ON HOMOTOPY 3-SPHERES¹

BY Wolfgang Haken

A homotopy 3-sphere M^3 is a compact, simply connected 3-manifold without boundary. After the work of Moise [6] and Bing [1] M^3 possesses a triangulation. The Poincaré conjecture [9] states that every homotopy 3-sphere M^3 is a 3-sphere. In this paper we prove three theorems, related to the Poincaré conjecture, about maps of a 3-sphere S^3 onto M^3 and about 1- and 2-spheres in M^3 .

1. Theorems 1 and 2, concerning maps $S^3 o M^3$ and closed curves in M^3 . From the work of Hurewicz [5], Part III, it follows that there exists a continuous map $\varphi: S^3 \to M^3$ of degree 1 (where S^3 means a 3-sphere). We shall prove that there exists an especially simple map of this kind.²

THEOREM 1. If M^3 is a homotopy 3-sphere then there exists a simplicial map $\gamma: S^3 \to M^3$ of degree 1 such that the singularities of γ (i.e. the closure of the set of those points $p \in M^3$ for which $\gamma^{-1}(p)$ consists of more than one point) lie in a (polyhedral, compact) handlebody in M^3 .

One might consider this result as a step towards a proof of the Poincaré conjecture. Indeed, if it were possible to restrict the singularities of γ to a 3-cell in M^3 instead of a handlebody the existence of a homeomorphism $S^3 \to M^3$ would follow.

From Theorem 1 we may derive another aspect of the Poincaré problem by considering simple closed curves in M^3 .

From the definition of simple connectedness it follows that every closed curve $C^1 \subset M^3$ bounds a singular disk $D^2 \subset M^3$. If C^1 is a tame, simple closed curve then one can find a D^2 which is also tame and possesses only "normal" singularities (see [7], [8]), i.e. double curves in which two sheets of D^2 pierce each other, triple points in which three sheets pierce each other, and branch points from each of which one or more double arcs originate; the triple points, the branch points, and the interiors of the double curves are disjoint from the boundary D^2 of D^2 , but the double curves may have end points in D^2 .

As Bing [2] has proved, M^3 is a 3-sphere if (and only if) every tame, simple closed curve $C^1 \subset M^3$ lies in a (compact) 3-cell in M^3 . The statement that C^1 lies in a 3-cell $D^3 \subset M^3$ is equivalent to the statement that C^1 bounds a "knot projection cone" D^2 in M^3 , i.e. a (tame) singular disk whose singularities are one branch point P and double arcs originating from P, being pairwise

Received April 10, 1965.

¹ This research was partially supported by the Air Force Office of Scientific Research.

² Theorem 1 is a consequence of a "monotonic mapping theorem" announced by Moise in [6a]; however the proof is different from Moise' proof.

XII W. HAKEN

disjoint otherwise, and terminating in D^2 . (A small neighborhood of a knot projection cone in M^3 is always a 3-cell.) Hence one would prove the Poincaré conjecture if one could prove that every tame, simple closed curve $C^1 \subset M^3$ bounds a knot projection cone in M^3 . Theorem 2 of this paper (which may be considered as a corollary of Theorem 1) is a first step in this direction: it states that C^1 always bounds a knot projection cone D^2 with additional singularities that do not touch $D^2 = C^1$.

THEOREM 2. If C^1 is a tame, simple closed curve in a homotopy 3-sphere M^3 then there is a (tame) singular disk $D^2 \subset M^3$ with $D^2 = C^1$ such that D^2 has the following singularities:

- (a) One branch point P of multiplicity g (g may be zero) and g double arcs Q_1^1, \dots, Q_g^1 (in each of which two sheets of D^2 pierce each other), starting from P and ending at D^2 with ${}^0Q_i^1 \subset {}^0D^2$ such 3 that the $Q_i^1 P$'s are pairwise disjoint.
- (b) Closed double curves R_1^1, \dots, R_h^1 (h may be zero) which may pierce themselves and the Q_i^1 's in triple points of D^2 , but which are disjoint from D^2 .

In the special case h = 0, D^2 is a knot projection cone; in the case g = 0, D^2 is a so called Dehn disk (see [8]). In the latter case it follows from Dehn's lemma (stated by Dehn [3] and proved by Papakyriakopoulos [8]) that there exists a (tame) disk D^{*2} with $D^{*2} = C^1$ and $D^* = 0$ (and also $D^* = 0$). Now the question arises whether it follows in the general case ($D^* = 0$) that there exists a (tame, singular) disk D^{*2} with $D^{*2} = C^1$ and $D^* = 0$ (and $D^* = 0$) arbitrary, not necessarily equal to $D^* = 0$). An affirmative answer to this question would imply the Poincaré conjecture.

If one applies the methods for proving Dehn's lemma, as developed by Papakyriakopoulos [8] and later simplified by Shapiro and Whitehead [12], to this problem then one has to consider a small neighborhood $D^3 \subset M^3$ of D^2 , a covering of D^3 , etc. Then all conclusions of the proof of Dehn's lemma in [12] apply to our problem as well, except in case (1) wherein the boundary D^3 of D^3 (or that of one of the neighborhoods in the coverings) consists of 2-spheres only: for case (1) it follows easily in dealing with Dehn's lemma that C^1 bounds a nonsingular disk; however it seems to be difficult to prove for case (1) in dealing with our problem, $g \neq 0$, that C^1 bounds a knot projection cone. Nevertheless I hope that someone will be able to fill this gap in the proof of the Poincaré conjecture.

2. Theorem 3, concerning 2-spheres in M^3 . We obtain another aspect of the Poincaré problem if we consider 2-spheres in M^3 instead of closed curves. If we remove the interior of a 3-cell C^3 from M^3 we get a so called homotopy 3-cell M^3_* . It follows from the Hurewicz theorem [5], Part II, that every 2-sphere in M^3_* may be homotopically deformed into one point.

Let us consider a 2-sphere $F_0^2 \subset M_*^3$, "topologically parallel" to the bound-

³ We denote the interior of a (tame) point set X by ${}^{0}X$, the boundary by ${}^{\cdot}X$, and the closure by \bar{X} or ${}^{-}X$.

ary of M_*^3 , i.e. such that $F_0^2 + M_*^3$ bounds a 3-annulus $F_0^3 \subset M_*^3$. If one could prove that F_0^2 can be deformed into a 3-cell $H^3 \subset M_*^3$ not only by a homotopy but also by an isotopy whose image is tame at each level then the Poincaré conjecture would follow (since it would follow that M_*^3 is a 3-cell). It follows from the work of Smale [13] on regular homotopy that F_0^2 can be deformed onto the boundary of a 3-cell in H^3 in such a way that no branch points occur at any stage of the deformation. In order to go one step further in this direction we shall show that F_0^2 can be deformed into H^3 by especially simple homotopic deformations that take place in a special order.

First we have to define some special homotopic deformations. Let

$$\alpha: F'^2 \to M^3_*$$
,

with the image $\alpha(F'^2) \subset {}^0M_*^3$ denoted by F^2 , be a continuous map, defining a (tame) 2-sphere with canonical singularities (i.e. normal double curves and triple points, but without branch points, see [8]). Let A'^2 be a disk in F'^2 whose image $\alpha(A'^2)$ is also a (nonsingular) disk A^2 . Let

$$A^{*2} \subset {}^{0}M^{3}_{*}$$

be another tame disk with $A^{*2} \cap A^2 = A^2 = A^{*2}$ such that $A^2 + A^{*2}$ bounds a 3-cell $K^3 \subset M^3_*$. Now we consider a deformation δ that changes α into α^* such that

$$\alpha^* | (F'^2 - {}^0A'^2) = \alpha | (F'^2 - {}^0A'^2)$$

and $\alpha^* \mid A'^2$ is a homeomorphism onto A^{*2} . We call such a deformation non-essential if there exists an epi-homeomorphism

$$\zeta: M_*^3 \to M_*^3$$
 with $\zeta(F^2) = \alpha^*(F'^2)$

that is the identity outside a small neighborhood of K^3 . We call δ an *elementary deformation of type* 1, 2, or 3, respectively, if the surface defined by α^* has only normal singularities and one of the following conditions holds (see Fig. 1):

Type 1. Either case (a) $({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} with ${}^{1}B^{2} \subset {}^{0}A^{*2}$; or case (b) $({}^{0}K^{3} \cap F^{2})$ consists of two disks B^{2} , C^{2} such that

$${}^{\circ}B^{2}, {}^{\circ}C^{2} \subset {}^{0}A^{*2}$$

and $B^2 \cap C^2$ is an arc with

$${}^0(B^2 \cap C^2) \subset {}^0K^3.$$

$$\xi: X'^2 \to M^3$$
,

is essentially determined by the image polyhedron $\xi(X'^2)$.

⁴ For convenience we shall use the word "deformation" not only for deformations of maps but also for deformations of polyhedra $X \subset M^3$ (i.e. for changes of X into X^* such that there can be found homotopic maps $\xi, \xi^* : X' \to M^3$ with $\xi(X') = X, \xi^*(X') = X^*$). This is convenient since a surface with normal singularities, defined by a map

XİV W. HAKEN

Type 2. ${}^{-}({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} such that each of the intersections ${}^{1}B^{2} \cap A^{2}$ and ${}^{1}B^{2} \cap A^{*2}$ consists of two disjoint arcs with

$${}^{0}(\dot{B}^{2} \cap A^{2}) \subset {}^{0}A^{2}$$
 and ${}^{0}(\dot{B}^{2} \cap A^{*2}) \subset {}^{0}A^{*2}$.

Type 3. Either case (a) $({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} with $B^{2} \subset {}^{0}A^{2}$; or case (b) $({}^{0}K^{3} \cap F^{2})$ consists of two disks B^{2} , C^{2} such that $B^{2} \subset {}^{0}A^{2}$ and each of the intersections $C^{2} \cap A^{2}$, $C^{2} \cap A^{*2}$, $C^{2} \cap B^{2}$ is an arc with

$${}^{0}({}^{\cdot}C^{2} \cap A^{2}) \subset {}^{0}A^{2}, \qquad {}^{0}({}^{\cdot}C^{2} \cap A^{*2}) \subset {}^{0}A^{*2}, \qquad {}^{0}(C^{2} \cap B^{2}) \subset {}^{0}C^{2}, {}^{0}B^{2}.$$

We remark that an elementary deformation of type 1 (a or b) changes the image sphere F^2 only in a small neighborhood (small with respect to F^2) of an arc (connecting a point in ${}^0A^2$ to a point in ${}^0B^2$ or in ${}^0B^2$ n ${}^0C^2$, respectively); a deformation of type 2 changes F^2 in a small neighborhood of a disk (whose boundary intersects each A^2 and B^2 in one arc). According to this one might say that a deformation of type i (i = 1, 2, 3) is essentially i-dimensional.

THEOREM 3. Let M_*^3 be a homotopy 3-cell and $\alpha_0: F'^2 \to M_*^3$ an embedding of a 2-sphere, topologically parallel to M_*^3 . Then α_0 can be deformed step by step into maps α_1 , α_2 , α_3 of F'^2 into M_*^3 such that the following holds:

- (a) α_i (i = 1, 2, 3) is obtained from α_{i-1} by a finite sequence of elementary deformations of type i and non-essential deformations.
 - (b) The image $\alpha_3(F'^2)$ lies in a 3-cell $H^3 \subset {}^0M_*^3$.

The two essential points of this theorem (which are not immediate consequences of Smale's results [13]) are (1) the order in which the deformations take place and (2) that no deformations are used that move the surface over a triple point.

We remark without proof: If it were possible to avoid the deformations of type 1b (i.e. to avoid triple points) or to avoid the deformations of type 2 then this would imply the Poincaré conjecture; this would hold even if H^3 were not a 3-cell, but homeomorphic to any compact subset of euclidean 3-space with connected boundary.

3. Sketch of the proofs. The theorems are proved by considering deformations of singular 2-spheres in a homotopy 3-cell M_*^3 . We start with an embedding

$$\beta_0: F_0^{\prime 3} \longrightarrow M_*^3$$

of a 3-annulus $F_0'^3$ into M_*^3 such that one boundary sphere S'^2 of $F_0'^3$ is mapped onto M_*^3 and the other boundary sphere $F_0'^2$ onto the 2-sphere $F_0^2 = \alpha_0(F'^2)$. Now we deform F_0^2 into a 3-cell $H^3 \subset {}^0M_*^3$ in the simplest way we can find. To do this we choose a simple cell-decomposition Γ of the homotopy 3-sphere $M^3 = M_*^3 + C^3$ (C^3 being a 3-cell with $C^3 \cap M_*^3 = C^3 = M_*^3$) into one vertex E^0 , F_0 elements E_0^1 , E_0^2 (E_0^2) of and E_0^2 containing E_0^3 . Then we choose a neighborhood E_0^3 0 in E_0^3 1 in E_0^3 2 of E_0^3 3 in E_0^3 3 of the 2-skeleton E_0^3 4 of E_0^3 5 of E_0^3 6 of E_0^3 7 of E_0^3 8 of E_0^3 9 of E_0^3 9 in E_0^3 9 of E_0^3 9

hence $F_0^2=J^3$. Now we use the fact that M_*^3 is simply connected by taking a collection of r singular disks, bounded by the 1-skeleton G^1 of Γ (that consists of the r loops \bar{E}_i^1 with the common vertex E^0); these disks with the boundary point E^0 in common form a "fan" V^2 with singularities. We can choose V^2 such that its only singularities are pairwise disjoint double arcs A_j^1 ($j=1,\cdots,s$, as depicted in Fig. 2). Now we contract V^2 , changing it only within small neighborhoods A_j^3 of the A_j^1 s, onto a nonsingular fan V_*^2 , a small neighborhood H^3 of which is a 3-cell; that means we deform the 1-skeleton G^1 into the 3-cell H^3 . We carry out corresponding deformations (see footnote 4) of the 2-skeleton G^2 onto a "singular 2-skeleton" G_*^2 and of its neighborhood J^3 onto a singular polyhedron J_*^3 ; and we change the map β_0 correspondingly into a map $\beta_I: F_I^{\prime 3} \to M_*^3$ with $\beta_I \mid S^{\prime 2} = \beta_0 \mid S^{\prime 2}$. All the deformations of G^2 , J^3 take place in the A_j^3 's. $H^3 + \bigcup_{j=1}^s A_j^3$ is a handlebody K^3 . The corresponding deformations of F_0^2 onto F_I^2 are of type 1a only.

Now we have to deform the rest of F_I^2 into H^3 . First we remark that $J_{\mathscr{S}}^3$ may be decomposed into a neighborhood $T_{\#}^3$ of the deformed 1-skeleton $V_{\#}^2$ and into r "prismatic", singular 3-cells P_{si}^3 (being prismatic neighborhoods of middle parts of the deformed E_i^2 's), such that $T_{\#}^3 \subset {}^0H^3$. That means, that part of F_I^2 lying outside of H^3 lies in the "top" and "bottom" disks of the $P_{K_I}^3$'s. The boundaries of the top and bottom disks of P_{ki}^3 may be joined by an arc $W_i^1 \subset F_I^2 \cap {}^0H^3$ and by an arc $W_{P_i}^3 \subset P_{S_i}^3$; the so obtained 1-spheres $W_i^1 + W_{P_i}^1$ bound singular disks $W_i^2 \subset {}^0H^3$. We can choose these W_i^2 's such that their only singularities are double arcs and that singular, prismatic neighborhoods W_i^3 of them fit properly to F_I^2 and to the $P_{\frac{3}{8}i}^3$'s. Then we expand the singular 3-annulus, defined by β_I , over these singular prisms W_i^3 (denoting the changed β_I by β_{II}); the corresponding deformation of F_I^2 onto a singular 2-sphere F_{II}^2 may be decomposed into deformations of type 1 (a and b) yielding a singular 2-sphere F_1^2 (and a map α_1 according to Theorem 3) and after them deformations of type 2 yielding F_{II}^2 . Now F_{II}^2 contains "folds" around the $P_{K_I}^3$'s consisting of the top and bottom disks and joining disks (containing the W_{Pi}^{1} 's); so we can expand the singular 3-annulus over the $P_{\#i}^3$'s (denoting the changed β_{II} by $\beta: F'^3 \to M_*^3$ with $\beta \mid S'^2 = \beta_0 \mid S'^2$). The corresponding deformation of F_{II}^2 yields $F_3^2 \subset {}^0H^3$ (and α_3) and may be decomposed into deformations of type 2, yielding F_2^2 (and α_2), and after them deformations of type 3 (a and b); this completes the proof of Theorem 3.

To prove Theorem 2 we observe that the complement $M_*^3 - {}^0K^3$ of the handlebody K^3 is covered one-to-one by β . So we deform the given curve C^1 isotopically into a curve $C_*^0 \subset M_*^3 - K^3$; then we choose a knot projection cone D'^2 bounded by the knot $\beta^{-1}(C_0^1)$ in the 3-annulus F'^3 ; we bring about by small deformations the situation in which $\beta(D'^2)$ has only normal singularities. Then $D^2 = \beta(D'^2)$ has the demanded properties. Theorem 1 is proved by extending β to a 3-sphere $S^3 \supset F'^3$.

We remark: If it were possible to find the map

$$\beta: F^{i3} \to M^3_*$$

XVİ W. HAKEN

(with $\beta(F'^3 - S'^2) \subset {}^0H^3$) such that $\beta \mid \beta^{-1}(M_*^3 - H^3)$ is locally one-to-one then the Poincaré conjecture would follow by an easy conclusion. We would obtain such a map β if it were possible to deform the 3-annulus $\beta_0(F_0'^3)$ onto $\beta(F'^3)$ by "expansions" only. But in our procedure some of the very first deformations in the A_j^3 's (and only these) are not expansions, so we get certain surfaces in F'^3 such that β is not locally one-to-one at (and only at) the points of these surfaces. (β maps these surfaces homeomorphically into K^3 . Moreover it is possible to arrange our procedure such that these exceptional surfaces become disks.)

I. Proof of Theorems 1 and 2

We prove Theorem 1 and 2 first. After this we shall prove Theorem 3 by consideration of some more details.

4. Preliminaries. Let M^3 be a homotopy 3-sphere. After Moise [6] and Bing [1] there exists a triangulation of M^3 . This means there exists a homotopy 3-sphere, homeomorphic to M^3 , that is a (straight-lined, finite) polyhedron in a euclidean space \mathfrak{E}^n of sufficiently high dimension n. So we may assume for convenience and without loss of generality that M^3 itself is a polyhedron in \mathfrak{E}^n . All point sets considered in the subsequent part of this paper are polyhedral in \mathfrak{E}^n in the sense of [10] (i.e. finite unions of straight-lined, finite, convex, open cells in \mathfrak{E}^n); they are denoted by capital roman letters, and their dimensions by upper indices. We use the notation X, X, X for the boundary, closure, interior of X, respectively, and $X - Y = X - (X \cap Y)$ for the difference.

By a decomposition of X we mean always a collection of finitely many pairwise disjoint point sets whose union is X. A decomposition Δ is called a cell-decomposition, if the elements of Δ are open cells such that for every two cells $A, B \in \Delta$ either $A \cap B = \emptyset$ or $A \subset B$ holds. We call a cell-decomposition Δ a straight-lined triangulation if its elements are open, straight-lined simplices in \mathfrak{E}^n such that the open faces of each element are also elements of Δ ; we call a cell-decomposition Θ a triangulation in general if for each element $A \in \Theta$ the decomposition $\Theta(\bar{A})$ of \bar{A} , consisting of all those elements of Θ that lie in \bar{A} , is isomorphic to the decomposition of a simplex (of the same dimension as A) into its interior and its open faces.

By a (polyhedral) neighborhood of X in Y (as defined in [14]) we mean the closure of the simplex star of X in a second barycentric subdivision Δ^{**} of a (general) triangulation Δ of Y such that X is the union of elements of Δ ; the neighborhood is called small with respect to $Z|V|\cdots|W$ (see [4, Kap. I,2]) if $Z \cap Y, V \cap Y, \cdots, W \cap Y$ are unions of elements of Δ .

By an arc, disk, or 3-cell we mean, if not stated otherwise, a compact, nonsingular 1-, 2-, or 3-cell, respectively.

All maps considered in the subsequent part of this paper are *simplicial* maps in the sense of [11, p. 114]: a continuous map $\alpha: A' \to B$ is called sim-

plicial if there exist straight-lined triangulations Δ' of A' and Δ of B such that α maps each element of Δ' linearly onto an element of Δ .

Let C^3 be a 3-cell in M^3 and denote the homotopy 3-cell $M^3 - {}^0C^3$ by M_*^3 .

- **5.** A simple cell-decomposition Γ of M^3 . We can find a cell-decomposition Γ of M^3 with the following properties:
- (i) Γ contains just one 0-dimensional element, say E^0 , and just one 3-dimensional element, say E^3 .
 - (ii) $C^3 \subset E^3$.
- (iii) Γ contains r elements, say E_1^1, \dots, E_r^1 , of dimension 1 and r elements, say E_1^2, \dots, E_r^2 , of dimension 2.
- (iv) Each element E_i^1 lies at least 2 times in the boundary of $\bigcup_{j=1}^r E_j^2$ (i.e.: if U^3 is a neighborhood of a point of E_i^1 in M^3 , which is small with respect to

$$E_1^1 | \cdots | E_r^1 E_1^2 \cdots | E_r^2$$

then ${}^{0}U^{3} \cap \bigcup_{j=1}^{r} E_{j}^{2}$ consists of at least 2 pairwise disjoint open disks).

Proof of the assertion. Γ may be found as follows:

- Step 0. We take an arbitrary decomposition Γ_0 of M^3 into open cells.
- Step 1. We delete, step by step, such 2-dimensional elements of Γ_0 that separate two different 3-dimensional elements; this yields finally a decomposition Γ_1 with only one 3-dimensional element (see [11]).
- Step 2. Now we contract a maximal tree in the 1-skeleton of Γ_1 into one point; this yields a decomposition Γ_2 with property (i).
- Step 3. If a 1-dimensional element $E^1 \epsilon \Gamma_2$ lies just once in the boundary of a 2-dimensional element $E^2 \epsilon \Gamma_2$ and does not lie in the boundary of any other 2-dimensional element of Γ_2 then we delete both E^1 and E^2 ; repeating this operation as often as possible, we obtain a decomposition Γ_3 with properties (i) and (iv). Γ_3 possesses also property (iii) since the Euler characteristic of M^3 is zero (see [11]).
- Step 4. To obtain Γ we deform the 2-skeleton of Γ_3 isotopically such that the deformed 2-skeleton lies in $M^3 C^3$.

Remark. In the case r=0, M^3 is obviously a 3-sphere and we have nothing to prove. Therefore we may assume for the subsequent sections of this paper that $r \neq 0$. We denote the 1-skeleton $\bigcup_{i=1}^r \bar{E}_i^1$ and the 2-skeleton $\bigcup_{i=1}^r \bar{E}_i^2$ of Γ by G^1 , G^2 , respectively.

6. The 1-skeleton G^1 of Γ bounds a singular fan V^2 . We assert: There exists a map

$$\zeta: V'^2 \to M_*^3$$

with the image $\zeta(V'^2) \subset {}^0M_*^3$ denoted by V^2 , and with the following properties (see Fig. 2):

(i) V'^2 consists of r disks V'_1^2, \dots, V'_r^2 , possessing one common boundary

xviii W. HAKEN

point E'^0 , and otherwise being pairwise disjoint; V'^2 is disjoint from M^3 , F'^2 .

- (ii) $V^2 = G^1$.
- (iii) The only singularities of V^2 are pairwise disjoint, normal, double arcs A_1^1, \dots, A_s^1 (s may be zero) such that each of the two connected components $A_j'^1, A_j''^1$ of $\xi^{-1}(A_j^1)$ possesses just one boundary point in $V'^2 - E'^0$ and otherwise lies in ${}^{0}V'^{2}$ (for all $j = 1, \dots, s$).
- (iv) The arcs A_j^1 ($j = 1, \dots, s$) intersect $G^2 G^1$ at most in isolated piercing points, V^2 intersects $G^2 G^1$ at most in piercing curves whose intersection and self-intersection points are the piercing points $A_j^1 \cap (G^2 - G^1)$. (v) $\zeta^{-1}({}^{-}\{V^2 \cap [G^2 - G^1]\})$ is disjoint from $V'^2 - E'^0$, i.e. a connected com-
- ponent of

$$\zeta^{-1}(\mathit{V}^{2} \; \mathsf{n} \; [\mathit{G}^{2} \; - \; \mathit{G}^{1}])$$

is either a 1-sphere or an open arc whose boundary lies in

$$E'^0 + \bigcup_{j=1}^s [(A'^1_j + A''^1_j) \cap {}^0V'^2]$$

(see Fig. 3).

Proof of the assertion. Step 0. Since M_*^3 is simply connected there exists a map $\zeta_0: V'^2 \to M_*^3$ with properties (i) and (ii).

- Step 1. From ζ_0 we can obtain by small deformations (by a similar procedure as described in [7]) a map $\zeta_I: V'^2 \to M_*^3$, also with properties (i), (ii), such that the only singularities of $V_I^2 = \zeta_I(V'^2)$ are normal double curves, triple points, and branch points of multiplicity 1 (see [8]), and such that the triple points, the branch points, and the interiors of the double curves lie in ${}^{0}V_{I}^{2}$, and that E^0 is no double point.
- Step 2. Now we consider the set D_I of all double points (not including the triple points) of V_I^2 , and we remove, step by step, all those connected components $D_{I1}^1, \dots, D_{Id}^1$ of D_I that are disjoint from V_I^2 . To do this we can find an arc $C_k^1 \subset V_I^2$ that joins a point of $V_I^2 - (E^0 + D_I)$ to a point of a component D_{1k}^1 (provided that $d \neq 0$) such that ${}^0C_k^1 \cap \bar{D}_I$, ${}^0C_k^1 \cap V_I^2 = \emptyset$; then we remove D_{Ik}^1 (without introducing a new component of that kind) by a deformation of ζ_I (see Fig. 4) that changes V_I^2 only in a neighborhood of C_k^1 , and so on. In this way we obtain finally after d deformations a map $\zeta_{II}: V^{\prime 2} \to M_*^3$.
- Step 3. Now we can remove the triple points of $V_{II}^2 = \zeta_{II}(V'^2)$ by deformations of ζ_{II} that change V_{II}^2 only in neighborhoods of double arcs of V_{II}^2 that join the triple points to $V_{II}^2 - E^0$. Further we can remove the branch points by cuts along those double arcs of V_{II}^2 that join the branch points to $V_{II}^2 - E^0$. This yields a map

$$\zeta_{III}:V'^2\to M^3_*$$

with $\zeta_{III}(V'^2)$ denoted by V_{III}^2 , such that the set D_{III} of double points of V_{III}^2 consists of pairwise disjoint arcs $D_{IIII}^1, \dots, D_{IIIe}^1$.

Step 4. If one of the components of the inverse image of D^1_{IIIk} —say D'^1_{IIIk} —is disjoint from V'^2 , then we choose an arc $C'^1_k \subset V'^2$, joining a point of ${}^0D'^1_{IIIk}$ to

a point of

$$V'^2 - [E'^0 + \zeta_{III}^{-1}(D_{III})],$$

with ${}^{0}C_{k}^{\prime 1} \cap \zeta_{III}^{-1}(D_{III})$, ${}^{0}C_{k}^{\prime 1} \cap {}^{1}V^{\prime 2} = \emptyset$, and we remove $D_{IIIk}^{\prime 1}$ by a deformation of ζ_{III} (similar to Step 2) that changes V_{III}^{2} only in a neighborhood of $\zeta_{III}(C_{k}^{\prime 1})$; and so on. This yields finally a map

$$\zeta_{IV}:V'^2\to M^3_*$$

with the properties (i), (ii), and (iii).

Step 5. From ζ_{IV} we obtain by small deformations a map

$$\zeta_V:V'^2\to M^3_*$$
,

with $\zeta_V(V'^2)$ denoted by V_V^2 , having the properties (i), ..., (iv).

Step 6. From ζ_V we obtain, by deformations that change V_V^2 only in a small neighborhood of $V_V^2 = G^1$, a map $\zeta: V'^2 \to M_3^*$ with the required properties.

7. Neighborhoods A_j^3 of the double arcs A_j^1 of V^2 . Let A_1^3 , ..., A_s^3 be pairwise disjoint neighborhoods of A_1^1 , ..., A_s^1 , respectively, in M_*^3 , which are small with respect to $G^2 \mid V^2$ (see Fig. 5a).

 $A_j^3 \cap G^1$ consists of two disjoint arcs; we denote them by K_j^1 , L_j^1 . The closures of the connected components of $(A_j^3 \cap V^2) - A_j^1$ are two disks; we denote them by $V_{K_j}^2$, $V_{L_j}^2$ such that

$$K_j^1 \subset {}^{\cdot}V_{K_j}^2, \qquad L_j^1 \subset {}^{\cdot}V_{L_j}^2.$$

We choose a neighborhood A_j^2 of A_j^1 in $V_{\kappa j}^2$, which is small with respect to G^2 , and we denote the nonsingular fan $(V^2 - \bigcup_{j=1}^s A_j^2)$ by V_*^2 .

We denote the nonsingular lan $(V - O_{j=1} A_j)$ by V_* .

We denote those connected components of $A_j^3 \cap G^2$ that contain K_j^1 , L_j^1 , respectively, by K_j^2 , L_j^2 . The closures of the connected components of $K_j^2 - K_j^1$ and $L_j^2 - L_j^1$ are disks K_{j1}^2 , \cdots , $K_{jt_j}^2$ and L_{j1}^2 , \cdots , $L_{ju_j}^2$, respectively. Those connected components of $A_j^3 \cap G^2$ that are different from K_j^2 , L_j^2 are disks N_{j1}^2 , \cdots , $N_{jv_j}^2$ (v_j may be zero). We arrange the notation such that the disks K_{j1}^2 , \cdots , $K_{jt_j}^2$ lie around K_j^1 in the order of the enumeration and such that V_{Kj}^2 lies in this order between $K_{jt_j}^2$ and K_{j1}^2 .

8. A small neighborhood J^3 of the 2-skeleton G^2 and its complementary 3-annulus F_0^3 . Let T^3 be a neighborhood of G^1 in M_*^3 , which is small with respect to

$$G^2 \mid V^2 \mid A_1^3 \mid \cdots \mid A_s^3 \mid A_1^2 \mid \cdots \mid A_s^2$$
;

Let J^3 be a neighborhood of G^2 in M_*^3 , which is small with respect to

$$T^3 \mid V^2 \mid A_1^3 \mid \cdots \mid A_s^3 \mid A_1^2 \mid \cdots \mid A_s^2$$
.

Then $M_*^3 - {}^0J^3$ is a 3-annulus F_0^3 .

We denote $T^3 \cap J^3$ by T^3_J , and the two connected components of $T^3_J \cap A^3_J$ $(j=1,\dots,s)$ by $T^3_{K_J}$, $T^3_{L_J}$ (see Fig. 5b) such that $K^1_J \subset T^3_{K_J}$ and $L^1_J \subset T^3_{L_J}$.

XXW. HAKEN

Further we denote the connected components of $J^3 \cap A^3_j$ by K^3_j , L^3_j , N^3_{j1} , \cdots , N^3_{iv} . where

$$K_j^2 \subset K_j^3$$
, $L_j^2 \subset L_j^3$, $N_{jm}^2 \subset N_{jm}^3$ $(m=1, \dots, v_j)$

and the connected components of $(K_j^3 - T_{Kj}^3)$ and $(L_j^3 - T_{Lj}^3)$ by $K_{j1}^3, \dots, K_{jL_j}^3$ and L_{j1}^3 , ..., $L_{ju_j}^3$, respectively, where

$$K_{jk}^2 \cap K_{jk}^3 \neq \emptyset \ (k = 1, \dots, t_j) \quad \text{and} \quad L_{j1}^2 \cap L_{j1}^3 \neq \emptyset \ (1 = 1, \dots, u_j).$$

Those t_j-1 connected components of $(A_j^3-K_j^3)$ that are disjoint from V_{Kj}^2 are 3-cells F_{Kj1}^3 , \cdots , $F_{Kjt_{j-1}}^3$ in F_0^3 (see Fig. 5b).

The connected components of $(J^3 - T_J^3)$ are r 3-cells; we denote them by P_1^3, \dots, P_r^3 where $E_i^2 \cap P_i^3 \neq \emptyset$ $(i = 1, \dots, r)$, and we denote the disks $E_i^2 \cap P_i^3$ by P_i^2 . Then P_i^3 can be represented as cartesian product $P_i^2 \times I^1$, where I^1 is the interval $-1 \le x \le +1$, such that

- (i) P_i^2 is the central disk, i.e. $p \times 0 = p$ for all $p \in P_i^2$;
- (ii) the top and bottom disks are the connected components of $P_j^3 \cap J^3$, i.e. $(P_i^2 \times 1) + (P_i^2 \times -1) = P_i^3 \cap J^3$; (iii) the polyhedra A_j^3 , V^2 , A_j^2 intersect P_i^3 "prismatically", i.e.:

$$A_i^3 \cap P_i^3 = (A_i^3 \cap P_i^2) \times I^1, \ V^2 \cap P_i^3 = (V^2 \cap P_i^2) \times I^1, \ A_i^2 \cap P_i^3 = (A_i^2 \cap P_i^2) \times I^1.$$

Let $F_0^{\prime 3}$ be a 3-annulus, disjoint from M^3 , $V^{\prime 2}$, $F^{\prime 2}$, and let

$$\beta_0: F_0^{\prime 3} \longrightarrow M_*^3$$

be a homeomorphism with the image $\beta_0(F_0'^3) = F_0^3$. We denote the boundary 2-spheres $\beta_0^{-1}(J^3)$ and $\beta_0^{-1}(M^3)$ of $F_0'^3$ by $F_0'^2$ and S'^2 , respectively. (We may bring about by isotopic deformations the situation in which $\beta_0(F_0^{\prime 2}) = \alpha_0(F^{\prime 2})$ with α_0 the embedding given in Theorem 3.)

9. Deformations in the A_j^3 's that take G^1 onto the boundary of the nonsingular fan V_*^2 . We denote the 3-cell $K_j^3 + \bigcup_{k=1}^{t_j-1} F_{Kjk}^3$ (see Fig. 5b) by Q_j^3 , and choose a neighborhood Q_{*j}^3 of $(A_j^3 - Q_j^3)$ in $(A_j^3 - Q_j^3)$, which is small with respect to $G^2 \mid V^2 \mid A_j^2 \mid T^3 \mid T_j^3 \mid J^3$, such that (with respect to the product representation introduced in Sec. 8)

$${}^{-}({}^{0}Q_{*i}^{3} \cap P_{i}^{3}) = {}^{-}(Q_{*i}^{3} \cap P_{i}^{2}) \times I^{1} \qquad (i = 1, \dots, r).$$

Then we denote the 3-cell $[A_j^3 - (Q_j^3 + Q_{*j}^3)]$ by O_j^3 and the disks $O_j^3 \cap Q_j^3$ and $O_j^3 \cap Q_{*j}^3$ and $O_{*j}^3 \cap Q_{*j}^3$

Now we can find an epi-homeomorphism $\delta_j: Q_j^3 \to Q_j^3 + O_j^3$ with the following properties (see Fig. 5):

- (i) $\delta_{j} \mid (\cdot Q_{j}^{3} {}^{0}O_{j}^{2}) = \text{identity}; \ \delta_{j}(O_{j}^{2}) = O_{\#j}^{2}.$ (ii) $\delta_{j}(K_{j}^{1}) = (K_{j}^{1} \cdot A_{j}^{2}) + {}^{-}(\cdot A_{j}^{2} K_{j}^{1}).$ (iii) $\delta_{j}(K_{jk}^{2})$ intersects L_{j}^{1} in just one point and intersects each disk O_{j}^{2} , $V_{Lj}^{2}, L_{j1}^{2}, \cdots, L_{ju_{j}}^{2}, N_{j1}^{2}, \cdots, N_{jv_{j}}^{2}$ in just one arc (for all $k = 1, \cdots, t_{j}$); $\delta_j({}^0K_{jk}^2)$ is disjoint from V_{Kj}^2 .

- (iv) The neighborhood $\delta_j(T^3_{Kj})$ of $\delta_j(K^1_j)$ in A^3_j is small with respect to $T^3_{Lj} \mid V^2 \mid L^3_{j1} \mid \cdots \mid L^3_{ju_j} \mid N^3_{j1} \mid \cdots \mid N^3_{jv_j}$ and intersects O^2_j in just two disjoint
- (v) The intersections of $\delta_j(K_{jk}^3)$, $\delta_j(K_{jk}^2)$ $(k=1, \dots, t_j)$, and $\delta_j(T_{K_j}^3)$ with L_{j1}^3 $(1=1, \dots, u_j)$ and N_{jm}^3 $(m=1, \dots, v_j)$ (see also Fig. 6) can be written as cartesian products, using the product representation of the P_i^{i} 's introduced in Sec. 8; the same holds for the polyhedra

$$\delta_j^{-1}(L_{j1}^3 \cap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(L_{j1}^2 \cap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(N_{jm}^3 \cap \delta_j(K_{jk}^3)), \\ \delta_j^{-1}(N_{jm}^2 \cap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(T_{Lj}^3 \cap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(V_{Lj}^2 \cap \delta_j(K_{jk}^3)).$$

Let $\eta: J^3 \to M^3_*$ be the map defined by

- (a) $\eta \mid (J^3 \bigcup_{j=1}^s K_j^3) = \text{identity},$ (b) $\eta \mid K_j^3 = \delta_j \mid K_j^3 \text{ (for all } j = 1, \dots, s),$

and denote the images $\eta(J^3)$, $\eta(G^1)$, $\eta(G^2)$, $\eta(T_J^3)$, $\eta(P_i^3)$ by $J_{\#}^3$, $G_{\#}^1$, $G_{\#}^2$, $T_{\# J}^3$, $O_{\# i}^3$,

respectively. Obviously we have $G_{\$}^1 = {}^{1}V_{\2 .

Now we denote $\beta_{0}^{-1}(O_{j}^{2})$ by $O_{j}^{'2}$, and we choose s pairewise disjoint 3-cells $O_{1}^{'3}, \dots, O_{s}^{'3}$ (see Fig. 7) that are disjoint from $M^{3}, V^{'2}, F^{'2}, {}^{0}F_{0}^{'3}$ such that $O_{j}^{'3} \cap {}^{i}F_{0}^{'3} = O_{j}^{'2}$; then we denote $F_{0}^{'3} + \bigcup_{j=1}^{s}O_{j}^{'3}$ by $F_{1}^{'3}$, and we choose a map

$$\beta_I: F_I^{\prime 3} \to M_*^3$$

with the following properties:

- (I) $\beta_I \mid [F_0'^3 \bigcup_{j=1}^s \bigcup_{k=1}^{t_j-1} \beta_0^{-1}(F_{Kjk}^3)] = \beta_0 \mid [F_0'^3 \bigcup_{j=1}^s \bigcup_{k=1}^{t_j-1} \beta_0^{-1}(F_{Kjk}^3)].$ (II) $\beta_I \mid \beta_0^{-1}(F_{Kjk}^3) = [\delta_j \mid F_{Kjk}^3] \cdot [\beta_0 \mid \beta_0^{-1}(F_{Kjk}^3)]$ for all $j = 1, \dots, s$;
- $k = 1, \cdots, t_j$.
 - (III) $\beta_I \mid O_j^{\prime 3}$ is an epi-homeomorphism of $O_j^{\prime 3}$ onto O_j^3 .

We remark that the map β_I is locally one-to-one, except for the "reflection disks" $O_j^{\prime 2}$, i.e. if p is a point of $F_i^{\prime 3}$ and if $U^{\prime 3}$ is a sufficiently small neighborhood of p in $F_i^{\prime 3}$ then $\beta_I \mid U^{\prime 3}$ is a homeomorisphm if and only if $p \in \bigcup_{j=1}^s O_j^{\prime 2}$.

10. $G_{\#}^1$ and its neighborhood $T_{\#J}^3$ lie in a 3-cell H^3 . Let H^3 be a neighborhood of $V_*^2 + T_{*J}^3$ in M_*^3 , which is small with respect to

$$G_{\#}^2 \mid V^2 \mid J_{\#}^3 \mid A_1^3 \mid \cdots \mid A_s^3 \mid O_1^2 \mid \cdots \mid O_s^2$$
,

that intersects the $P_{\#i}^3$'s prismatically, i.e.: $\eta^{-1}(H^3 \cap P_{\#i}^3)$ $(i = 1, \dots, r)$ can be written as cartesian product using the product representation of the P_i^3 's introduced in Sec. 8 (compare Fig. 11a).

11. Arcs W_i^1 in $J^3 \cap T_J^3$ joining top and bottom disks of the prisms P_i^3 . T_J^3 a handlebody of genus r. The intersection $J^3 \cap T_J^3$ is a 2-sphere with 2r holes, denoted by T^2 .

We assert: There can be found r pairwise disjoint arcs $W_1^1, \dots, W_r^1 \subset T^2$ such that (for all $i = 1, \dots, r$)

xxii W. HAKEN

- (i) ${}^{0}W_{i}^{1} \subset {}^{0}T^{2}$; $W_{i}^{1} = p_{i} \times T^{1}$ (using the product representation of the P_i^3 's introduced in Sec. 8) with p_i an arbitrary point in $P_i^2 - \bigcup_{j=1}^s A_j^3$; we denote the arc $p_i \times I^1$ by W_{Pi}^1 ;
- (ii) if $S_i^1 \subset {}^0T_J^3$ is a 1-sphere, topologically parallel to $W_i^1 + W_{Pi}^1$, i.e.: such that there exists an annulus in T_J^3 with boundary curves S_i^1 and $W_i^1 + W_{P_i}^1$, then S_i^1 is homologous to 0 mod 2 in $M_*^3 - (W_i^1 + W_{P_i}^1)$.

We denote the arc $\eta(W_i^1)$ by $W_{\frac{\pi}{2}i}^1$. There exists just one connected component of $\beta_I^{-1}(W_{\sharp i}^1)$ —we denote it by $W_i^{'1}$ —such that $\beta_I(W_i^{'1})=W_{\sharp i}^1$; and $W_i^{'1}\subset F_I^{'3}$.

Proof of the assertion. First we remark that the 1-spheres P_1^2, \dots, P_r^2 form a 1-dimensional homology basis mod 2 of T_J^3 (if we identify the chains mod 2 with the corresponding polyhedra). If P_1^2, \dots, P_r^2 were homologously dependent mod 2 it would follow that there exists a surface in T_J^3 with boundary some of the P_i^2 ; this surface could be completed by the corresponding disks P_i^2 to a closed surface, non-separating in M_*^3 ; but this is impossible since M_*^3 is a homotopy 3-cell.

We choose an arbitrary system of pairwise disjoint arcs

$$W_1^{*1}, \cdots, W_r^{*1} \subset T^2$$

fulfilling condition (i). Now $W_i^{*1} + W_{P_i}^1$ ($i = 1, \dots, r$) is homologous mod 2 in T_j^3 to a linear combination $\sum_{k=1}^r c'_{ik} P_k^2$ with coefficients $c'_{ik} = 0$ or 1. If $c'_{ii} = 0$ then we take $W_i^1 = W_i^{*1}$. If $c'_{ii} \neq 0$ then to obtain W_i^1 we take a small neighborhood N_i^2 of $P_i^2 \times 1$ in T^2 and replace the arc $W_i^{*1} \cap N_i^2$ by another arc in N_i^2 with the same boundary points such that $W_i^1 + W_{Pi}^1$ is homologous mod 2 to $W_i^{*1} + W_{P_i}^1 + P_i^2$ in T_J^3 . Now the W_i^{*1} 's fulfill condition (ii) also. For every $i = 1, \dots, r$ there exists a surface in T_J^3 whose boundary consists of S_i^1 and some of the P_k^2 's, except P_i^2 , and whose interior lies in ${}^0T_J^3$; this surface can be completed by the corresponding P_k^2 's to a surface B_i^2 in $M_*^3 - (W_i^1 + W_{P_i}^1)$ that is bounded by S_i^1 only.

12. Singular disks $W_{\#i}^2$ in H^3 corresponding to the arcs $W_{\#i}^1$. Let $W_1'^2$, ..., $W_r'^2$ be r pairwise disjoint disks that are disjoint from M^3 , ${}^0F_1'^3$, F'^2 , V'^2 such that

$$W_i^{\prime 2} \cap F_I^{\prime 3} = W_i^{\prime 2} \cap F_I^{\prime 3} = W_i^{\prime 1}$$
 (for all $i = 1, \dots, r$).

We denote $W_i'^2 - {}^0W_i'^1$ by $W_{P_i}'^1$, and $\bigcup_{i=1}^r W_i'^2$ by $W_i'^2$.

Now we assert: There exists a map $\vartheta:W'^2\to H^3$, with the image $\vartheta(W'^2)\subset {}^0H^3$ denoted by $W_{\mathscr{A}}^2$, and with the following properties: (i) $\vartheta \mid W_i^{'1} = \beta_I \mid W_i^{'1} \text{ and } \vartheta(W_{Pi}^{'1}) = W_{Pi}^1 \text{ (for all } i = 1, \dots, r).$

- (ii) The only singularities of $W_{\#}^2$ are pairwise disjoint, normal, double arcs B_1^1, \dots, B_b^1 (b may be zero) such that each of the two connected components $B_f^{11}, B_f^{\prime\prime}$ of $\vartheta^{-1}(B_f^1)$ possesses just one boundary point in $\bigcup_{i=1}^r {}^0W_i^{\prime 1}$ and otherwise lies in ${}^0W'^2$ (for all $f=1,\dots,b$). W^2 intersects the $P_{\#i}^3$'s prismatically. (iii) There exists a neighborhood U'^2 of W'^2 in W'^2 such that $\vartheta({}^0U'^2) \subset {}^0T_{\#J}^3$.

Proof of the assertion. Step 0. Since $W_{\#i}^1 + W_{Pi}^1 \subset {}^0H^3$ (for all $i = 1, \dots, r$) there exists a map $\vartheta_0 : W'^2 \to H^3$ with property (i).

Step 1. As in the proof of Sec. 6, steps 1 to 5, we can derive from ϑ_0 a map $\vartheta_1: W'^2 \to H^3$ with properties (i), (ii).

Step 2. We choose pairwise disjoint neighborhoods N_1^3 , \cdots , N_r^3 of the 1-spheres $W_{\#i}^1 + W_{Pi}^1$ in H^3 , which are small with respect to $T_{\#I}^3 \mid \vartheta_I(W'^2)$. The intersection $N_i^3 \cap \vartheta_I(W_i'^2)$ consists of a 1-sphere N_i^1 , topologically parallel to $W_{\#i}^1 + W_{Pi}^1$, and of an even number n_i of meridian circles of N_i^3 each of which pierces N_i^1 in just one point. Now we choose an oriented 1-sphere X_i^1 in $N_i^3 \cap {}^0T_{\#I}^3$, topologically parallel to $W_{\#i}^1 + W_{Pi}^1$, and an oriented meridian circle Y_i^1 of N_i^3 that intersects X_i^1 in just one point; we denote the homology classes of X_i^1 and Y_i^1 in N_i^3 by \mathfrak{x}_i and \mathfrak{y}_i , respectively. Then the homology class \mathfrak{n}_i of the properly oriented 1-sphere N_i^1 is $\mathfrak{n}_i = \mathfrak{x}_i + w_i \mathfrak{y}_i$.

Now we need the fact that the coefficients w_i are even numbers. To prove this we show that both N_i^1 and X_i^1 are homologous $0 \mod 2$ in $M_*^3 - (W_{*i}^1 + W_{Pi}^1)$:

- (1) N_i^1 bounds a 2-dimensional polyhedron $D_i^2 \subset \vartheta_I(W_i'^2)$ that intersects $W_{\sharp i}^1 + W_{Pi}^1$ in the even number n_i of piercing points. From D_i^2 we remove n_i disks, being the intersections of D_i^2 with a small neighborhood U_i^3 of $W_{\sharp i}^1 + W_{Pi}^1$ in N_i^3 , and replace them by $\frac{1}{2}n_i$ annuli in U_i^3 such that we obtain a 2-dimensional polyhedron bounded by N_i^1 and disjoint from $W_{\sharp i}^1 + W_{Pi}^1$.
- (2) $(\eta \mid T_J^3)^{-1}(X_i^1)$ is a 1-sphere $S_i^1 \subset {}^0T_J^3$ and there exists an annulus B_i^{*2} with boundary curves S_i^1 and $W_i^1 + W_{P_i}^1$ and with ${}^0B_i^{*2} \subset {}^0T_J^3$. On the other hand S_i^1 bounds a surface B_i^2 in $J^3 (W_i^1 + W_{P_i}^1)$ as constructed in the proof of Sec. 11 which can be chosen disjoint from ${}^0B_i^{*2}$. We can bring about by small deformations the situation in which $\eta(B_i^2 + B_i^{*2})$ has normal double curves but no branch points (since η is locally one-to-one). Therefore (and since $\eta \mid B_i^{*2}$ is one-to-one) $\eta(B_i^2)$ intersects the boundary curve $W_{\#_i}^1 + W_{P_i}^1$ of $\eta(B_i^2 + B_i^{*2})$ in an even number of piercing points. From $\eta(B_i^2)$ we obtain, as in (1), a 2-polyhedron disjoint from $W_{\#_i}^1 + W_{P_i}^1$ with boundary X_i^1 .

If $w_i \neq 0$ (for some $i = 1, \dots, r$) then we choose a point in ${}^0W^1_{\#^i}$, which is no double point of $\vartheta_I(W'^2)$, and a neighborhood R^3_i of this point in N^3_i which is small with respect to $\vartheta_I(W'^2) \mid W^1_{\#^i}$. We denote the disk $R^3_i \cap \vartheta_I(W'^2)$ by $W^2_{R^i}$. In ${}^0R^3_i$ we choose a disk R^2_i (see Fig. 8) such that $R^2_i \cap W^1_{\#^i}$ is one arc R^1_i , such that ${}^0R^2_i \cap {}^0W^2_{R^i}$ is an open arc one of whose boundary points lies in $R^2_i - R^1_i$ and the other one in $W^1_{R^i} - R^1_i$, and such that ${}^-[\cdot(W^2_{R^i} + R^2_i) \cap {}^0R^3_i]$ is an unknotted chord in R^3_i . Then we choose an epi-homeomorphism

$$\lambda_i: R_i^3 \to R_i^3$$

with $\lambda_i \mid R_i^3 = \text{identity}$ and $\lambda(\lceil (W_{Ri}^2 + R_i^2) \cap {}^0R_i^3 \rceil) = W_{\#i}^1 \cap R_i^3$ and a map $\vartheta_{II} : W'^2 \to H^3$

with

$$\vartheta_{II} \, \big| \, {}^- [W'^2 \, - \, \vartheta_I^{-1}(W_{Ri}^2)] \, = \, \vartheta_I \, \big| \, {}^- [W'^2 \, - \, \vartheta_I^{-1}(W_{Ri}^2)]$$

and

$$\vartheta_{II}(\vartheta_I^{-1}(W_{Ri}^2)) = \lambda_i(W_{Ri}^2 + R_i^2).$$

xxiv W. HAKEN

Now let N_{IIi}^3 be a neighborhood of $W_{*i}^1 + W_{Pi}^1$ in N_i^3 , being small with respect to $\vartheta_{II}(W'^2) \mid T_{\#J}^3$. Then ${}^0N_{IIi}^3 \cap \vartheta_{II}(W'^2)$ consists of a 1-sphere N_{IIi}^1 , topologically parallel to $W_{s_i}^1 + W_{P_i}^1$, and of $n_i + 2$ meridian circles of N_{IIi}^3 . The homology class \mathfrak{n}_{IIi} of the properly oriented N^1_{IIi} in $N^3_i - {}^0N^3_{IIi}$ is

$$\mathfrak{n}_{IIi} = \mathfrak{r}_{IIi} + (w_i \pm 2)\mathfrak{n}_{IIi}$$

with \mathfrak{x}_{IIi} , \mathfrak{y}_{IIi} the homology classes of X_i^1 , Y_i^1 , respectively, in $N_i^3 - {}^0N_{IIi}^3$. The sign in the coefficient $w_i \pm 2$ depends on the choice of R_i^2 (see Fig. 8). So we can derive by $\frac{1}{2}\sum_{i=1}^{r} w_i$ operations of the kind described a map

$$\vartheta_*:W'^2\to H^3$$

such that (under analogous notation) the curve N_{*i}^1 is homologous to X_{*i}^1 in $N_i^3 - {}^0N_{*i}^3$ (for all $i = 1, \dots, r$).

If $w_i = 0$ (for all $i = 1, \dots, r$) then we choose $\vartheta_* = \vartheta_I$, etc.

- Step 3. From ϑ_* we can obtain by deformations (that change $\vartheta_*(W'^2)$ only in the N_{*i}^3 's) a map $\vartheta: W'^2 \to H^3$ with the demanded properties (i), (ii), (iii).
- 13. Deformation over prismatic neighborhoods of the singular disks $W_{s_i}^2$. The map ϑ can be extended to a map $\tilde{\vartheta}: W'^3 \to H^3$, with $\tilde{\vartheta}(W'^3) \subset {}^0H^3$ denoted by $W_{\frac{3}{8}}^{3}$, such that (see Fig. 9) the following hold:
- (i) W'^3 may be represented as cartesian product $W'^2 \times I^1_*$ where I^1_* means an interval $-1 \le x_* \le 1$, with $p \times 0 = p$ for all $p \in W'^2$, and W'^3 is disjoint from M^3 , F'^2 , V'^2 . We denote the components $W'^2_i \times I^1_*$ of W'^3 by W'^3_i .

 (ii) $W'^3_i \cap F'^3_i = W'^3_i \cap F'^3_i = W'^1_i \times I^1_*$ with

$$\tilde{\vartheta} \mid (W_i'^3 \cap F_i'^3) = \beta_I \mid (W_i'^3 \cap F_i'^3).$$

 $W_{\#}^3$ and the $P_{\#i}^3$'s intersect each other prismatically, i.e.: (iii)

$$\eta^{-1}(W^3_{\#} \cap P^3_{\#i}) \, = \, \{ [\eta^{-1}(W^3_{\#} \cap P^3_{\#i})] \cap P^2_i \} \, \times \, I^1$$

and

$$\tilde{\vartheta}^{-1}(W^3_{\$'} \cap P^3_{\$'i}) = \{ [\tilde{\vartheta}^{-1}(W^3_{\$'} \cap P^3_{\$'i})] \cap W^2 \} \times I^1_{\$'}$$

(using the product representations introduced in Sec.8 and in (i), respectively).

(iv) If p is a point of $W_{\#}^3$, $\vartheta^{-1}(p)$ is either one or two points. The set B of all double points of $W_{\#}^3$ is disjoint from the disks $\tilde{\vartheta}(W_{Pi}^{\prime 1} \times I_{*}^1)$ $(i = 1, \dots, r)$ and is prismatic, i.e.

$$\tilde{\vartheta}^{\scriptscriptstyle -1}(B)\,=\,[\tilde{\vartheta}^{\scriptscriptstyle -1}(B)\;\mathsf{n}\;W'^{\scriptscriptstyle 2}]\,\times\,I^1_*\,,$$

(using the same product representation as in (i)).

We denote the 3-annulus $F_I^{\prime 3} + W^{\prime 3}$ by $F_{II}^{\prime 3}$ and we define a map

$$\beta_{II}:F_{II}^{\prime3}\to M_*^3$$

such that $\beta_{II} \mid F_I^{\prime 3} = \beta_I \mid F_I^{\prime 3}$ and $\beta_{II} \mid W^{\prime 3} = \tilde{\vartheta}$.

14. Deformation over the prisms P_{*i}^3 . In $F_{II}^{'3} - S^{'2}$ there are 2r pairwise disjoint disks P'^2_{+i} , P'^2_{-i} ($i=1,\dots,r$) mapping onto the top and bottom disks of the $P^3_{\#i}$'s, i.e. such that $\beta_{II}(P'^2_{\pm i}) = \eta(P^2_i \times \pm 1)$. Now we choose r pairwise disjoint 3-cells $P_1^{\prime 3}$, ..., $P_r^{\prime 3}$, disjoint from M^3 , $F^{\prime 2}$, $V^{\prime 2}$, such that

$$P_i^{\prime 3} \cap F_{II}^{\prime 3} = P_i^{\prime 3} \cap F_{II}^{\prime 3} = P_{+i}^{\prime 2} + P_{-i}^{\prime 2} + (W_{Pi}^{\prime 1} \times I_*^1)$$

(being a disk, for all $i = 1, \dots, r$); and we choose epi-homeomorphisms

$$\mu_i: P_i^{\prime 3} \to P_i^3$$

such that $\eta_i \cdot \kappa_i \mid (P_i^{'3} \cap F_{II}^{'3}) = \beta_{II} \mid (P_i^{'3} \cap F_{II}^{'3})$. Finally we denote the 3-annulus $F_{II}^{'3} + \bigcup_{i=1}^{r} P_i^{'3}$ by $F_i^{'3}$ and we define a map

$$\beta: F^{\prime 3} \to M^3_*$$

such that $\beta \mid F_{II}^{\prime 3} = \beta_{II}$ and $\beta \mid P_i^{\prime 3} = \eta_i \cdot \kappa_i$. We denote the handlebody $H^3 + \bigcup_{j=1}^s A_j^3$ by K^3 and $\beta^{-1}(K^3 \cap \beta(F'^3))$ by K'^3 . We remark that $\beta(F'^3 - S'^2) \subset {}^0H^3$ and that

$$\beta \mid (F'^3 - K'^3) : (F'^3 - K'^3) \to (M_*^3 - K^3)$$

is an epi-homeomorphism. Moreover β is locally one-to-one, except on the δ surfaces $(O'_j{}^3 \cap {}^0F'^3)$; it is locally three-to-one on the arcs $(O'_j{}^2 \cap {}^0F'^3)$ and locally two-to-one otherwise on $(O_i^{\prime 3} \cap {}^{0}F^{\prime 3})$.

15. Conclusion. There can be found an epi-homeomorphism $\lambda: M^3 \to M^3$ such that the image $C_0^1 = \lambda(C^1)$ of the given curve C^1 lies in ${}^0M_*^3 - K^3$. Then we choose a knot projection cone $D'^2 \subset F'^3$ with $D'^2 = \beta^{-1}(C_0^1)$. We can choose D'^2 such that $\beta \mid D'^2$ is locally one-to-one. Further we can bring about by small deformations the situation in which the singularities of the image $\beta(D^2)$ are normal. Then $D^2 = \lambda^{-1}(\beta(D'^2))$ possesses the demanded properties. proves Theorem 2.

We choose two disjoint 3-cells C'^3 , C''^3 with

$$C'^3 \cap F'^3 = S'^2 = C'^3, \qquad C''^3 \cap F'^3 = F'^3 - S'^2 = C''^3,$$

an epi-homeomorphism

$$\beta':C'^3\to C^3$$

with $\beta' \mid S'^2 = \beta \mid S'^2$, and a map

$$\beta'': C''^3 \to H^3$$

with $\beta'' \mid (F'^3 - S'^2) = \beta \mid (F'^3 - S'^2)$. Then $F'^3 + C'^3 + C''^3$ is a 3-sphere S^3 and the map $\gamma: S^3 \to M^3$, composed of β, β', β'' , has the demanded properties. This proves Theorem 1.

II. Proof of Theorem 3

We bring about (by isotopic deformations) the situation in which the 2-sphere $J^3 = \beta_0(F_0^{\prime 2})$ (see Sec. 8) is equal to the image $F_0^2 = \alpha_0(F^{\prime 2})$ under the given XXVI W. HAKEN

embedding α_0 . We denote the 2-spheres

$$F_I^{\prime 3} - S^{\prime 2}, \quad F_{II}^{\prime 3} - S^{\prime 2}, \quad F^{\prime 3} - S^{\prime 2}$$

by $F_I^{'2}$, $F_{II}^{'2}$, $F_{III}^{'2}$, respectively, and we choose epi-homeomorphisms μ_0 , μ_I , μ_{II} , μ_{III} of F'^2 onto $F_0^{'2}$, $F_I^{'2}$, $F_{II}^{'2}$, $F_{III}^{'2}$, respectively, such that $\alpha_0 = (\beta_0 \mid F_0^{'2}) \cdot \mu_0$ and

$$\mu_{[i]}^{-1} \mid (F_{[i]}^{'2} \cap F_{[i-1]}^{'2}) = \mu_{[i-1]}^{-1} \mid (F_{[i]}^{'2} \cap F_{[i-1]}^{'2}) \qquad (\text{for } [i] = I, II, III).$$

We denote the maps

$$(\beta_I \mid F_I^{\prime 2}) \cdot \mu_I$$
, $(\beta_{II} \mid F_{II}^{\prime 2}) \cdot \mu_{II}$, $(\beta \mid F_{III}^{\prime 2}) \cdot \mu_{III}$,

defining singular 2-spheres in M_*^3 , by α_I , α_{II} , α_3 , respectively. Now α_3 fulfills already the condition (b) of Theorem 3, and it remains to show that the deformation from α_0 to α_3 , which may be derived from the proof of Theorem 1, 2, can be decomposed into a sequence of elementary deformations, according to condition (a).

16. Decomposing the deformations in the A_j^3 's. The deformation from α_0 to α_I , changing the 2-sphere F_0^2 in the A_j^3 's (see Sec. 9), can be decomposed into a sequence of $\sum_{j=1}^s t_j \cdot (u_j + 2v_j)$ elementary deformations of type 1a, intermixed with nonessential deformations, (see Fig. 5).

We denote the connected components of the (prismatic) intersections

$$\eta(K_{jk}^3) \cap L_{jl}^3 \qquad (j = 1, \dots, s; k = 1, \dots, t_j; l = 1, \dots, u_j)$$

under current enumeration by C_1^3 , \cdots , C_c^3 and the connected components of

$$\eta(K_{jk}^3) \cap N_{jm}^3 \qquad (m=1,\cdots,v_j)$$

by D_1^3 , \cdots , D_d^3 . Further we denote that connected component of $\eta^{-1}(C_g^3)$ $(g=1,\cdots,c)$ that is different from C_g^3 by $C_g^{'3}$, and that connected component of $\eta^{-1}(D_h^3)$ $(h=1,\cdots,d)$ that is different from D_h^3 by $D_h^{'3}$. Finally we denote the intersections of the C_g^3 , $C_g^{'3}$, D_h^3 , $D_h^{'3}$'s with the P_s^2 's (see Fig. 11a) by C_g^2 , $C_g^{'2}$, D_h^2 , D_h^2 , D_h^2 , respectively, and the intersections of the K_{jk}^3 , L_{jl}^3 's with the P_s^2 's by K_{Pjk}^2 , L_{Pjl}^2 , respectively.

- 17. Decomposing the deformations over $W_{\3 . We can bring about by small deformations the situation in which the singular discs $W_{\$i}^2$ and their prismatic neighbourhood $W_{\3 (as constructed in Secs. 11, 12, 13) are in a "normal position" with respect to the singular 2-sphere $F_I^2 = \alpha_I(F'^2)$ and to the singular disks $P_{\$i}^2$, etc., i.e. such that the following conditions hold:
- (i) F_I^2 , H^3 , the A_I^3 's, and the $P_{\#i}^2$'s intersect $W_{\#}^3$ prismatically with respect to the product representation introduced in Sec. 13.

We denote $\tilde{\vartheta}(\vartheta^{-1}(p_i) \times I_*^1)$ by P_i^1 (Fig. 9).

(ii) $\eta^{-1}(W_{\#}^2 \cap P_{\#i}^2)$ $(i = 1, \dots, r)$ is disjoint from those connected components of $K_{Pjk}^2 \cap \eta^{-1}(H^3 \cap P_{\#i}^3)$ and $L_{Pjl}^2 \cap \eta^{-1}(H^3 \cap P_{\#i}^3)$ $(j = 1, \dots, s;$

 $k=1, \dots, t_j; l=1, \dots, u_j$ that contain the arcs $K_{Pjk}^2 \cap P_i^2, L_{Pjl}^2 \cap P_i^2$ respectively, in their boundaries (see Fig. 11a).

Now we carry out the deformation of α_I into α_{II} in three steps:

Step 1. Let $B_f^{\prime 3}$ $(f = 1, \dots, b)$ (see Fig. 10) be that connected component of $\tilde{\vartheta}^{-1}(B^3)$ that contains $B_f^{\prime 1}$. We choose pairwise disjoint neighborhoods $B_{*f}^{\prime 3}$ of the $B_f^{\prime 3}$'s in $W^{\prime 3}$, which are small with respect to $\mathfrak{F}^{-1}(F_I^2 \cap W_{\$}^3) | \mathfrak{F}^{-1}(B^3)$ and which are cartesian products in the product representation introduced in Sec. 13. Now we deform F_I^2 over the 3-cells $\tilde{\vartheta}(B_{*f}^{\prime 3})$ which can be done by a sequence of elementary deformations of type 1a. We denote the map so obtained from α_I by α_{I*} and $(W'^2 - \bigcup_{f=1}^b \hat{B}_{*f}^{\prime 3})$ by $W_*^{\prime 2}$. Now we have to deform $F_{I*}^2 = \alpha_{I*}(F'^2)$ over the remaining nonsingular 3-cells $\tilde{\vartheta}(W_*'^2 \times I_*^1)$.

Step 2. In $W_*'^2$ we choose pairwise disjoint arcs X_1^1, \dots, X_x^1 (see Fig. 10) with ${}^0X_m^1 \subset {}^0W_*'^2$ that join points of

$$W'^{2}_{*} - \bigcup_{i=1}^{r} W'^{1}_{Pi}$$

to points of

$$\vartheta^{-1}(F_{I^*}^2 \cap W_{\#}^2) \cap {}^{0}W_{\#}^{\prime 2}$$

such that

- (a) every double point of $\vartheta^{-1}(F_{I*}^2 \cap W_{\#}^2) \cap {}^0W_{*}^{'2}$ is end point of one arc X_m^1 , (b) every connected component of $\vartheta^{-1}(F_{I*}^2 \cap W_{\#}^2) \cap {}^0W_{*}^{'2}$ contains at least one end point of an arc X_m^1 ,
- (c) the X_m^1 's intersect $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2) \cap {}^0W_{*}^{\prime 2}$ in isolated piercing points that are no double points of $\vartheta^{-1}(F_{1*}^2 \cap W_{\#}^2) \cap {}^{0}W_{*}^{\prime 2}$, (d) the points $\vartheta(X_m^1 \cap W_{*}^{\prime 2})$ are no double points of F_{1*}^2 .
- Now we choose pairwise disjoint neighborhoods X_m^2 of the X_m^1 's in W_*^2 , which are small with respect to $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2)$. Then we deform F_{I*}^2 over the 3-cells $\tilde{\vartheta}(X_m^2 \times I_*^1)$ which can be done by a sequence of elementary deformations of type 1a and 1b. According to the notation used in Theorem 3 we denote the map so obtained from α_{I*} by α_1 and $\alpha_1(F'^2)$ by F_1^2 . Further we denote $(W'^2_* - \bigcup_{m=1}^x X_m^2)$ by W'^2_{**} .
- Step 3. Finally we deform F_1^2 over the remaining 3-cells $\tilde{\vartheta}(W_{**}^{\prime 2} \times I_*^1)$. This can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations) since the curves $\vartheta^{-1}(F_1^2 \cap W_*^2) \cap {}^0W_{**}^{\prime 2}$ are nonsingular, pairwise disjoint, open arcs with boundary points in

$$W'^{2}_{**} - \bigcup_{i=1}^{r} W'^{1}_{Pi}$$
.

By this we obtain from α_1 the map α_{II} .

- 18. Decomposing the deformations over the P_{ki}^3 's. We carry out the deformation of α_{II} into α_3 in four steps (see Fig. 11).
 - Step 1. Let Q_i^1 be a neighborhood of a point ϵP_i^1 in $P_i^2 {}^0P_i^1$ which is small

XXVIII W. HAKEN

with respect to $\eta^{-1}(F_{II}^2 \cap P_{\#i}^2)$ and let $Y_i^1 = P_i^2 - {}^0Q_i^1$. Further we choose a neighborhood Y_i^2 of Y_i^1 in P_i^2 , which is small with respect to

$$\eta^{-1}(H^3 \cap P_{\#i}^2) \big| \; \eta^{-1}(F_{II}^2 \cap P_{\#i}^2) \big| \; \mathsf{U}_{j,k=1}^{s,tj} \; K_{Pjk}^2$$

and intersecting the disks C_g^2 , $C_g^{\prime 2}$, $D_h^{\prime 2}$ prismatically, i.e. such that

$$\eta^{-1}(\eta(Y_i^2 \times I^1)) = [\eta^{-1}(\eta(Y_i^2 \times I^1)) \cap P_i^2] \times I^1$$

(using the product representation introduced in Sec. 8). Then we deform F_{II}^2 over the 3-cells $\eta(Y_1^2 \times I^1)$ which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). We denote the map so obtained from α_{II} by α_{II*} , and $\alpha_{II*}(F'^2)$ by F_{II*}^2 , further $(P_i^2 - Y_i^2)$ by P_{*i}^2 (see Fig. 11b), the image $\eta(P_{*i}^2)$ by P_{**i}^2 , and the intersections of K_{Pjk}^2 , L_{Pjl}^2 with the P_{*i}^2 's by K_{*jk}^2 , L_{*jl}^2 , respectively. Further we denote the set of double points of

$$\eta(\bigcup_{i=1}^r P_{*i}^2 \times I^1)$$

by D_* and the connected components of

$$\eta^{-1}(D_*)$$
 n $\bigcup_{i=1}^r P_{*i}^2$

by C_{*q}^2 , $C_{*q}^{\prime 2}$, D_{*h}^2 , $D_{*h}^{\prime 2}$ such that

$$C^2_{*g} \subset C^2_g$$
, $C'^2_{*g} \subset C'^2_g$, $D^2_{*h} \subset D^2_h$,

$$D_{*h}^{\prime 2} \subset D_h' \quad (g = 1, \dots, c; h = 1, \dots, d).$$

- Step 2. We choose pairwise disjoint arcs $Y_{i1}^1, \dots, Y_{iy_1}^1$ (see Fig. 11b) in P_{*i}^2 with ${}^0Y_{if}^1 \subset {}^0P_{*i}^2$ ($f=1,\dots,y_i$) that join points of Y_1^2 to points in ${}^0P_{*i}^2 \eta^{-1}(F_{II*}^2 \cap P_{**i}^2)$, and we choose pairwise disjoint neighborhoods Y_{if}^2 of the Y_{if}^1 's in P_{*i}^2 , which are small with respect to $\eta^{-1}(F_{II*}^2 \cap P_{**i}^2) \mid \bigcup_{j,k=1}^{s,t} K_{*jk}^2$ such that, with the notation $P_{**i}^2 = (P_{*i}^2 \bigcup_{j=1}^{y_i} Y_{if}^2)$, the following hold:
- (i) The arcs Y_{if}^1 intersect the curves $[\eta^{-1}(F_{II*}^2 \cap P_{**i}^2) \cap {}^{0}P_{*i}^2]$ in isolated piercing points that are no double points (and no boundary points) of that curves.
- (ii) The arcs Y_{ij}^1 are disjoint from the disks C_{*g}^2 , $C_{*g}'^2$, D_{*h}^2 $(g=1, \dots, c; h=1, \dots, d)$ and from the arcs $(K_{*jk}^2 \cap P_{*i}^2)(j=1, \dots, s; k=1, \dots, t_j)$ and intersect the disks $D_{*h}'^2$ prismatically, i.e. such that

$$\eta(\,Y^1_{if} \cap D^{\prime 2}_{*h}) \, = \, [\eta(\,Y^1_{if} \cap D^{\prime 2}_{*h}) \, \cap D^2_{*h}] \, \times \, I^1$$

using the product representation introduced in Sec. 8. The Y_{ij}^2 's intersect the $D_{*h}^{\prime 2}$'s also prismatically.

(iii) If Z^1 is a connected component of $[\eta^{-1}(F_{II*}^2 \cap P_{**i}^2) \cap {}^0P_{**i}^2]$ then one of the following cases holds (see Fig. 12):

case a. Z^1 is an arc (that is either disjoint from the disks C^2_{*g} , C'^2_{*g} , D^2_{*h} , D'^2_{*h} or lies in the boundary of one disk C^2_{*g} , C'^2_{*g} , or D'^2_{*h}).

- case b. Z^1 consists of two arcs, piercing each other in one point, and is disjoint from the disks C_{*g}^2 , $C_{*g}^{\prime 2}$, D_{*h}^{2} , $D_{*h}^{\prime 2}$.
- case c. Z^1 consists of two arcs Z_1^1 , Z_2^1 lying in the boundary of one disk $D_{*h}^{\prime 2}$, and of one arc Z_3^1 that pierces Z_1^1 and Z_2^1 each in one point.
- case d. Z^1 consists of the boundary of one disk D^2_{*h} and of an arbitrary number of pairwise disjoint arcs that intersect D^2_{*h} each in one arc (and D^2_{*h} each in two points).

Then we deform F_{II*}^2 over the 3-cells $\eta(Y_{if}^2 \times I^1)$ $(i = 1, \dots, r; f = 1, \dots, y_i)$ which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). According to the notation used in Theorem 3 we denote the map so obtained from α_{II*} by α_2 and $\alpha_2(F'^2)$ by F_2^2 . Further we denote the intersections of the disks K_{*jk}^2 with the P_{**i}^2 by K_{**jk}^2 .

- Step 3. Now we deform F_2^2 over the 3-cells $\eta(K_{**jk}^2 \times I^1)$ $(j = 1, \dots, s; k = 1, \dots, t_j)$ which can be done by a sequence of elementary deformations of type 3a and 3b and nonessential deformations. We denote the map so obtained from α_2 by α_{2*} and $\alpha_{2*}(F'^2)$ by F_{2*}^2 .
- Step 4. The remaining parts $\eta(\lceil [P_{**i}^2 \bigcup_{j,k=1}^{s_it_j} K_{**jk}^2] \times I^1)$ of the P_{*i}^3 's are nonsingular 3-cells, and we can deform F_{2*}^2 over them by a sequence of elementary deformations of type 3a and 3b (and may be nonessential deformations). By this we obtain from α_{2*} the map α_3 .
- 19. Conclusion. The maps α_1 and α_2 , as obtained in Sec. 17, Step 2, and Sec. 18, Step 2, respectively, and the map α_3 possess the demanded properties, and Theorem 3 is proved.

BIBLIOGRAPHY

- R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2), vol. 69 (1959), pp. 37-65.
- Necessary and sufficient conditions that a 3-manifold be S³, Ann. of Math. (2), vol. 68 (1958), pp. 17-37.
- 3. M. Dehn, Über die Topologie des 3-dimensionalen Raumes, Math. Ann., vol. 69 (1910), pp. 137-168.
- 4. W. Haken, Theorie der Normalflächen, Acta Math., vol. 105 (1961), pp. 245-375.
- W. Hurewicz, Beiträge zur Topologie der Deformationen, I-IV, Proc. Akad. Amsterdam, vol. 38 (1935), pp. 112–119, 521–528; vol. 39 (1936), pp. 117–126, 215–224.
- E. E. Moise, Affine structures in 3-manifolds, V, Ann. of Math. (2), vol. 56 (1952), pp. 96-114.
- ——, Simply connected 3-manifolds, Topology of 3-manifolds and related topics, Englewood Cliffs, Prentice-Hall, 1962, pp. 196-197.
- 7. E. Pannwitz, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann., vol. 108 (1933), pp. 629-672.
- 8. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) vol. 66 (1957), pp. 1-26.
- H. Poincaré, Cinquième complément a l'Analysis Situs, Rend. Circ. Mat. Palermo, vol. 18 (1904), pp. 45-110.

XXX W. HAKEN

- 10. K. Reidemeister, Topologie der Polyeder und kombinatorische Topologie der Komplexe, Leipzig, Geest and Portig, 1953.
- 11. H. SEIFERT AND W. THRELFALL, Lehrbuch der Topologie, Leipzig, B. G. Teubner, 1934.
- A. S. SHAPIRO AND J. H. C. WHITEHEAD, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 174-178.
- S. SMALE, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc., vol. 90 (1959), pp. 281-290.
- 14. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 243-327.

Institute for Advanced Study Princeton, New Jersey

FIGURE 3

(a) depicts the intersection of V^2 and G^* with A_i^2 . (b) depicts the intersection of (a), plus $T^2 \cap A_i^2$, $J^2 \cap A_i^2$, $J^3 \cap A_i^2$, with the V_{Lf}^2 -plane. The product representation of the P_i^2 s and $P_{g_i}^2$,'s is indicated by hatching.

FIGURE 6

Intersections of K_{jk}^2 , $L_{i'l}^2$, $N_{i''m}^2$ $(j,j',j''=1,\cdots,s;\,k=1,\cdots,t_j\;;\,l=1,\cdots,u_{j'}\;;\,m=1,\cdots,v_{j''})$, etc. with P_i^2 .

