ON HOMOTOPY 3-SPHERES'

BY
WorLreaNe HAKEN

A homotopy 3-sphere M° is a compact, simply connected 3-manifold with-
out boundary. After the work of Moise [6] and Bing [1] M® possesses a tri-
angulation. The Poincaré conjecture [9] states that every homotopy 3-sphere
M? is a 3-sphere. In this paper we prove three theorems, related to the
Poincaré conjecture, about maps of a 3-sphere S° onto M° and about 1- and
2-spheres in M*,

1. Theorems 1 and 2, concerning maps S® — M? and closed curves in M3,
From the work of Hurewicz [5], Part III, it follows that there exists a con-
tinuous map ¢ : S° — M® of degree 1 (where S° means a 3-sphere). We shall
prove that there exists an especially simple map of this kind.”

TaroreM 1. If M® is a homotopy 3-sphere then there exists a simplicial map
v 1 8% — M? of degree 1 such that the singularities of v (i.e. the closure of the set
of those points p e M* for which v~ (p) consists of more than one point) lie in a
(polyhedral, compact) handlebody in M®.

One might consider this result as a step towards a proof of the Poincaré con-
jecture. Indeed, if it were possible to restrict the singularities of v to a 3-cell
in M° instead of a handlebody the existence of a homeomorphism S* — M*
would follow.

From Theorem 1 we may derive another aspect of the Poincaré problem by
considering simple closed curves in M°.

From the definition of simple connectedness it follows that every closed
curve C' © M?® bounds a singular disk D* < M®. If C" is a tame, simple closed
curve then one can find a D* which is also tame and possesses only “normal”’
singularities (see [7], [8]), i.e. double curves in which two sheets of D* pierce
each other, triple points in which three sheets pierce each other, and branch
points from each of which one or more double arcs originate; the triple points,
the branch points, and the interiors of the double curves are disjoint from the
boundary ‘D* of D*, but the double curves may have end points in "D

As Bing [2] has proved, M° is a 3-sphere if (and only if) every tame, simple
closed curve C* < M°® lies in a (compact) 3-cell in M®. The statement that
C" lies in a 3-cell D* © M?® is equivalent to the statement that C' bounds a
“knot projection cone” D*in M’ i.e. a (tame) singular disk whose singularities
are one branch point P and double arcs originating from P, being pairwise
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2Theorem 1 is a consequence of a ‘“monotonic mapping theorem” announced by
Moise in [6al; however the proof is different from Moise’ proof.
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disjoint otherwise, and terminating in "D®. (A small neighborhood of a knot
projection cone in M® is always a 3-cell.) Hence one would prove the Poin-
caré conjecture if one could prove that every tame, simple closed curve C' < M*
bounds a knot projection cone in M°. Theorem 2 of this paper (which may be
considered as a corollary of Theorem 1) is a first step in this direction: it states
that C" always bounds a knot projection cone D* with additional singularities
that do not touch ‘D* = C".

THEOREM 2. If C' is a tame, simple closed curve in a homotopy 3-sphere M*
then there is a (tame) singular disk D* < M® with ‘D* = C" such that D* has the
following singularities:

(a) One branch point P of multiplicity g (g may be zero) and g double arcs

Qi, -, QF (in each of which two sheels of D* pierce each other), starting from
P and ending at "D* with °Q; < °D* such® that the Q; — P’s are pairwise disjoint.
(b) Closed double curves Ry, ---, Ri (h may be zero) which may pierce

themselves and the QY’s in triple points of D*, but which are disjoint from "D*.

In the special case h = 0, D* is a knot projection cone; in the case ¢ = 0,
D’ is a so called Dehn disk (see [8]). 1In the latter case it follows from Dehn’s
lemma (stated by Dehn [3] and proved by Papakyriakopoulos [8]) that there
exists a (tame) disk D™ with ‘D* = ¢"and h* = 0 (and also ¢* = 0). Now
the question arises whether it follows in the general case (g 5% 0) that there
exists a (tame, singular) disk D** with 'D** = ¢" and b* = 0 (and ¢* arbi-
trary, not necessarily equal to g). An affirmative answer to this question
would imply the Poincaré conjecture.

If one applies the methods for proving Dehn’s lemma, as developed by
Papakyriakopoulos [8] and later simplified by Shapiro and Whitehead [12], to
this problem then one has to consider a small neighborhood D* € M? of D’ a
covering of D°, etc. Then all conclusions of the proof of Dehn’s lemma, in [12]
apply to our problem as well, except in case (1) wherein the boundary ‘D? of
D? (or that of one of the neighborhoods in the coverings) consists of 2-spheres
only: for case (1) it follows easily in dealing with Dehn’s lemma that C* bounds
a nonsingular disk; however it seems to be difficult to prove for case (1) in
dealing with our problem, g # 0, that C' bounds a knot projection cone.
Nevertheless I hope that someone will be able to fill this gap in the proof of
the Poincaré conjecture.

2. Theorem 3, concerning 2-spheres in M3. We obtain another aspect of
the Poincaré problem if we consider 2-spheres in M* instead of closed curves.
If we remove the interior of a 3-cell C* from M® we get a so called homotopy
3-cell M% . It follows from the Hurewicz theorem [5], Part II, that every
2-sphere in M% may be homotopically deformed into one point.

Let us consider a 2-sphere Fg  M% , “topologically parallel” to the bound-

3 We denote the interior of a (tame) point set X by °X, the boundary by "X, and the
closure by X or ~X.
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ary of M% , i.e. such that F§ 4+ "M% bounds a 3-annulus Fy < M%. If one
could prove that F§ can be deformed* into a 3-cell H* < M¥% not only by a
homotopy but also by an isotopy whose image is tame at each level then the
Poincaré conjecture would follow (since it would follow that M% is a 3-cell).
Tt follows from the work of Smale [13] on regular homotopy that F§ can be de-
formed onto the boundary of a 3-cell in H® in such a way that no branch points
occur at any stage of the deformation. In order to go one step further in this
direction we shall show that Fg can be deformed into H® by especially simple
homotopic deformations that take place in a special order.
First we have to define some special homotopic deformations. Let

o F?*— MY,
with the image a(F”*) < "M% denoted by F*, be a continuous map, defining a
(tame) 2-sphere with canonical singularities (i.e. normal double curves and

triple points, but without branch points, see [8]). Let A” be a disk in F”
whose image a(A’*) is also a (nonsingular) disk A”. Let

A™ < "M
be another tame disk with A**n A% = "A* = "A™ such that A*> 4+ A™ bounds

a 3-cell K* © M%. Now we consider a deformation § that changes « into o™
such that

a* |(F/2 _ OA/Z) = «a l(Fv/Z _ OA/2)

and a™ | A" is a homeomorphism onto A**.  We call such a deformation non-
essential if there exists an epi-homeomorphism

¢ My — My with ¢(F*) = o (F?)

that is the identity outside a small neighborhood of K°. We call 6 an ele-
mentary deformation of type 1, 2, or 3, respectively, if the surface defined by
o™ has only normal singularities and one of the following conditions holds (see
Fig. 1):

Type 1. Either case (a) ~(°K® n F*) is a disk B® with ‘B> < °4™; or case
(b) (°’K® n F*) consists of two disks B?, C* such that
.B2 .02 c OA *2
and B® n C?is an arc with
%(B’n %) c °K*

4 For convenience we shall use the word ‘“‘deformation” not only for deformations of
maps but also for deformations of polyhedra X < M3 (i.e. for changes of X into X* such
that there can be found homotopic maps &, £¢* : X’ — M3 with ¢(X’) = X, &*(X’) = X*).
This is convenient since a surface with normal singularities, defined by a map

g1 X2 M3,
is essentially determined by the image polyhedron £(X'2).
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Type2. ~(°K*n F*) is a disk B such that each of the intersections ‘B* n A®
and ‘B*n A™ consists of two disjoint arcs with

"CB'n AN A’ and (‘Bn A™) C 'A®
Type 3. Either case (a) ~("K* n F*) is a disk B® with ‘B* < °A®; or case

(b) ("K® n F*) consists of two disks B, C* such that ‘B* < "4* and each of
the intersections "C* n A% "C*n A™, C* n B is an arc with
0<.C2nA2) c OAZ, 0<.C2nA*2) COA*2, O(CZnBQ) (___002, OBZ.
We remark that an elementary deformation of type 1 (a or b) changes the
image sphere F* only in a small neighborhood (small with respect to F*) of an
arc (connecting a point in *A” to a point in *B* or in *B* n °C*, respectively);
a deformation® of type 2 changes F* in a small neighborhood of a disk (whose

boundary intersects each A and B” in one arc). According to this one might
say that a deformation of type 7 (¢ = 1, 2, 3) is essentially ¢-dimensional.

THEOREM 3. Lel M be a homotopy 3-cell and oy : F'* — My an embedding
of a 2-sphere, topologically parallel to "M% . Then oy can be deformed step by
step into maps oy , o , oz of F'* into M such that the following holds:

(a) a; (7 = 1,2, 3) is obtained from a;_1 by a finite sequence of elementary
deformations of type © and non-essential deformations.

(b)  The image as(F™) lies in a 3-cell H < "M .

The two essential points of this theorem (which are not immediate conse-
quences of Smale’s results [13]) are (1) the order in which the deformations
take place and (2) that no deformations are used that move the surface over a
triple point.

We remark without proof: If it were possible to avoid the deformations of
type 1b (i.e. to avoid triple points) or to avoid the deformations of type 2 then
this would imply the Poincaré conjecture; this would hold even if H® were not
a 3-cell, but homeomorphic to any compact subset of euclidean 3-space with
connected boundary.

3. Sketch of the proofs. The theorems are proved by considering defor-
mations of singular 2-spheres in a homotopy 3-cell M% . We start with an
embedding

Bo: Fo — M

of a 3-annulus Fy' into M such that one boundary sphere S’ of F' is mapped
onto "M% and the other boundary sphere Fy~ onto the 2-sphere Fj = ao(F’?).
Now we deform F§ into a 3-cell H®* < *M% in the simplest way we can find. To
do this we choose a simple cell-decomposition T of the homotopy 3-sphere
M* = M% + C° (C* being a 3-cell with C* n M% = "C* = "M%) into one vertex
E°, r elements Ei , E; (i = 1, - -+, r) of each dimension 1 and 2, and one open
3-cell E® containing C°. Then we choose a neighborhood J° of the 2-skeleton
@’ of T, and we may assume that our initial 3-annulus Bo(Fo') is My — °F°,



ON HOMOTOPY 3-SPHERES XV

hence Fy = J°. Now we use the fact that M% is simply connected by taking
a collection of r singular disks, bounded by the 1-skeleton G" of I' (that con-
sists of the r loops E; with the common vertex E°) ; these disks with the bound-
ary point E° in common form a “fan” V* with singularities. We can choose
V?® such that its only singularities are pairwise disjoint double ares
A (j = 1,---, s, as depicted in Fig. 2). Now we contract V* changing it
only within small neighborhoods A} of the AYs, onto a nonsingular fan V% , a
small neighborhood H® of which is a 3-cell; that means we deform the
1-skeleton G" into the 3-cell H®.  We carry out corresponding deformations (see
footnote 4) of the 2-skeleton G° onto a “singular 2-skeleton” G% and of its
neighborhood J° onto a singular polyhedron J¥ ; and we change the map 8,
correspondingly into a map 8; : F;’ — M with ; | 8 =By | 8. All the de-
formations of G7,J° take place in the AYs. H® + Uj_, A} is a handlebody K*.
The corresponding deformations of F§ onto F; are of type 1a only.

Now we have to deform the rest of F; into H’. TFirst we remark that J
may be decomposed into a neighborhood T of the deformed 1-skeleton "V
and into r “prismatic”, singular 3-cells Py, (being prismatic neighborhoods of
middle parts of the deformed E}s), such that T% < "H®. That means, that
part of F7 lying outside of H’ lies in the “top” and “bottom” disks of the Py/’s.
The boundaries of the top and bottom disks of Pk may be joined by an arc
Wi c Fin’H® and by an arc Wi 'P';i ; the so obtained 1-spheres Wi+ Wh,
bound singular disks Wi < "H*. We can choose these W¥’s such that their
only singularities are double arcs and that singular, prismatic neighborhoods
W? of them fit properly to F7 and to the Pg/s. Then we expand the singular
3-annulus, defined by 8; , over these singular prisms W? (denoting the changed
B8: by 811); the corresponding deformation of F onto a singular 2-sphere F;,
may be decomposed into deformations of type 1 (a and b) yielding a singular
2-sphere F3 (and a map o according to Theorem 3) and after them deforma-
tions of type 2 yielding Fi;. Now F}; contains “folds” around the Py’s con-
sisting of the top and bottom disks and joining disks (containing the Wrs);
so we can expand the singular 3-annulus over the Pk/’s (denoting the changed
B by 8: F”® — Mi with 8| 8” = B8|S8”). The corresponding deformation
of F3; yields Fi < °H* (and a3) and may be decomposed into deformations of
type 2, yielding F3 (and az), and after them deformations of type 3 (a and b);
this completes the proof of Theorem 3.

To prove Theorem 2 we observe that the complement M% — °K° of the
handlebody K is covered one-to-one by 8. So we deform the given curve C"
isotopically into a curve C; € M% — K®; then we choose a knot projection
cone D'’ bounded by the knot 7'(C%) in the 3-annulus F’*; we bring about by
small deformations the situation in which 8(D’*) has only normal singularities.
Then D* = B(D") has the demanded properties. Theorem 1 is proved by
extending 8 to a 3-sphere 8° D F”.

We remark: If it were possible to find the map

B:F?— M5
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(with B('F”® — 8”) < °H®) such that 8 | 87/ (M% — H?) is locally one-to-one
then the Poincaré conjecture would follow by an easy conclusion. We would
obtain such a map g if it were possible to deform the 3-annulus BO(F(')S) onto
B(F") by “expansions” only. But in our procedure some of the very first de-
formations in the A¥s (and only these) are not expansions, so we get certain
surfaces in F”° such that 8 is not locally one-to-one at (and only at) the points
of these surfaces. (8 maps these surfaces homeomorphically into K*. More-
over it is possible to arrange our procedure such that these exceptional surfaces
become disks.)

l. Proof of Theorems 1 and 2

We prove Theorem 1 and 2 first. After this we shall prove Theorem 3 by
consideration of some more details.

4. Preliminaries. Let M3 be a homotopy 3-sphere. After Moise [6] and
Bing [1] there exists a triangulation of M°. This means there exists a ho-
motopy 3-sphere, homeomorphic to M°, that is a (straight-lined, finite)
polyhedron in a euclidean space & of sufficiently high dimension n. So we
may assume for convenience and without loss of generality that M® itself
is a polyhedron in €". All point sets considered in the subsequent part of
this paper are polyhedral in " in the sense of [10] (i.e. finite unions of straight-
lined, finite, convex, open cells in §"); they are denoted by capital roman
letters, and their dimensions by upper indices. We use the notation "X, X, °X
for the boundary, closure, interior of X, respectively, and X — Y =
X — (X nY) for the difference.

By a decomposition of X we mean always a collection of finitely many pair-
wise disjoint point sets whose union is X. A decomposition A is called a
cell-decomposition, if the elements of A are open cells such that for every two
cells A, BeAeither An'B = forA C ‘B holds. We call a cell-decomposition
A a straight-lined triangulation if its elements are open, straight-lined simplices
in @" such that the open faces of each element are also elements of A; we call
a cell-decomposition ©® a triangulation in general if for each element A ¢®
the decomposition ©@(A) of A, consisting of all those elements of ® that lie
in A, is isomorphic to the decomposition of a simplex (of the same dimension
as A) into its interior and its open faces.

By a (polyhedral) neighborhood of X in Y (as defined in [14]) we mean the
closure of the simplex star of X in a second barycentric subdivision A** of a
(general) triangulation A of Y such that X is the union of elements of A; the
neighborhood is called small with respect to Z| V| --- | W (see [4, Kap. 1,2])
fZnY,VanY, -+, WnY are unions of elements of A.

By an arc, disk, or 3-cell we mean, if not stated otherwise, a compact,
nonsingular 1-, 2-) or 3-cell, respectively.

All maps considered in the subsequent part of this paper are simplicial
maps in the sense of [11, p. 114]: a continous map « : A’ — B is called sim-
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plicial if there exist straight-lined triangulations A" of A" and A of B such that
o maps each element of A’ linearly onto an clement of A.
Let C° be a 3-cell in M* and denote the homotopy 3-cell M* — °C* by M .

5. A simple cell-decomposition T of /3. We can find a cell-decomposition
I' of M® with the following properties:
(i) T contains just one O-dimensional element, say E°, and just one
3-dimensional clement, say I’

(i) C*c B,
(iii) T contains 7 elements, say Ky, ---, Er, of dimension 1 and 7 cle-
ments, say K, -+, K>, of dimension 2.

(iv) Each element E; lies at least 2 times in the boundary of Uj E}
(i.e.:if U”is a neighborhood of a point of E} in M°, which is small with respect
to

E}I |EyEL --- |EY,

then "U? n Uj_; E% consists of at least 2 pairwise disjoint open disks).

Proof of the assertion. T may be found as follows:

Step 0. We take an arbitrary decomposition Ty of M® into open cells.

Step 1. We delete, step by step, such 2-dimensional elements of T'y that
separate two different 3-dimensional elements; this yields finally a decom-
position Ty with only one 3-dimensional element (see [11]).

Step 2. Now we contract a maximal tree in the 1-skeleton of I'; into one
point; this yields a decomposition Ty with property (i).

Step 3. If a 1-dimensional element E'eT, lies just once in the boundary
of a 2-dimensional element E® eIy and does not lie in the boundary of any
other 2-dimensional element of T, then we delete both E' and E*; repeating this
operation as often as possible, we obtain a decomposition T'; with properties (i)
and (iv). T possesses also property (iii) since the Euler characteristic of M®
is zero (see [11]).

Step 4. To obtain I' we deform the 2-skeleton of T'; isotopically such that
the deformed 2-skeleton lies in M* — C*.

Remark. Inthe caser = 0, M°is obviously a 3-sphere and we have nothing to
prove. Therefore we may assume for the subsequent sections of this paper that
r % 0. We denote the 1-skeleton U’_; E} and the 2-skeleton Uj_; E? of T' by
@', @°, respectively.

6. The 1-skeleton G" of T bounds a singular fan V>. We assert: There exists
a map
CVP = My,
with the image ¢(V"?*) < "M ¢ denoted by V?, and with the following properties
(see Fig. 2):
(i) V"’ consists of r disks vy .- , V:z, possessing one common boundary
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point E’°, and otherwise being pairwise disjoint; V’* is disjoint from M®, F”.

(i) V'= G

(iii) The only singularities of V* are pairwise disjoint, normal, double
ares A1, - -+, A} (smay be zero) such that each of the two connected components
AS' AT of ¢71(AY) possesses just one boundary point in ‘V’* — E’® and otherwise
lies in V" (forallj = 1, - -+, s).

(iv) ThearesA}(j=1,---,s) intersect G* — G" at most in isolated piercing
points, V? intersects G — G" at most in piercing curves whose intersection and
self-intersection points are the piercing points A; n (G° — G).

(v) C{V*n G — (1)) is disjoint from V"> — E”°, i.e. a connected com-
ponent of

(Va6 — @)
is either a 1-sphere or an open arc whose boundary lies in
E/O + U;=1[('A;'1 + .A;/I) n OV/Z]
(see Tig. 3).

Proof of the assertion. Step 0. Since My is simply connected there exists
amap {o: V? — M% with properties (i) and (ii).

Step 1.  From {, we can obtain by small deformations (by a similar procedure
as described in [7]) amap ¢; 1 V> — M%, also with properties (i), (ii), such that
the only singularities of V7 = {;(V'*) are normal double curves, triple points,
and branch points of multiplicity 1 (see [8]), and such that the triple points,
the branch points, and the interiors of the double curves lie in °V}, and that
E’is no double point.

Step 2. Now we consider the set D; of all double points (not including the
triple points) of V7, and we remove, step by step, all those connected com-
ponents D, - -+ , D34 of D; that are disjoint from V7. To do this we can find
an arc C}, C V7 that joins a point of 'V — (E° 4 'D;) to a point of a component
D (provided that d 5 0) such that °Ch n Dr, °%Chn Vi = @; then we remove
D} (without introducing a new component of that kind) by a deformation of
¢r (see Fig. 4) that changes V3 only in a neighborhood of Ck, and so on. In
this way we obtain finally after d deformations a map {77 : V> — M%.

Step 3. Now we can remove the triple points of Vi; = ¢:(V") by deforma-
tions of ¢;; that change V7 only in neighborhoods of double arcs of Vi that
join the triple points to "V3; — E°. TFurther we can remove the branch points
by cuts along those double arcs of V3, that join the branch points to Vi, — E°.
This yields a map

$rar t V?— Mi ,

with ¢72:(V"*) denoted by V3, such that the set Dy of double points of Vi
consists of pairwise disjoint ares Dy, -+, Dime.

Step 4. If one of the components of the inverse image of Din—say Dyrn—
is disjoint from ‘V’*, then we choose an arc Cr < V" joining a point of Dy to
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a point of
Vv — [EIO + K;III('DHI)],

with °C%" n ¢rv(Dir), °Ci n "V = @, and we remove Djrn by a deformati?n
of {777 (similar to Step 2) that changes V3 only in a neighborhood of ¢17:(Cr );
and so on. This yields finally a map

{IV: V/2———>M§k

with the properties (i), (ii), and (iii).
Step 5. From {7y we obtain by small deformations a map

v . V/2 — M?\: ,
with ¢+(V"*) denoted by V7 , having the properties (i), - - - , (iv).

Step 6. TFrom ¢y we obtain, by deformations that change V% only in a small
neighborhood of V% = G', a map ¢ : V> — M3 with the required properties.

7. Neighborhoods A} of the double arcs A of V.. TLet A}, ..., 4% be
pairwise disjoint neighborhoods of A7, ---, A}, respectively, in M% , which are
small with respect to G* | V* (see Fig. 5a).

A% n G" consists of two disjoint arcs; we denote them by K; , L. The closures
of the connected components of (45 n V?) — A} are two disks; we denote them
by Vi, V3 such that

K;c Vi, LicVi;.

We choose a neighborhood A of A in Vi;, which is small with respect to G,
and we denote the nonsingular fan ~(V? — Uj A7) by Vi.

We denote those connected components of A} n G* that contain K}, L},
respectively, by K, L7 . The closures of the connected components of K; — K

and L} — L} are disks K}y, -, K& ; and Ly, -, L?u,., respectively. Those
connected components of A} n G that are different from K}, L} are disks
N%, ---, N, ; (v; may be zero). We arrange the notation such that the disks

%, -+, Kj; lie around Kj in the order of the enumeration and such that

Vi lies in this order between Kj;; and Kj; .

8. A small neighborhood J¢ of the 2-skeleton G* and its complementary
3-annulus Fiy. Let T be a neighborhood of G" in M% , which is small with
respect to

G'|VEAT| - | AT| AT -+ | A3
Let J® be a neighborhood of G* in M% , which is small with respect to
T*|V*| 43| -+ [AT[AT] -+ | 45,

Then M% — %% is a 3-annulus F} .
We denote T° n J® by T%, and the two connected components of T% n A2
(j=1,---,8) by Tk;, T%; (see Fig. 5b) such that K} < Ty; and L} < T3;.
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Turther we denote the connected components of J* n A? by K JLY,N%,--- N f-v,-
where
KicK}, LicL], NumCNu (m=1--,0)

and the connected components of (K — T;) and " (L — T%;) by Kj1, - - -, Ky,
and Ly, ---, L} ;» respectively, where
KinKh =0 (h=1,---,4) and LhinLi =01 =1, -, u).

Those t; — 1 connected components of “(A7 — K3) that are disjoint from Vi;
are 3-cells Fy1, -+, Fxji;—1 in F§ (see Fig. 5b).

The connected components of ~(J* — T%) are r 3-cells; we denote them by
P, - ,Plwhere EinP}#0 (i =1, ---,r), and we denote the disks E; n P}
by Pi. Then P} can be represented as cartesian product P; X I', where I' is
the interval —1 < £ +1, such that

(i) P} is the central disk, i.e. p X 0 = p for all pe P%;
(ii) the top and bottom dlSkS are the connected components of P} n J°,
le(P><1)—I-(P><—1) Pin J%
(iii) the polyhedra A%, V* A 1ntersect P} “prismatically”, i.e.:

AinPl= (AinaPY) X', V'aPi= (V'a P} XTI', AinP}= (AinP}) X I
Let Fo’ be a 3-annulus, disjoint from M°, V"%, F”*, and let
Bo: Iy — M
be a homeomorphlsm with the image BO(FO ) = F§. We denote the boundary
2-spheres 85" (J°) and 85" ('M%) of Fo by Fy' and S, respectlvely (We may

bring about by isotopic deformations the situation in which BO(F'O ) = ao(F7?)
with ag the embedding given in Theorem 3.)

9. Deformations in the A¥’s that take G" onto the boundary of the nonsin-
gular fan Vi . We denote the 3-cell K} 4 Uii5" Fi;i (see Flg 5b) by Q} , and
choose a neighborhood Q%; of (‘A% — Q%) in ~(45 — @), which is small
with respect to G* | V*| A5 | T°| T% |J°, such that (with respect to the product
representation introduced in Sec. 8)

—(OQijnP:;):_(QijnP%)xll ('L= ly "';T>'
Then we der}ote the 3-cell T[4} — (Q} + Q%)] by O} and the disks ‘0% n Q}
and ‘0% n "Q%; by O} and O%; , respectively. '

Now we can find an epi-homeomorphism 8; : @} — Q} + O} with the following
properties (see Fig. 5):

1) &) ¢( QJ °0%) = 1dent1ty, 83;(03) = 0% .
(i) o(K;) = (K} — 4 n+ (AL K.
(111) 5;(K%) intersects Lj in Just one point and intersects each disk 0, ,

VLJ, N, Lm, 31, cee N,, in just one arc (for all k = , )3
8;("K?%) is disjoint from V; .
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(iv) The neighborhood 5;(T%;) of §;(K}) in A% is small with respect to

2| V| L] -+ |Liw; | N3] --- | N3, and intersects O in just two disjoint
disks.

(v) The intersections of Bj(K ), 8(K5) (k =1, -+, t;), and 8;(Tx;)
with L, (1 = 1, -+, u;) and N3, (m = 1, , Vi) (see also Fig. 6) can be

written as cartesian products, using the product representation of the PYs
introduced in Sec. 8; the same holds for the polyhedra

5 (Lhn 8;(K3), & (Lin6(K%),  8(Nimn 8;(Kh)),
5 (Nimn 8(K3)), 8 (T1ini(K3)), 67 (Viins;(KR)).
Let 5 : J* — M¥% be the map defined by

(a) 7| (J* — UiLK?) = identity,
(b) n|K}=8|K}(forallj =1, --,5),

and denote the images n(J°), n(G"), n(Gz),n(T ),1(P) by J, Gy, G, Ts , Oi»
respectively. Obv10usly we have Gy = V.

Now We denote 82(03) by 05", and we choose s pairewise dlsJOmt 3-cells
O{a, T (see Fig. 7) that are d1s301nt from M, V'2 F” °Fy" such that
0,~ n Fo = O] ; then we denote Fo' + U} =10 by Fi , and we choose a map

Br: Fr — M
with the following properties:

(D) 8| "I — Ui VL85 (Fe)] = 60| TP’ — Uja Uit'65™ (Fie)]-
(1) B:|B80 (Fxn) = [8;| Fxal - [Bo| Bo (Fxa)] for all j = 1, -+, s;
E=1,---,t).
(III) B;] 07 is an epi-homeomorphism of O} onto 0} .

We remark that the map 8; is locally one-to-one, except for the “reflection
disks” 07, i.e. if p is a point of F;* and if U” is a sufficiently small neighborhood
of pin F* then 8; | U” is a homeomorisphm if and only if p ¢ Uj_, O}

10. Gy and its neighborhood T’ lie in a 3-cell H3. Let H3 be a neighbor-
hood of V% 4 T, in M% , which is small with respect to

Gy | V[Tl AL] -~ [AL|OF] -~ | OF,

that intersects the Py/s prismatically, i.e.:n ' (H*n Pk) (i = 1, ---, r) can
be written as cartesian product using the product representation of the P¥s
introduced in Sec. 8 (compare Fig. 11a).

11. Arcs Wiin 'J* n'T’ joining top and bottom disks of the prisms P} . T%
a handlebody of genus 7. The intersection J° n “T'% is a 2-sphere with 2r holes,
denoted by T*

We assert: There can be found r pairwise disjoint ares Wi, ---, Wi < T?
such that (foralle =1, -+, 7)
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(i) Wi c "T* Wi = p; X I' (using the product representation of the
P?s introduced in Sec. 8) with p; an arbitrary point in P} — Uj_14% ; we denote
the arc p; X I' by W, ;

(ii) if 8} < °T7 is a l-sphere, topologically parallel to Wi + Wp,, ie.:
such that there exists an annulus in 7' with boundary curves S} and W} + Wk,
then S} is homologous to 0 mod 2in M% — (W} 4+ Wp,).

We denote the arc n(W3) by Wy, . There exists just one connected component,
of 87" (W gi)—we denote it by Wi—such that 8,(W3) = Wy, ;and Wi < F;".

Proof of the assertion. First we remark that the 1-spheres P}, - - -, "P} form
a 1-dimensional homology basis mod 2 of T (if we identify the chains mod 2 with
the corresponding polyhedra). If 'P3, ---, P} were homologously dependent
mod 2 it would follow that there exists a surface in T with boundary some of the
"P¥s; this surface could be completed by the corresponding disks P} to a closed
surface, non-separating in M% ; but this is impossible since M% is a homotopy
3-cell.

We choose an arbitrary system of pairwise disjoint arcs

Wi“l’ ...’I)[/;"lcT2

fulfilling condition (i). Now Wi 4+ Wi (¢ = 1, ---, ) is homologous mod 2
in T3 to a linear combination Z;Z:l cir "PE with coefficients ci = 0 or 1. If
¢i: = 0 then we take W} = Wi 1If ¢;; 5 0 then to obtain W} we take a small
neighborhood N3 of "P} X 1 in T” and replace the arc W;' n N} by another arc
in N2 with the same boundary points such that W; 4 W}, is homologous mod 2
to W + Wi + Plin T5. Now the W¥s fulfill condition (ii) also. For
every i = 1, ---, r there exists a surface in 7 whose boundary consists of
S} and some of the "PPs, except "P%, and whose interior lies in °T75 ; this surface
can be completed by the corresponding Py’s to a surface B} in M% — (Wi + Wk
that is bounded by S} only.

12. Singular disks W%; in H® corresponding to the arcs Wx;. Let
Wi -+, W7 be r pairwise disjoint disks that are disjoint from M R AR A e
such that

WiaFP=WiaFP=W; (foralli=1,---,7).

We denote Wi — Wi by Wa:, and Uiy Wi by W”.

Now we assert: There exists a map ¢ : W — H’, with the image MW < *H?
denoted by W% , and with the following properties:

() ¢ | Wi = B, | Wiand &(W5:) = W (foralli = 1, ---, 7).

(ii) The only singularities of W' are pairwise disjoint, normal, double arcs
Bi, ---, By (b may be zero) such that each of the two connected components
BY', BY' of 9 '(Bj) possesses just one boundary point in U7 "W and otherwise
lies in *W’% (for allf = 1, ---,b). W’ intersects the Pk/s prismatically.

(iii) There exists a neighborhood U of ‘W in W”* such that ¢(°U”") < T, .
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Proof of the assertion. Step0. Since Wy; + Wp; € "H® (foralls = 1, --- ,r)
there exists a map & : W’* — H® with property (i).

Step 1. As in the proof of Sec. 6, steps 1 to 5, we can derive from J, a map
31 W* — H® with properties (i), (ii).

Step 2. We choose pairwise disjoint neighborhoods N3, ---, N of the
1-spheres Wy + Wp; in H®, which are small with respect to Txs |9, (W").
The intersection ‘N5 n ¢,(W:") consists of a 1-sphere N7, topologically parallel
to W;gi + Whs , and of an even number n; of meridian circles of N % each of which
pierces N} in just one point. Now we choose an oriented 1-sphere X} in
‘N% a °T%,, topologically parallel to Wy; + Wy, and an oriented meridian
circle Y of N? that intersects X7 in just one point; we denote the homology classes
of Xi and Y3 in "N? by r; and v, respectively. Then the homology class n;
of the properly oriented 1-sphere N is n; = 1; + wiV;.

Now we need the fact that the coefficients w; are even numbers. To prove
this we show that both N} and X} are homologous 0 mod 2in M & — (W,lgi -+ W}pi) :

(1) N} bounds a 2-dimensional polyhedron D} < ¢;(W.*) that intersects
Wi + W in the even number n; of piercing points. From D? we remove n;
disks, being the intersections of D with a small neighborhood U} of W 4+ Wh:
in N3, and replace them by 3n; annuli in "U? such that we obtain a 2-dimensional
polyhedron bounded by N} and disjoint from Wy + Wk .

(2) (9| TH™(X}) is a 1-sphere S; < T and there exists an annulus B}’
with boundary curves S} and Wi + W5, and with *B}* < °T5. On the other
hand S} bounds a surface B? inJ® — (W% + W},i) as constructed in the proof of
Sec. 11 which can be chosen disjoint from °B. We can bring about by small
deformations the situation in which n(B} + B?’) has normal double curves
but no branch points (since 7 is locally one-to-one). Therefore (and since
7| BY* is one-to-one) n(B3%) intersects the boundary curve Wy + Wh; of
2(B3 + B in an even number of piercing points. From 5(B}) we obtain, as
in (1), a 2-polyhedron disjoint from W; + Wr; with boundary X} .

If w; %% 0 (for some ¢ = 1, -- -, r) then we choose a point in "W, , which is
no double point of 9;(W’), and a neighborhood R} of this point in N} which is
small with respect to 9;(W"”) | Wx:. We denote the disk R n ¢:(W") by
W2i. In °R} we choose a disk Rj(see Fig. 8) such that 'R} n W, is one arc
R}, such that ‘R} n W%, is an open arc one of whose boundary points lies in
‘R? — R} and the other one in Wk, — R}, and such that “[(W: + R}) n °RY]
is an unknotted chord in R?. Then we choose an epi-homeomorphism

\i: RI— R}
with \; | 'R} = identity and N(['(Wki + R}) n°RY]) = Wi n R} and a map
011 . le — H 3
with
S | TIW™ — 87 (W) = 9| T IW™ — 87 (Wro)]
and
S (97 (Whs)) = N(Wri + RY).
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Now let N3z: be a neighborhood of W; 4+ W, in N, being small with respect
to S (W) | T4 . Then *Niy n 8,,(W"™) consists of a 1-sphere Ny, topolog-
ically parallel to Wx; 4+ W, and of n; + 2 meridian circles of N3;;. The
homology class 1zz; of the properly oriented N7 in N3 — *N¥;is

N = L + (wz =+ 2)t)11i

with £77:, Yrrs the homology classes of X}, Y35, respectively, in N7 — °N%,;.
The sign in the coefficient w; &= 2 depends on the choice of R: (see Fig.8). So
we can derive by &> 7_; w; operations of the kind described a map

du: W' — H'
such that (under analogous notation) the curve N3, is homologous to Xk, in
N% — °N%; (foralls = 1, ---, 7).

If wi= 0 (foralli =1, ---,r) then we choose 9% = 9J;, ete.

Step 3. From &s we can obtain by deformations (that change 0*(W’2)
only in the N%/s) a map ¢ : W — H® with the demanded properties (i), (ii),
(iii).

13. Deformation over prismatic neighborhoods of the singular disks W, .

The map ¢ can be extended to a map 3 : W — H*, with $(W") < °H® denoted
by W, such that (see Fig. 9) the following hold:

(i) W” may be represented as cartesian product W’ X I where Ik means
an interval —1 < x4 < 1, with p X 0 = p for all pe W, and W"* is disjoint
from M*, F”*, V. We denote the components W X I of W* by Wi,

(i) W&aF? = Wln F?=W;} X I} with

F|(WEa F?) =8| (Wia FP).
(iii) W% and the P/’s intersect each other prismatically, i.e.:
7 (Wyn Py) = {In'(Wg n Py)la P} X I'
and
3 (Wi n Py) = (B (W n Py)ln W7 X Ix

(using the product representations introduced in Sec.8 and in (i), respectively).
(iv) If pis a point of Wik, 9 '(p) is either one or two points. The set B of
all double points of W¥ is disjoint from the disks 3(Wp; X Ix) (i =1, -+, )
and is prismatic, i.e.
FYB) = [3'(B) n W’ X I,

(using the same product representation as in (i)).
We denote the 3-annulus F7* + W’ by Fr¢ and we define a map

. '3 3
Bir : Fir — M

such that 8y | F7* = ;| F7’ and 8,1 | W” = 8.
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14. Deformation over the prisms Pk; . In ‘F;} — 8'* there are 2r pairwise
disjoint disks P, P (i = 1, - -+, r) mapping onto the top and bottom disks
of the P¥/s, i.e. such that Bu(PL) = n(P; X :I:}). Now we choose r pair-
wise disjoint 3-cells P .., P2 disjoint from M® F”, V7, such that

PPaF; = Pn Fry = Pii + P2+ (Wei X %)
(being a digk, for all 7 = 1, - - - | r); and we choose epi-homeomorphisms
wi t P :g — P ::
such that n;:| (PP n F1) = Bu| (P n 'Fii). TFinally we denote the
3-annulus F73 4+ Uiy P? by F” and we define a map
B:F"”— Mk
such that 8 | Fi = By and B | PP = nix.

We denote the handlebody H® + Ui A% by K* and g7(K* n B(F")) by

K”. We remark that 8('F”* — §”*) < "H® and that
§17(F" — K 1 (P — K™) (ML — KY)
is an epi-homeomorphism. Moreover g is locally one-to-one, except on the §

surfaces ~(‘0; n "F"*); it is locally three-to-one on the arcs ~(‘07 n °F"®) and
locally two-to-one otherwise on ~(‘07 n °F"®).

15. Conclusion. There can be found an epi-homeomorphism \ : M3 — M3
such that the image Cy = N(C") of the given curve C" lies in *M% — K°. Then
we choose a knot projection cone D> © F”* with "D”* = 87'(C3). We can choose
D” such that 8| D" is locally one-to-one. Further we can bring about by
small deformations the situation in which the singularities of the image 8(D'*)
are normal. Then D* = X7 (8(D")) possesses the demanded properties. This
proves Theorem 2.

We choose two disjoint 3-cells €7, ¢"* with

CPnF?=8"=C" C"aF*=F°'—38" =",
an epi-homeomorphism
g0 —C?
with 8’ | 8” = 887 and a map
g7 "> H

with 8" | CF”* — 8%) = 8| (F”® — 8%). Then F”* + C” 4 C"*is a 3-sphere S*
and the map v : 8 — M?, composed of 8, 8/, 8”, has the demanded properties.
This proves Theorem 1.

Il. Proof of Theorem 3

We bring about (by isotopic deformations) the situation in which the 2-sphere
TP = Bo(Fed) (see Sce. 8) is equal to the image F5 = ao(F™) under the given
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embedding ay. We denote the 2-spheres
F;3 _ S/2, F]":} . S/Z .F/3 _ Sﬂ
)

by F7, F ,2F§3,, rle2$pe,cztiv%y, a/r;d we choose epi-homeomorphisms Mo, K1,
prr 5w of F” onto Fo?y Fry Fri, Fiip, respectively, such that ao = (8o | Fo7) - o
and

wia | (Fih n Fiin) = wgma | (Fiy n Fiig (for [d = I, II, III)-
‘We denote the maps
(BIIF;2)’H1, (BUIFE)'MI[, (6‘ F;%I)'MIH,

defining singular 2-spheres in M%, by ar, o, o, respectively. Now a; ful-
fills already the condition (b) of Theorem 3, and it remains to show that the
deformation from og to ez , which may be derived from the proof of Theorem 1, 2,
can be decomposed into a sequence of elementary deformations, according to
condition (a).

16. Decomposing the deformations in the 4%’s. The deformation from ao
to a;, changing the 2-sphere F§ in the A%s (see Sec. 9), can be decomposed into
a sequence of Y _o_it;- (u; + 2v;) elementary deformations of type 1a, intermixed
with nonessential deformations, (see Tig. 5).

We denote the connected components of the (prismatic) intersections

n(Kjk)nL:;l (j=17"'7s;k=1""7tf;l=1"";“}')
under current enumeration by C3, ---, C> and the connected components of
W(K;;'k) nN?'m (m =1, - )UJ')

by D}, ---, D}. Further we denote that connected component of 5 *(C3)
(g = 1, -+, ¢) that is different from C? by C,°, and that connected component
of n (D}) (b = 1, -- -, d) that is different from Dj by Dy, Tinally we denote
the intersections of the €3 , €%, Di , Di¥’s with the Ps (see Fig. 11a) by C%, C7,
Dj , D%, respectively, and the intersections of the K% , Li’s with the P¥s by
K3, Ly , respectively.

17. Decomposing the deformations over W% . We can bring about by small
deformations the situation in which the singular discs W and their prismatic
neighbourhood W (as constructed in Secs. 11, 12, 13) are in a “normal posi-
tion” with respect to the singular 2-sphere F; = «;(F*) and to the singular
disks P, ete., i.e. such that the following conditions hold:

(i) F7, H® the A¥s, and the P%/s intersect W prismatically with respect
to the product representation introduced in Sec. 13.

We denote (3 (p;) X Ix) by P; (Fig. 9).

(i) 7' (W% aPy) ({ =1, ---, r) is disjoint from those connected com-
ponents of Kpj n 4 (H* n Pk) and Ly n " (H* n Py) (j = 1, -+, s;
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k=1, -, ;1 =1 ---, u;) that contain the arcs ‘K3z n P}, 'Ly n "P},
respectively, in their boundaries (see Fig. 11a).

Now we carry out the deformation of a; into a;; in three steps:

Step 1. Let BF(f=1,---,b) (see Fig. 10) be that connected component
of 37(B®) that contains B;'. We choose pairwise disjoint neighborhoods B¥;
of the B;”s in W**, which are small with respect to 3 " (F7 n Wk)| 3 (B®) and
which are cartesian products in the product representation introduced in Sec.
13. Now we deform F; over the 3-cells 3(Bx;) which can be done by a
sequence of elementary deformations of type 1a. We denote the map so ob-
tained from a; by ars and ~ (W — Uty B¥) by W¥. Now we have to de-
form Frs = az(F”) over the remaining nonsingular 3-cells 3(Wx X I%).

Step 2. In W we choose pairwise disjoint arcs X3, -- -, X5 (sce Fig. 10)

with °X}, < "W¥ that join points of
.W;z — Uia W;’li
to points of
FH(Fix 0 W) n WY

such that

(a) every double point of 9 ' (Fi« n W) n "W is end point of one are X}, ,

(b) every connected component of 8 (F7« n W) n “W5 contains at least
one end point of an arc X, ,

(¢) the X,’sintersect 9 " (Frx n W) n "W+ inisolated piercing points that
are no double points of ' (Frs n W%) n 'W4,

(d) the points #("X,, n ‘W) are no double points of Fry .
Now we choose pairwise disjoint neighborhoods X}, of the X1’s in W4, which
are small with respect to 9 '(Fix n W%). Then we deform Fr4« over the
3-cells 3( X2 X Ix) which can be done by a sequence of elementary deforma-
tions of type la and 1b. According to the notation used in Theorem 3 we

denote the map so obtained from ars by a1 and oy (F’ ®) by Fi. Further we
denote “(W¥ — UL X5) by Wik .
12

Step 3. Finally we deform Fi over the remaining 3-cells 3( Wi X Ik).
'This can be done by a sequence of elementary deformations of type 2 (and
may be nonessential deformations) since the curves 3 '(Fi n W) n "W are
nonsingular, pairwise disjoint, open arcs with boundary pointsin

Wi — Ui Wos
By this we obtain from «; the map o;r .
18. Decomposing the deformations over the Pk’s. We carry out the
deformation of a;; into a3 in four steps (see Fig. 11).

Step 1. Let Qibea neighborhood of a point e ‘Piin "P? — °P} which is small
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with respect to 7 (Fi; n Py:) and let Y} = "P} — °Q}. Further we choose a
neighborhood Y7 of Y7 in P}, which is small with respect to
7 '(H' a Pyi)| n ' (Fir a0 Pyi)| Uiy Ko
and intersecting the disks €7 , €, , D)’ prismatically, i.e. such that
n (VX T)) = [ ((Ye X ) n P X I

(using the product representation introduced in Sec. 8). Then we deform
F;; over the 3-cells 7( Y7 X I') which can be done by a sequence of elementary
deformations of type 2 (and may be nonessential deformations). We denote
the map so obtained from o;; by amx, and o« (F?) by Fip, further
“(P? — Y?) by Pk (see Fig. 11b), the image n(P%:) by Pk« , and the inter-
sections of K5ji , Ly with the Pk /s by K jx , Liji , respectively.  Further we
denote the set of double points of

n(Uis Py X I)
by D4 and the connected components of

7 (Ds) n Uiy P
by Ciq, C¥y, D, D¥i such that

i, cC:, C&cCl  DicDi,

D;?"LCD;I (g=1,,0,h=1,,d)
Step 2. We choose pairwise disjoint arcs Yi, -+, Yi, (see Fig. 11b) in
Pi; with °Y}, < P (f = 1, ---, ;) that join points of 'Y} to points in

P, — n {(Fi n Piss), and we choose pairwise disjoint neighborhoods Y%, of
the Y/s in P, , which are small with respect to 1" (F7rs n Pgsi) | Uil K
such that, with the notation Pk = ~(P%: — U%, Y3,), the following hold:

(i) The ares Y}, intersect the curves I (Fie 0 Pisi) n P in iso-
lated piercing points that are no double points (and no boundary points) of
that curves.

(ii) The ares Y, are disjoint from the disks Cay, Coy  Din (g=1, -+, ¢;
h=1,---,d)andfrom theares (Kiuxn'Pi)(j =1, -, 85k =1, -, )
and intersect the disks D4, prismatically, i.e. such that

(Y n D) = (Y, n D) nDi] X I'

using the product representation introduced in Sec. 8. The Y?%/s intersect the
DYy’s also prismatically.

(iii) If Z'is a connected component of I (Firs 0 Psi) n °Pisi] then one
of the following cases holds (see Fig. 12):

case a. Z'is an arc (that is either disjoint from the disks Ck,, C%y, Din,

DY or lies in the boundary of one disk C%, , Cy, ,or D).
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case b. Z' consists of two arcs, piercing each other in one point, and is dis-

joint from the disks C%, , Cy , Din, Dy .

case ¢. Z' consists of two arcs Z1, Z3 lying in the boundary of one disk

D%, , and of one arc Z} that pierces Z} and Z} each in one point.

case d. Z' consists of the boundary of one disk D}, and of an arbitrary

number of pairwise disjoint arcs that intersect D%, each in one arc (and

‘D each in two points).

Then we deform Fi;x over the 3-cells n(Yi X I') (3 = 1,---, 1;
f=1,---,y:) which can be done by a sequence of elementary deformations of
type 2 (and may be nonessential deformations). According to the notation
used in Theorem 3 we denote the map so obtained from a4 by az and as(F’*)
by F5. Further we denote the intersections of the disks Kk with the Pisss
by Ki* ik

Step 3. Now we deform F3 over the 3-cells n(Kisp X I') (j =1, ---, s;
k=1, ---,t;) which can be done by a sequence of elementary deformations of
type 3a and 3b and nonessential deformations. We denote the map so ob-
tained from as by ass and o (F’?) by Fax .

Step 4. The remaining parts n( [Pix: — Ujily Kixi]l X I') of the Pks
are nonsingular 3-cells, and we can deform F34 over them by a sequence of
elementary deformations of type 3a and 3b (and may be nonessential de-
formations). By this we obtain from as« the map a; .

19. Conclusion. The maps oy and oy, as obtained in Sec. 17, Step 2, and
Sec. 18, Step 2, respectively, and the map «; possess the demanded properties,
and Theorem 3 is proved.
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Figure 6

Intersections of K2 , Ly, Nirw G, 47,57 = 1, -+ , 83k =1, «++ |

m =1, -, v;7), ete. with P} .
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Figure 7
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FiGure 11

Compare with Figure 6. (a) depicts P? .

(b) depicts P3,.

Case b) Case ¢) Case d)

Case a)

Figure 12





