ) where J is a regular value for the
map from Pm to Jm and where the point p has distinct entries. For n = 3
and n = 4 define a fiber bundle, Qn, over this subset of Pm × (×d−2Σ)
as follows: The fiber over a given point ((ϕ, J, j), p) consists of the space
of orthonormal n-frames where each frame vector has the form ((ϕ′, j′), p′)
with (ϕ′, j′) and p′ = (u1, . . . , ud−2) ∈ T (×d−2Σ)|p such that (A.6) and each
k ∈ {1, . . ., d− 2} version of (A.46) holds. Note that this fiber bundle has a
free, fiber preserving action of SO(n).
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To connect this with what was said in Part 1, let ((ϕ′, j′), p′) denote a
vector as just described. Then the projection of ϕ′ to the pull-back via ϕ
of the normal bundle to the curve C = ϕ(Σ) is a vector in kerC,w where
w = (ϕ(p1), . . . , ϕ(pd−2)).

Fix α∈{1, . . ., d − 2}. Define a vector bundle over this same part of
Pm × (×d−2Σ) as follows: The fiber over the point ((ϕ, J, j), p) is that of
(ϕ∗TJ(1,0)X/ϕ∗Tj(1,0)Σ) ⊗ T

(1,0)
j Σ at the component pα of P . Use Nα to

denote the latter. Define a fiber preserving map

(A.52) fα : Qn → ⊕nNα

by the following rule: For i∈{1, . . ., n}, let ((ϕ′, j′), p′) denote the ith frame
vector of a frame in the fiber over a given point ((ϕ, J, j), p). The latter defines
the entry of fα in the ith summand of the fiber of ⊕nNα over ((ϕ, J, j), p),
this being the projection at pα to the (ϕ∗TJ(1,0)X/ϕ∗Tj(1,0)Σ) ⊗ T

(1,0)
j Σ of

the covariant derivative of ϕ′.

Proof of Lemma A.15. The locus f−1
α (0) is a manifold if the differential of fα

is transversal along this locus. It is argued in Part 3 that this is indeed the
case. These upcoming arguments imply directly that the map from f−1

α (0)
to Jm is a Fredholm map whose index is 4d − 4 when n = 3 and 4d − 6
when n = 4. Granted that such is the case, the arguments used to prove
Proposition A.1 can be used again to prove that there is a residual set of
regular values for this map in J if m is large.

Let J ∈ J denote such a regular value. Then f−1
α (0)|J is a smooth manifold

with a smooth action of SO(n) that preserves the induced map to PJ . Let
YJ denote this quotient. The latter is a smooth manifold of dimension 4d
- 7 if n = 3 and of dimension 4d - 12 if n = 4. Use ϑN,d-2 to denote the
map from NJ to ×d-2X that is obtained by composing first the tautological
map to PJ ×Σd-2 with the map ϑd-2 from the latter space to ×d-2X. Let w
denote a regular value. In the case n = 4, the inverse image via ϑN,d-2 of w
is a empty. In the case n = 3, it is a 1-dimensional submanifold of NJ . Let
w denote the index α entry of w. By design, the manifold ϑ−1

N,d-2(w) ⊂ NJ

maps onto Yw.
Part 3 : This part explains why fα has transversal differential along its

zero locus. To set the stage, let ((ϕ, J, j), p) denote a point in Pm × (×d-2Σ)
where Qn is defined. Let p = {((ϕi, ji), vi = (vi1, . . . , vid−2))}1≤i≤n denote a
point in the fiber of Qn over this given point. A tangent vector to the point
in Qn/SO(n) defined by p lifts to the frame p as a data set ((ϕ′, J ′, j′), p′, q)
where (ϕ′, J ′, j′) is tangent to Pm at (ϕ, J, j), where p′ = (u1, . . . , ud-2) ∈
T (×d-2Σ)|p, and where q is as follows. It has n components, with the ith
having the form ((λi, ki), xi). The pair (λi, ki) obeys the gi = 0 version of
the third bullet of (A.29) with it understood that the corresponding (ϕi, ji)
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comes from the ith entry of p. Note that the latter must obey the top equa-
tion in (A.29), and ϕi with vi, it must obey the version of (A.46) that has
ϕi in lieu of ϕ′ and the entries of vi in lieu of (u1, . . . , ud-2). Meanwhile
xi =(xi1, . . . , xid−2)∈T (×d−2Σ)|p. The pair (λi, xi) with vi and p′ are con-
strained at the entries of p via the equation that appears in the second bullet
of (A.49). Finally, each of the n components of q is orthogonal to the span
of p.

Suppose now that ((ϕ, J, j), p, p) is a zero of fα. The differential of fα is
surjective at this zero if the following is true: Let N denote the normal
bundle to ϕ(Σ). Fix a vector in ⊕n (ϕ∗(N) ⊗ T 1,0

j Σ)|uα . Then, there exists
a tangent vector of the sort just described which is such that the projection
to ϕ∗(N)⊗ T 1,0

j Σ) at uα of each i ∈ {1, . . . , n} version of ∂λi is equal to ith
component of the given vector in ⊕n(ϕ∗(N) ⊗ T 1,0

j Σ)|uα .
The proof that such is the case uses a version of the Green’s function

construction from Part 6 of the proof of Proposition 3.7. What follows
gives the details. The first observation is that the assumption that J is
a regular value for the map from Pm to P implies that no constraints
on J ′ are required to solve the relevant versions of (A.29), (A.49) and
(A.46); this because the operator depicted in (A.30) is invertible. With
the preceding understood, the plan is to chose J ′ so as to achieve any
given desired value for the normal bundle projection of (∂λi)1≤i≤n at uα.
To this end, the first step is to restrict J ′ so that the equations in the
first and third bullets of (A.29) are given by what is written in (A.31)
and so that the equation in the second bullet of (A.29) is solved by tak-
ing (ϕ′, j′) = 0. Take p′ =0 to solve (A.46). A choice now for J ′ must
be made so that the corresponding solution to the equation in the sec-
ond bullet of (A.31) obeys the equation in the second bullet of (A.49)
and is such that the normal bundle projection of ∂λi has the desired value
at uα.

To achieve the goal just described, fix a j-holomorphic coordinate for Σ
centered at uα. This coordinate, u, takes values in a small radius disk cen-
tered about the origin. Introduce the notation from Part 6 of the proof
of Proposition 3.7. Note in what follows that the normal bundle pro-
jection in this Part 6 is denoted by Π, and ηi is used to denote each
i ∈ {1, . . . , n} version of the normal bundle projection of ϕi. Part 6 of
the proof of Proposition 3.7 defines a finite set, W , in the u-coordinate
disk. Copy what is done there to define here such a set of points, all
very near the origin but none at u = 0. Use W0 to denote this set. Fix
d > 0 but much less then the distance from any point in W0 to the
origin, and much less then the distance between any two distinct ele-
ments in W0. Let Wd denote the set obtained from W0 by translating
each element a distance d along the direction of the real axis in C. Set
W = W0 ∪Wd.
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Fix Δ > 0 but much smaller than the distance between any point in W
and 0, and much smaller than the distance between distinct points in W .
Take J as in (A.33). The analysis in Part 6 of the proof of Proposition 3.7
can be repeated in this context to prove that

• Π(λi)J(1,0)|0 = Δ2
(∑

u∈W0

1
u(J ′ · ∂̄ηi)|u + 1

u+d(J ′ · ∂̄ηi)|u+d + ri

)
,

• Π(∂λi)J(1,0)|0 =−Δ2
(∑

u∈W0

1
u2 (J ′ · ∂̄ηi)|u + 1

(u+d)2
(J ′ · ∂̄ηi)|u+d + r′i

)
,

(A.53)

where |ri| and |r′i| are bounded by what is written on the right-hand side of
(A.35).

What is said in Part 6 of the proof of Proposition 3.7 implies the fol-
lowing: Given {J ′|u}u∈W0 , then the various u ∈ W0 versions of J ′|u+d

can be chosen so that the following conditions hold when Δ is small.
First, each i ∈ {1, . . . , n} version of what is written on the right-hand
side of the top line of (A.53) is zero. Moreover, this can be achieved so
that

(A.54)
1

u+ d
(J ′ · ∂̄ηi)|u+d = −1

u
(J ′ · ∂̄ηi)|u + eu,i for each u ∈W0,

where |eu,i| ≤ cΔ
∑

u∈W0
|J ′|u| with c a constant that depends on W0 but

not on d nor on Δ if Δ is much less than d.
Granted this choice for {J ′|u+d}u∈W0 , then the right-hand side of the

bottom bullet in (A.53) has the form

(A.55) Π(∂λi)J(1,0)|0 = Δ2

⎛
⎝∑

u∈W0

d

u3
(J ′ · ∂̄ηi)|u + oi

⎞
⎠

where |ou,i| ≤ c(Δ + d2)
∑

u∈W0
|J ′|u| with c again depending only on W0,

but neither on d nor on Δ if Δ � d. With (A.55) in hand, the argument
from the last paragraph in Part 6 of the proof of Proposition 3.7 can be
applied here to see that {J ′|u}|u∈W0 can be chosen when d is very small
and Δ is much less than d so as to make the n-tuple (Π(∂λi)J(1,0)|0)i=1,...,n

equal to any given n-tuple. This last fact implies the asserted surjectivity at
((ϕ, J, j), p, p) of the differential of fα. �

Part 4 : To complete the proof of Proposition 3.8, consider now the open
set of points ((ϕ, J, j), p) ∈ Pm × (×d-2Σ) where J is a regular value for the
projections from Pm and from each n ∈ {3, 4} and each α ∈ {1, . . . , d − 2}
version of the submanifold f−1

α (0) ⊂ Qn. Require also that p have distinct
entries. Use Q2 to denote the fiber bundle over this open set in Pm×(×d-2Σ)
whose fiber over a given ((ϕ, J, j), p) consists of the product of two copies
of the fiber of Q3. For indices α �= β from {1, . . . , d − 2}, set fαβ to be the
fiber preserving map from Q2 to the vector bundle (⊕3Nα) ⊕ (⊕3Nβ) that
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sends the fiber point (p, p′) over the given point ((ϕ, J, j), p) to (fα(p), fβ(p′)).
The bundle Q2 has a fiber preserving, free action of SO(3)×SO(3), and this
action restricts to an action on f−1

αβ(0).
Since the entries of p are distinct, the Green’s function constructions given

in Part 3 above can be applied near the index α entry and the index β entry
of p simultaneously to prove that the differential of fαβ is transverse along its
zero locus. This being the case, it follows that f−1

αβ(0) is a manifold with a free
action of SO(3)×SO(3). Let Yαβ denote its quotient by this action. The lat-
ter is a manifold also. Moreover, the associated map to Jm has everywhere
Fredholm differential, with index equal to 4d − 10. The arguments used to
prove Proposition A.1 can be used here to prove that there is a residual set
of regular values for this map in J . Let J denote such a regular value. Then
Yαβ |J is a smooth manifold of dimension 4d−10. The manifold Yαβ |J maps
to ×d-2X via the composition of the map to P|J × (×d-2Σ) with the map
ϑd-2. The inverse image of a regular value of the latter map is empty since
the domain space has smaller dimension than the range.

Suppose that J ∈ J is a regular value for all α �= β versions of fαβ . Sup-
pose in addition that w ∈ ×d-2X is a regular point and also a regular value
for all of the associated maps from {Yαβ |J}1≤α<β≤d-2. Then the conclusions
of the preceding paragraph imply the following: If w �= w′ are entries of w,
then Yw is disjoint from Yw′

. �
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