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Abstract: We give an Atiyah-Patodi-Singer index theory construction of the bundle
of fermionic Fock spaces parametrized by vector potentials in odd space dimensions
and prove that this leads in a simple manner to the known Schwinger terms (Faddeev-
Mickelsson cocycle) for the gauge group action. We relate the APS construction to the
bundle gerbe approach discussed recently by Carey and Murray, including an explicit
computation of the Dixmier-Douady class. An advantage of our method is that it can be
applied whenever one has a form of the APS theorem at hand, as in the case of fermions
in an external gravitational field.

1. Introduction

There are subtleties in defining the fermionic Fock spaces in the case of chiral (Weyl)
fermions in external vector potentials. The difficulty is related to the fact that the splitting
of the one particle fermionic Hilbert space H into positive and negative energies is not
continuous as a function of the external field. One can easily construct paths in the space
of external fields such that at some point on the path a positive energy state dives into
the negative energy space (or vice versa). These points are obviously discontinuities in
the definition of the space of negative energy states and therefore the fermionic vacua
do not form a smooth vector bundle over the space of external fields. This problem does
not arise if we have massive fermions in the temporal gauge A$ = 0. In that case there
is a mass gap [—m,m] in the spectrum of the Dirac hamiltonians and the polarization
to positive and negative energy subspaces is indeed continuous.

If A is a real number not in the spectrum of the hamiltonian then one can define
a bundle of fermionic Fock spaces TA,A over the set U\ of external fields A, A £
Spec(DA)- It turns out that the Fock spaces TA,\ and FA,\' are naturally isomorphic
up to a phase. Hie phase is related to the arbitrariness in filling the Dirac sea between
vacuum levels A, A'. In order to compensate this ambiguity one defines a tensor product
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T'AX = TA,\ <S> DETA,\, where the second factor is a complex line bundle over U\.
By a suitable choice of the determinant bundle the tensor product becomes independent
of A and one has a well-defined bundle T1 of Fock spaces over all of A.

Next one can ask what is the action of the gauge group on T1. The gauge action
in U\ lifts naturally to T. Thus the only problem is to construct a lift of the action on
the base to the total space of DET\. Note that the determinant bundle here is a bundle
over external fields in odd dimension, and therefore one would expect that it is trivial
(curvature equal to zero) on the basis of the families index theorem. However, it turns
out that the relevant determinant bundle actually comes from a determinant bundle in
even dimensions. Instead of single vector potentials we must study paths in A, thus the
extra dimension. The relevant index theorem is then the Atiyah Patodi Singer (APS)
index theorem for even dimensional manifolds with a boundary [AtPaSi]; physically,
the boundary can be interpreted as the union of the space at the present time and in the
infinite past.

The gauge action in the bundle T leads to Schwinger terms in the Lie algebra
commutation relations of the gauge currents. These commutator anomalies have been
discussed before in the literature from different points of view. However, whereas in
even space-time dimensions Atiyah and Singer [AtSi] gave a definitive mathematical
treatment of anomalies, the odd dimensional case (that is hamiltonian anomalies) has
been the subject of various ad hoc approaches.

In this paper we present a simple derivation using the families index theorem, in
the spirit of [AtSi], giving a Fock space formulation for the descent equations leading
from the space-time anomalies to hamiltonian anomalies. We also resolve a puzzle in
our earlier work by explaining in a direct way the relation between the Schwinger terms
and the Dixmier-Douady class (which is a certain closed 3-form on the moduli space of
gauge connections introduced in [CaMul]) in de Rham cohomology.

2. The Odd Determinant Bundles

Let M be a smooth compact manifold without boundary equipped with a spin structure.
We assume that the dimension of M is odd and equal to In +1 . Let S be the spin bundle
over M, with fiber isomorphic to C2" . Let H be the space of square integrable sections
of the complex vector bundle 5 0 V, where V is a trivial vector bundle over M with
fiber to be denoted by the same symbol V. The measure is defined by a fixed metric on
M and V. We assume that a unitary representation p of a compact group G is given in
the fiber. The set of smooth vector potentials on M with values in the Lie algebra g of
G is denoted by A or A2n+i, depending on whether there is a chance of confusion.

For each A E A there is a massless hermitian Dirac operator DA . Fix a potential Ao
such that DA does not have the zero as an eigenvalue and let H+ be the closed subspace
spanned by eigenvectors belonging to positive eigenvalues of DA0 and H_ its orthogonal
complement. More generally for any potential A and any real A not belonging to the
spectrum of DA we define the spectral decomposition H = H+(A, A) © H-(A, A) with
respect to the operator DA — A. Let AQ denote the set of all pairs (A, A) as above and
letUx={AeA\(A,\)eAo}.

Over the set Uw = U\f) U\> there is a canonical complex line bundle, to be denoted
by DETw. Its fiber at A G Uw is the top exterior power

DETXX, {A) = A toP(#+C4, A) n H- (A, A')), (2.1)
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where we have assumed A < A;. For completeness we put DET\\* = DET^,\. Since
M is compact, the spectral subspace corresponding to the interval [A, A7] in the spectrum
is finite-dimensional and the complex line above is well-defined.

It is known [Mil, CaMul] that there exists a complex line bundle DET\ over each
of the sets U\ such that

DETX, = DETX <g> DETXX,, (2.2)

over the set U\\>. In [CaMu, CaMul] the structure of these line bundles was studied with
the help of bundle gerbes. In particular, there is an obstruction for passing to the quotient
by the group Q of gauge transformations which is given by the Dixmier-Douady class of
the bundle gerbe. (In [Mil] the structure of the bundles and their relation to anomalies
was found by using certain embeddings to infinite-dimensional Grassmannians.)

In this paper we shall compute the curvature of the (odd dimensional) determinant
bundles from Atiyah-Patodi-Singer index theory and we obtain the Schwinger terms in
the Fock bundle directly from the local part of the index density.

To each (A, A) in Ao we associate a euclidean Dirac operator on the 2ra + 2 di-
mensional manifold M x [0,1] with the obvious metric and spin structure. This Dirac
operator is

D%? = | + £W>, (2-3)

where the time dependent potential is A(t) = f(t)A + (1 — f(t))Ao. Here / is a fixed
smooth real valued function on the interval [0,1] such that /(0) = 0, / ( I ) = 1, and
the function is constant near the end points. It turns out that the choice of / does not
influence our results as we show at the end of the section.

We fix the boundary conditions for £ ^ | 2 ) such that at the boundary component
t = 0 the spinor fields should belong to i/_ whereas at t = 1 the spinor field is in
H+(A, A). This type of boundary condition was used in [AtPaSi] in the proof of index
theorems (in even dimensions) when the manifold has a boundary. The Dirac operator
is nonhermitian, it is really a map between two different spaces, namely the space of
left handed spinors 5 - and right handed spinors 5+. The kernel and cokernel of D^^
are finite dimensional vector spaces.

The tensor product of the top exterior powers of the dual of the kernel and the
cokernel of D%£2) defines a complex line DET\(A). Together these lines define a
complex line bundle DET\ over U\, the set of potentials not having A as an eigenvalue.
The bundle does not extend to all of A since the boundary conditions change abruptly
at points in the parameter space such that the corresponding boundary Dirac operator
has zero modes.

There is an important alternative description of the determinant line bundle. Let
{$n} be a basis of eigenvectors at the boundary component t = 1 corresponding to
eigenvalues An > A,

The nonhermitian time evolution

idt<j> = -iDAit)<j> (2.4)

defines for each n a unique solution <f>n on M x [0,1] such that ait = 1 <j>n(x, 1) = i/>n(x).
The vectors <j)n(x, 0) span an infinite dimensional plane W = W(A, A) in H. Let TT+ be
the projection from W to H+. The kernel of this projection can be identified as the kernel
of D^2) through restriction to the boundary t = 0. Similarly, the cokernel of D(]^2)

is identified as the cokernel of n+. This is because the boundary conditions for the
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adjoint operator (dt + DAM)* = —dt + DAM arc orthogonal to the boundary conditions
of D(]^2\ [AtPaSi]. At t = 0 the vectors in the domain of the adjoint belong to H+
whereas at t = 1 they belong to H- (A, A). On the other hand, coker 7r+ = WL H H+ and
a zero mode of the adjoint is orthogonal to a zero mode of D^^ at t = 0. Thus

DETX (A) = AtoP(ker7r+)* (g> Atop(coker7r+). (2.5)

We choose an orthonormal basis {e n } n e z such that the vectors with a nonnegative
n belong to H+ and those with a negative n belong to H-. Since 7r+ is a Fredholm
operator, of index k = dim ker?r+ - dim coker7r+ say, the projection 7r+̂  from W to
the plane Hk spanned by the vectors {en}n>_fc is almost invertible, i.e., there is a
linear map q : Hk —> W such that qn+ and ir+q differ from the identity operator by
a finite rank operator. The pseudo-inverse q is fixed by a choice of basis { t i i , . . . , ur}
in ker?r+ and a basis {v\,..., vr-*} in cokenr+ : The map TT+ gives an isomorphism
between ir+(W) C H+ and (ker7r+)-L fi W. This isomorphism is complemented to an
isomorphism between W and Hk by adjoining to Ui the vector vt- for i = 1 ,2 , . . . , r — k
and w, »-> e,_r for i = r — k + 1 , . . . , r, when Ar is nonnegative. When Ar < 0 we define
Hk as the space spanned by e, with i > — k and proceed as before.

The image {w-&, w_&+i,. • •} of the basis of Hk under q is an admissible basis of
W, [PrSe]. By definition, any admissible bases of W is a basis obtained from {w{} by a
unitary rotation by an operator 1 + R, where R is trace-class. The operators 1 + R have
a well-defined determinant. Over W(A} A) (that is, over A G U\) there is a complex
line defined as the set of all admissible basis of W modulo basis transformations by
operators with unit determinant. As we saw above, the ambiguity in the construction
of an admissible basis is the same as the freedom of choosing the basis in ker7r+ and
coker7r+. It follows that the determinant line is naturally identified as the complex line
in the Pressley-Segal construction.

Any choice {/n} of a basis of eigenvectors of DA corresponding to eigenvalues in
the interval [A, /i] gives now an isomorphism between the determinant lines DET\(A)
and DETpiA). Namely, an admissible basis {wn} of W(A, /i) can be completed to an
admissible basis of W(A, A) by adding the time evolved vectors obtained from {/n } by
the euclidean time evolution backwards in time from t = 1 to t = 0. Clearly, a rotation R
of the basis {/„ } induces a rotation of the determinant line DET\(A) by a phase equal
to detii. On the other hand, a choice of the basis {fn } modulo unitary transformations
R with deti? = 1 is equivalent to choosing an element in the complex line DET\^(A).
This shows that we can identify

DET^A) = DETXfM(A) 0 DETX(A),

as already stated in (2.2).
An alternative proof of this result can be given which uses the APS index theorem

as follows. Denote W+(A, A) = W(A, A) and W_(A, A) = W{A, A)1. Define

K(A, A) = W+(A, A) 0 H- and K(A, A;) = W+(A, A') n H-

and
C(A,\) = H+nW-(A,\) and C(A, A7) = H+n W-(A, A7).

These are the kernels and co-kernels of the even dimensional Dirac operators formed
out of AQ and A with projection at t = 1 onto the eigenspaces greater than A7 and A
respectively. So we have
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D£TA=A t oP(#(A,A)*eCC4,A)) and DETX> = /\ioV(K(A, A')* © C(A, A')).

Recall that

# = w_(A, A) e (W+(A, A) n W-(A, A'» e w+04, V)

so that we have

W-(A, V) = W_(A, A)© W+(A, A)n W1(J4, A')

and
W+04, A) = W+C4, V) e W+{A, A) n W_(i4, V).

So orthogonal projection defines a map

K(A, X)/K(A, A') -> W+{A, A) n W-G4, A')

and similarly
C(A, \')/C(A, A) -> W+(^, A) fi W_(A, A7).

Adding these gives a map

, X)/K(A, A') e C(A, X')/C(A, A) -> W+G4, A) n W-(A, A').

If we can prove that this final map is an isomorphism, then by wedging to the top power
on either side we will have constructed an isomorphism

DETx>(A) ® DETX(AT = DETXx>(A),

which gives the desired result in Eq. (2.2). It is easy to prove that this map is injective
because the images of the two factors are, in fact, orthogonal. It remains to do surjectivity
and this comes from a dimension count which follows from the APS index theorem. It
suffices to show that

dim(Kx) - dim^A') + dim(CA') - dim(CA) = dim(W+(^, A) n W-(A, A')).

Given (AQ, 0) and (A, A) let £>[(A>, 0), (A, A)] be the four dimensional Dirac operator
as above. We need to prove then that

index(£>[G4o, 0), 04, A')] - index(Z)[(A0,0), (A, A)] = dim(W+C4, A') n W-{A, A)).

It is easy to show that

= index(D[G4,A'),C4,A)]),

so the result follows from the fact that the index is additive. That is

index(£>[(A, A), {B, A')] + index(£>[(£, A'), (C, A/;)] = index(D[(A, A), (C, X")]).

This additivity of the index is a direct consequence of the index theorem itself. The
index is a sum of two terms. The first is an integral of a local differential polynomial
of the vector potential and therefore it is manifestly additive in time. The second
term is also additive because it is equal to \{q{t = 1) — rj(t = 0)). On the common
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boundary the eta invariants (for the boundary operator B) in index(D[(A, A), (B, A;)]+
index(D[(£, A'), (C, A")] cancel.

The real parameters A, A', A" do not change the discussion since we can always
consider operators such as

instead of DAM- For the shifted Dirac operators we can use the 'vacuum level' value 0.
Finally, the geometry of the determinant bundles DET\ is described by the families

index theorem. Normally, the determinant bundle over A in even dimensions is trivial
whereas the bundle over the moduli space of gauge orbits A/Go is nontrivial. Here Go is
the group of based gauge transformations, g(p) = 1, where p G M i s some fixed point.
However, in the present case we are studying potentials on a manifold with boundary
and the boundary conditions depend globally on the potential A not having A as a zero
mode. The parameter space is not affine, the determinant bundle is nontrivial. (We stress
again that the determinant bundle DET\ does not extend to the space of all vector
potentials; there are discontinuities at the points A for which A is an eigenvalue.)

We use the same APS boundary conditions for the operators D(]^2) as before. Then
according to [AtPaSi],

= J Ch(A(t)) - I ( i # = 1) - rj(t = 0)), (2.6)

assuming that the boundary operators do not have zero modes. Here Ch is a charac-
teristic class depending in general on the vector potential and the metric. This term is
the same as in the case of a manifold without a boundary. The eta invariant T)(DA) for a
hermitian operator is defined through analytic continuation of

which is well-defined for s > > 0, to the point s = 1, where the A, 's are the eigenvalues
of DA • The r\ -invariant term in (2.6) depends only on data on the boundary.

The Chern class of the determinant bundle DET over this class of Dirac operators
is completely determined by integrating the corresponding de Rham form over two
dimensional cycles S2 «-> set of Dirac operators.

We recall some facts about lifting a group action on the base space X of a complex
line bundle to the total space E. Let u be the curvature 2-form of the line bundle. It is
integral in the sense that / u) over any cycle is 27r x an integer. Let G be a group acting
smoothly on X. Then there is an extension (5 which acts on E and covers the G action
on X. The fiber of G —> G is equal to Map(X, Sl). As a vector space, the Lie algebra
of the extension is g 0 Map (X, iTR). The commutators are defined as

[(a, a), (6, /?)] = ([a, 6], w(a, 6) + Caj3 - £ 6a) , (2.7)

where a, b e g and a, /? : X -> iR. The vector fields generated by the G action on X
are denoted by the same symbols as the Lie algebra elements a, b; thus u>(a, b) is the
function on X obtained by evaluating the 2-form w along the vector fields a, 6. The
Jacobi identity

o;([a, 6], c) + £aw(b, c) + cyclic permutations = 0
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for the Lie algebra extension g follows from dw = 0.
For the computation of the Schwinger term we need only the curvature along

gauge directions for the boundary operator £^(J=!)- According to the general theory
of determinant bundles: the integral of the first Chern class over a S2 in the parameter
space of Dirac operators = the index of the family of Dirac operators. That means: one
has to choose (any) connection on B = S2 x [0,1] x M such that along [0,1] x M it is
equal to the potential f(t)A(x, z) + (1 — f(t))Ao (here z G S2 parametrizes the family
of operators) and satisfies the appropriate boundary conditions. The appropriate Dirac
operator is then the operator DB on B related to this connection.

Consider a family of gauge transformed potentials A(x,z) = gAg~l + dxgg"x,
where x M- g{x, z) is a family of gauge transformations parametrized by points z E S2.
To this family of potentials we associate a Dirac operator DB on B. Formally

DB = D(S2) + D%f + f(t)P(zrlj2 • dzP(z), (2.8)

where the first term is the Dirac operator on S2 determined by a metric and fixed spin
structure; 7* stand for a pair of gamma matrices to the S2 directions. The boundary
conditions at t = 1 are: the spinor field should be in the positive energy plane of the
boundary operator, that is, in the gauge transform of the positive energy plane for the
operator determined by g = 1. We assume that at the "initial point" g = 1 there are no
zero modes. It follows that the operator DB does not have zero modes on the boundary
t = 1. (Otherwise we could modify D(S2) by adding a small positive constant.) The
boundary conditions at t = 0 are the usual ones, i.e., the spinor field should be in the
negative energy plane of the "free" Dirac hamiltonian.

The index formula (2.6) on manifolds with boundary contains two pieces. The first
is an integral of a local differential form in the interior of the manifold. The 77-invariant
term is a nonlocal expression involving the boundary Dirac operator. Because it is
expressed in terms of the eigenvalues of the (hermitian) Dirac operator it is invariant
under gauge transformations.

For this reason, when computing the index for the family of operators given by the
different gauge configurations, the only part contributing is the local part. If M is a
sphere the relevant characteristic class is the Chern class cn+2 on B. TTie Chern class
c/f is the coefficient of \k in the expansion of det(l + 2^7^), where F is the curvature
form. In the case of G = SU(N\ XxF = 0 and the lowest terms are

±«F\ c3 = ̂ * F > , c4 =

The Chern classes cn are normalized such that their integrals over closed submanifolds
of the corresponding dimension are integers.

The vector potential is globally defined and therefore the integral of the Chern
classes is given by a boundary integral of a Chern-Simons form CSi(A) in i = 2n + 3
dimensions, d(CSi) = cn+2- At the boundary component t = 0 the form vanishes. So
the only contribution is

/ CSi(A(l,x,z)). (2.9)
JS2xM

Performing only the M integration gives a closed 2-form on S2. For example, when
dimM = 1 the CS form is ^ptr(AdA + |^43), and we get

0=^- / tiA^X.Yl
4 7 r Jsl
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the curvature at the point A in the directions of infinitesimal gauge transformations X, Y.
(Note the normalization factor 2TT relating the Chern class to the curvature formula.)
This is not quite the central term of an affine Kac-Moody algebra, but it is equivalent to
it (in the cohomology with coefficients in MapC4, Q) . In other words, there is a 1-form
0 along gauge orbits in A such that dO = w - c, where

is the central term of the Kac-Moody algebra, considered as a closed constant coefficient
2-form on the gauge orbits. There is a simple explicit expression for 0,

—

When dimM = 3 the curvature (or equivalently, the Schwinger term) is obtained
from the five dimensional Chern-Simons form

CS5(A) = ^tx(A(dA) + ̂ AdA +

By the same procedure as in the one dimensional case we obtain

uA(X, Y) = - ^ / tr ((AdA + dA A + A3)[X, Y] + XdA YA - YdA XA) .

This differs from the FM cocycle, [FaSh, Mi],

u'A(X, Y) = ^ 2 /trA(dXdY - dYdX)

by the coboundary of

247TZ [
7TZ J

tr(AdA

The use of index theory for describing hamiltonian anomalies was suggested by Nel-
son and Alvarez-Gaume in [NeAl]. However, in that paper the appearance of Schwinger
terms was not made clear.

3. Bundle Gerbes

The eventual aim of the discussion in Sect. 4 is to obtain formulae for the Dixmier-
Douady (D-D) class of the bundle gerbe associated with the determinant bundles de-
scribed in the previous section. These formulae express the D-D class in terms of de
Rham forms on subsets of the space of connections. In this section we review the
definition of bundle gerbe and then deal with two technical issues.

Let TT: y —>• M be a submersion. Recall that the fibre product of Y with itself is the
set

YxfY= (J YmxYmYm,

where Ym = n~l (m) is the fibre of Y over m E M. Then in [Mu] a bundle gerbe over
a manifold M is defined to be a pair (J5 Y), where TT: Y —> M is a submersion and J is
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a line bundle over Yt2]. These have to satisfy the condition that there is a product on J,
that is a linear isomorphism

for any (1/1, t/2), (2/2,2/3) in yt2]- This linear isomorphism is supposed to vary smoothly
as 2/1,2/2, J/3 vary, the details of how to formulate that condition precisely are given in
[Mu]. The product is required to be associative.

As an aside let us note that in [Br] the definition of a gerbe as a sheaf of categories is
given. From the simpler notion of a bundle gerbe one can construct a gerbe as follows. Let
U C M be an open set which is contractible and over which Y —>• M admits sections.
Define the objects of a category associated to U to be all sections of Y over U. Given two
objects s and t we can define a section (s, t) of Y[2] over U by x *-> (s(x), i(x)). Then
we can pull-back J to a line bundle (s, t)*(J) over U. Because U is contractible this is
trivial. Take as the morphisms between s and t the set of all non-vanishing sections of
(s, t)*(J). The bundle gerbe product induces a composition of morphisms. To define a
sheaf of categories we need to associate to any open set a category. To do this we have
to "sheafify" this construction in a suitable manner; however we omit the details as they
are not relevant to our discussion.

There is a natural notion of isomorphism for bundle gerbes where the submersion
and the line bundle are isomorphic and the isomorphisms intertwine the product. If
L -»• Y is a line bundle where Y -» M is submersion then we can define a bundle gerbe
S(L) -> Ym by

A product is easily defined on S(Lj by the obvious contraction

(Lyi 0 L*y2) 0 (Ly2 0 i ; 3 ) -> LVl 0 L*yy

We call any bundle gerbe isomorphic to a bundle gerbe of the form S(L) trivial. The
D-D class of a bundle gerbe vanishes precisely when the bundle gerbe is trivial.

If (L, Z) and (J, Y) are two bundle gerbes over M then we can define their product.
First we define the fibre product Z Xf Y of the submersions Z and Y. Then we define
L<g> J over (Z xfY)[2] by

(L ® ./)((*iiyi),(*2llfe)) = £(*i,*2) ® •Ayi.i/a)-

If (J, y ) is a bundle gerbe then we can define its dual (J*, Y) by (J* )(y, fyi) = (J(y2ly,>)*.
If dd( J) denotes the D-D class of a bundle gerbe (J, Y) then we have dd( J ® i ) =

dd( J) + dd(L) and dd( J) = -dd( J*).
We say two bundle gerbes J and L are stably isomorphic if there are trivial bundle

gerbes T and S such that J 0 S is isomorphic to L 0 T. Two bundle gerbes are stably
isomorphic if and only if they have the same D-D class. As an aside let us note that
this definition of stable isomorphism is the same idea used in K-theory to define stable
isomorphism of vector bundles, i.e. we say two vector bundles E and F are stably
isomorphic if one can find two trivial bundles Mn and IRm such that £ 0 1 " and
F 0 Rm are isomorphic.

An example of stably isomorphic bundle gerbes we use below is the following. If we
have a bundle gerbe Q —>• Z[2\ where Z —> X is a submersion and another submersion
Y -> X and a fibre map / : Y -> Z, we get an induced map / [2 ]: Ym -» Z[2] and the
line bundle Q pulls back to define a bundle gerbe (f[2])*(Q) on X. The bundle gerbes
Q and (/[2])* (Q) are stably isomorphic.
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We now need to consider two technical results necessary for the later sections. First
let (J, Y) be a bundle gerbe over M and assume that M has an open cover {Ua } a € j such
that there are sections sa:Ua -+Y for each a. Consider the disjoint union j j a e / Ua>
It is useful to think of this as a subset of M x / . Then the projection map to M restricts
to define a submersion. The sections sa define a map

Ua -> Y

by s(x, a ) = sa (x). This commutes with the projections and hence we can pull-back the
bundle gerbe J to a bundle gerbe on the disjoint union. From the discussion above this
is stably isomorphic to the original bundle gerbe.

We need this result in Section 4 where we consider Ao as part of a bundle gerbe
over A. It is the submersion Ao -» A, For any A G l w e have a section s\:U\ —>• Ao
defined by s\(A) = 04, A). So we can apply the discussion above to obtain the disjoint
union

as the set of all (A, A) such that A G U\. If we follow the discussion we topologize Y
by giving E the discrete topology. Notice that as a set Y is just Ao but the topology
is different. The identity map Y —> Ao is continuous. So from the result above we
deduce that bundle gerbes over Ao with either topology on Ao are stably isomorphic
so we can work with either picture. An advantage of the open cover picture is that the
map S introduced in [Mu] is then just the coboundary map in the Cech de-Rham double
complex. In the next section Ao can be interpreted in either sense.

For technical reasons explained below it is worth noting that we may work with a
denumerable cover from the very beginning. If we restrict A to be rational then the sets
U\ form a denumerable cover. It follows that the intersections Uw =U\C\ U\> also form
a denumerable open cover. Similarly, we have an open cover by sets V\\» - ir(U\\*)
on the quotient X = A/Ge, where Qe is the group of based gauge transformations g,
g(p) = e = the identity at some fixed base point p G M. Here TT : A -¥ X is the
canonical projection.

The second technical point is the question of existence of partitions of unity. This is
one of the major technical difficulties with working with manifolds modelled on infinite
dimensional vector spaces which are not Hilbert spaces. We digress here to indicate
how this problem is solved for the case we are presently interested in. The main result
in this theory appears to be the theorem of [Mil].

Theorem 1. If M is a Lindelof regular manifold modelled on a topological vector
space with enough smooth functions then any open cover ofM has a refinement which
admits a partition of unity.

Before trying to prove this let us give some definitions. Lindelof means any open
cover has a countable subcover. Regular means any closed set and a point not in it can
be separated by disjoint open sets. A topological vector space V has enough smooth
functions if the collection of sets of the form Uj = {x G V \ f(x) > 0}, where / runs
over all smooth functions, is a basis for the topology of V. Another way of saying this
is that for every point x G V and open set U containing x there is a smooth function /
with x G Uf C U.

The reason to worry about not having enough smooth functions is that the obvious
method of constructing them, by taking a semi-norm p and composing it with a bump
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function on R, may not work as the semi-norm may not be smooth. However [Mil, Be]
show that the set of smooth functions from a manifold into a Hilbert space with the
smooth, Frechet topology has enough smooth functions. The point is that we can realize
this topology by semi-norms pk which are inner products defined by summing the L2

norms of the first k derivatives. Then each of these is smooth because the inner products
are bilinear and hence smooth. That this gives rise to the same topology as the uniform
norms on derivatives is a consequence of the Sobolev inequalities.

The proof of the theorem above from [Mil] goes as follows. Let U be an element
of a given open cover and let x G U. By the assumption, there is a smooth real valued
function / on M such that x G Uj C U. We can assume that / is nonnegative. Namely,
for a given / we can form another smooth function / = h o / , where h : M —> K
is the smooth function defined by h(x) = 0 for x < 0 and h(x) = exp(— l/x2) for
x > 0. Clearly Uf = Uf and / is nonnegative. Choosing nonnegative functions has the
advantage that

ufnug = Ufg. (3.1)
By the above discussion we can refine the given open cover to an open cover

consisting of Uf's. Then we can take a countable open subcover £/, = Uf. for some
smooth, non-negative functions / , . Consider now the sets

Vn={x\ / ,(*) < 1/n} O {x | f2(x) < 1/n} n • • • {x | / n - i ( * ) < 1/n} n Un.

These are a locally finite cover.
First let us prove they are a cover. Note that the Un cover M so there is some fm

such that fm(x) > 0. Let x G M and assume that /* is the first function which doesn't
vanish at x. Then x G V*.

To see that this cover is locally finite pick a point x G M and some fm such
that fm(x) > 0. But then the only possible Vn that can contain x are those where
n < l/fm(x). Clearly we can find an open set around x where fm(x) stays positive
and bounded so a similar result holds for all the points in that open set so the cover
Vn has to be locally finite. Each of the sets {x\fk(x) < i/n} can be written as Uf for
some suitable nonnegative function / (essentially the same argument as before (3.1)).
From (3.1) it follows that each Vn is of the form U3n for some smooth functions gn.
The partitions of unity are obtained by scaling the gn by their sum.

In the case at hand we can see directly that the open cover we are using is of the
form required by the preceding construction of the partition of unity. This is because
we can define smooth functions fw on X as f\\> (A) = exp(— 1/cf), where d is the
distance of the spectrum of the operator DA to the set {A, A'}. This distance is always
positive for A G U\\>, because the spectrum does not have accumulation points on a
compact manifold M. When A £ U\\> we set fw(A) = 0. Finally A and AjQe are
metric spaces as they are Frechet manifolds modelled on a space with topology given
by the (countably many) Sobolev space inner products and hence are regular. We can
use the set of functions fw in the proof above to show the existence of a locally finite
cover and corresponding partition of unity.

4. Calculating the Dixmier-Douady Class

Our starting point is to describe, in the notation of this paper, the bundle gerbe J over A
defined in [CaMu]. This is a line bundle over the fibre product A[Q\ This fibre product
can be identified with all triples (A, A, A'), where neither A nor A' are in the spectrum



718 A. Carey, J. Mickelsson, M. Murray

of DA . The fibre of J over 04, A, A') is just DETxx1. For this to be a bundle gerbe we
need a product which in this case is a linear isomorphism

DETxx* 0 DETx'X" = DETxx". (4.1)

But such a linear isomorphism is a simple consequence of the definition of DET\\i
and the fact that taking highest exterior powers is multiplicative for direct sums.

Let 7r: AQ —>• A be the projection. Let p: A —> A/Ge be the quotient by the gauge
action. We saw in [CaMul] that the line bundle DET on AQ satisfies J = 8(DET).
Here S(DET) = n\(DET)* 0 TT$(DET) where TT,: A[Q] -+ AQ are the projections,

, A, A')) = (A A) and TT2((A A, A')) = (A, A')

In other words J = S(DET) is equivalent to

DET\\> =

which is equivalent to Eq. (2.2). Note that we also used S to denote a similar operation
on differential forms discussed earlier.

The fibering Ao —> A has, over each open set U\ a canonical section A *-> (A, A).
These enable us to suppress the geometry of the fibration and the bundle gerbe J
becomes the line bundle DETw over the intersection Uxxi and its triviality amounts
to the fact that we have the line bundle DET\ over U\ and over intersections we have
the identifications

DET\X> = DETx 0 DETX>.

We denote the Chern class of DETXx> by 0£2]. Note that these bundles descend to
bundles over Vxx> = n(Uw) C A/Qe- Therefore, the forms 9$x' = 0% - 0% on Uxx1

(where Q\ is the 2-form giving the curvature of DETx) are equivalent (in cohomology)
to forms which descend to closed 2-forms <f>%A' on Vxx1 •

Our aim in this section is twofold. We show first that the collection of Chern classes
$2 gives rise to the Dixmier-Douady class of the bundle gerbe J/Qe and second that
using the results of the preceding section, we can obtain formulae for this class using
standard methods.

To begin, let us choose a bundle gerbe connection on J/Ge- This a connection
that preserves the product in Eq. (4.1). In the general setting the existence of such
connections follows from a partition of unity argument [Mu]. However in this case it
is possible to construct one by orthogonal projection. Call it V and its curvature F^.
Then we can pull V back to p*(V) on J with curvature p*(Fv). Similarly choose a
connection VDET on the line bundle DET. This induces a connection S(VDET) on J.
The difference of these two connections is a one form a on A[Q] and, in fact, S(a) = 0 so
that a = Sty).

Note that V> is not unique and we do not have a constructive method of finding it
(but if we did then we could construct explicit formulae). Pressing on however if FDET
is the curvature (which has class equal to the Chern class {0% }) of VDET, then

Now assume that down on A/Qe we have solved

Fv=6(f).
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We remark that this is a central point. It is not obvious that there is a solution.
However by the previous subsection there is a locally finite partition of unity {s\}
subordinate to the open cover {VA}. The curvature of the bundle gerbe consists of
closed 2-forms <j>2 x on the intersections Vw satisfying the cocycle condition

on the domains of definition. One can then define

which gives

on Vw. The collection of forms ^ defines the form / on Ao/Qe •
Now, continuing our argument, we have

so that

By definition the Dixmier-Douady class is the 3-form u> on A/Qe defined by

df = TT*(U;).

If we transgress u then we want to solve

p*(w) = dp,

for some p. Hence we have
p*(7r*(u;)) = d7r*0i).

But from the above we have

p*7T*(u;) = dp*(f) = dFDET + dd1> + dir*(p) = ir*(dp).

Hence
p*(u) = dp.

So [p] = [fi]. To calculate the Lie algebra cocycle we need to apply p to two vectors
£, rf in A generated by the group action. As the group also acts on Ao it is equivalent
to apply 7T* (/?) to two such vectors which we shall denote by the same symbols. Then,
noting that p*(/) is zero on any vectors generated by the gauge group action (because
p is the projection A -> A/Ge) we have

* » « , rj) = -FDBTG, rj) - <#(£, rf).

Hence the Faddeev-Mickelsson cocycle on the Lie algebra of the gauge group is
cohomologous to the negative of that defined by the curvature FDET of the line bundle
DET.

To obtain the Dixmier-Douady class as a characteristic class we recall that in the
case of even dimensional manifolds, Atiyah and Singer [AtSi] gave a construction of
'anomalies' in terms of characteristic classes. In the present case of odd dimensional
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manifolds we now demonstrate that a similar procedure yields the Dixmier-Douady
class.

We begin with the observation that given a closed integral form Qp of degree p on a
product manifold M x X (dimAf = d and dim5 = k) we obtain a closed integral form
on 5, of degree p — d, as

Qx = / 0.
JM

If now A is any Lie algebra valued connection on the product M x X and F is the
corresponding curvature we can construct the Chern form C2n = C2n(F) as a polynomial
in F. Apply this to the connection A defined by Atiyah and Singer, [AtSi, DoKr, p. 196],
in the case when X = A/Qe-

First pull back the forms to M x A. The Atiyah-Singer connection o n M x !
becomes a globally defined Lie algebra valued 1-form A on M x A. Along directions
u on M it is defined as

Ax,a(u) = «MaMW, with x E M and a E A,

and along a tangent vector beTaA the value is

where e/a = d + [a, •] is the covariant exterior differentiation acting on functions with
values in the adjoint representation of g and Ga = (d*ada)"

1 is the Green's operator.
Let F be the curvature form determined by A. A tangent vector 6 at a E A is said to
be in the background gauge if </*& = d^b^ + [a^, 6 ]̂ = 0. Any tangent vector 6 at a
point 7r(a) E X is represented by a unique potential b in the background gauge. For this
reason we need to evaluate the curvature F only along background gauge directions.

Along tangent vectors u, v at x E M the curvature is J^afa, v) = /«(«, v),, where
/ = da + I [a, a]. Along directions 6,6' in the background gauge at a E A the value
of F is Ga[6/X, 6^] and finally along mixed directions FXta{u, b) = u^b^x), [AtSi]. For
example, when dimM = 3 and p = 6 the 3-form # x becomes now, evaluated at a E .4,

6,&']&" + cycl. combin.),

when 6, &', 6" are in the background gauge.
The integral of Qx over a sphere S3 C X can be evaluated without computing

the nonlocal Green's operators in the above formula. The pull-back of S3 becomes a
disk D3 on A with boundary points identified through gauge transformations. We can
therefore write

/ Ox= I cln(F).
JS* JMxD*

But the integral of the Chern form over a manifold with a boundary (when the potential
is globally defined) is equal to the integral

CS2n-l(A).
MxdD*
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Along gauge directions the form A is particularly simple: Aa>x(b) = Z(x), where
x £ M,a £ A, and b = — daZ = [Z, a] — dZ is a tangent vector along a gauge orbit at
a. For example, when M = S1 and 2n = 4 we get (here S2 = 3

Qx= [ CS3(A) = i / tr(aW + | ^ /

where # = g(x,z) is a family of gauge transformations parametrized by z G 5 2 .
Similar results hold in higher dimensions: The exponent 3 on the right is replaced by
dimM + 2 = 2n + 3 and the normalization factor is -(^)n+2((n + 2)! • (2n + 3))" l .

Now we can prove that Qx represents the Dixmier-Douady class of the bundle
gerbe. The integral of the DD form u> over a closed 3-cycle 5 C A/Ge (which can be
assumed to be a sphere S3) is evaluated, using the pull-back form df = TT* (CJ), on Ao/Go
and further pulling back this by p* to Ao- But the cover of S3 in the latter space is a
disk D3 such that the boundary points are gauge related. Because the spectrum of the
Dirac operator is gauge invariant we can choose a single label A such that 3D3 C U\.
Since p* (df) = d(p* / ) the integral over D3 can be evaluated by Stokes theorem over the
boundary dD3. The form p* f on U\ is equal to Ojx, the Chern class of the determinant
bundle over U\. But the integral of 02x over the gauge orbit dD3 is given by the integral
of the Chern-Simons form (2.9), thus giving exactly the same result as the integration
of Qx above. We conclude that the de Rham cohomology classes [u/] and [Qx] are the
same.
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