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Abstract. We show how the moduli space of flat SU(2) connections on a two-
manifold can be quantized in the real polarization of [15], using the methods of
[6]. The dimension of the quantization, given by the number of integral fibres of
the polarization, matches the Verlinde formula, which is known to give the
dimension of the quantization of this space in a Kédhler polarization. '

1. Introduction

Let 29 be a (compact, oriented) two-manifold of genus g, and consider the moduli
space %, of flat SU(2) connections on 2. This space contains a large open set %,
which is a symplectic manifold with symplectic form  such that 2ziew is the
curvature of a natural line bundle % on &,. The quantization of this prequantum
system has been the subject of much recent interest. Much of the mathematical
work on this topic has concentrated on the Verlinde formula for the dimension of
the quantization in a Kéhler polarization.

In [15, 16] there was introduced a different approach to the quantization
procedure, based on a real polarization of the space ,. If (M, w) is a compact
symplectic manifold of dimension 2m, a real polarization of M is a map n: M—B
onto a manifold B of dimension m, such that w|,-14,=0 for all be B. Under
sufficiently strong hypotheses, a submanifold L appearing as a fibre =~ }(b) must be
a torus of dimension m, and the quantization procedure for a prequantum system
over (M, w) given by a line bundle ¥ —M with connection of curvature 2ziw is
particularly simple. For there will be a finite number of fibres L; of the
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polarization, the so-called Bohr-Sommerfeld fibres, such that the line bundle %,
restricted to L;, possesses a (one-dimensional family of ) global covariant constant
sections. The quantization is then naturally isomorphic to the space of all such
sections [12].

One motivation for the work of [15, 16] was the natural association of vectors
in the quantization in a real polarization to Lagrangian submanifolds, which when
applied to the case of the moduli space might be useful in trying to construct a
topological quantum field theory. Some progress on that account will be discussed
in a separate paper [9]. In this paper we turn our attention to a more careful study
of the classical system, which enables us to obtain an explicit description of the
Bohr-Sommerfeld fibres of the polarization of [15]. Most of these fibres are
smooth Lagrangian tori, as in the smooth case. There are also some singular
fibres; the role such fibres should play in quantization is somewhat unclear in
general.

The real polarization of [15] is associated to a choice of 3g—3 simple closed
curves on X?. These curves are obtained from a decomposition of 2? into copies of
the two-sphere with three discs removed and marked points on each boundary
component, also known as pants or trinions. If we choose a basepoint * for 29, and
arcs connecting * to each of the marked points on the boundaries of the trinions,
we obtain a collection of 3g — 3 elements of the fundamental group of the surface
¢ The map n:%,—B,CR3*? giving the polarization of [15] is obtained by
assigning a flat connection representing a point x € %, to the trace of the holonomy
of the connection about each of the chosen curves. This is independent of the
representative taken for the point x. The existence on the space %, of a real
polarization reflects a geometric fact about the structure of &, as a symplectic
manifold, which we exploit for other purposes in [9, 10].

Any trinion decomposition of the surface X gives rise to a trivalent graph
obtained by associating a vertex to each trinion and an edge to each boundary
circle (see Fig. 1). Then every fibre of our polarization is associated to a marked
trivalent graph, where each edge is marked by the holonomy of the connections in
the fibre about the appropriate curve in the surface. We shall see that the Bohr-
Sommerfeld fibres of the polarization of the prequantum system associated to the

Fig. 1. A trinion decomposition of a two-manifold and the corresponding trivalent graph
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line bundle #* (for k a positive integer) are given by graphs marked with
holonomies which correspond to k™ roots of unity. In order to count these fibres,
we must check which markings of this type actually occur as holonomies of flat
connections. The condition that such a marking occur is that there exist a flat
connection on each trinion with the appropriate holonomy about each boundary
curve; such a flat connection turns out to exist when the holonomies satisfy the
quantum Clebsch-Gordan conditions (Eq. 8.2a—c). Thus Bohr-Sommerfeld fibres
are associated to marked trivalent graphs with holonomies satisfying this relation
at each vertex. We prove that the dimension of the quantization in our real
polarization, given by the number of Bohr-Sommerfeld orbits, is given by the
number of such marked graphs, which is called the Verlinde dimension. The
Verlinde dimension is also now known to give the dimension of the quantization
of the moduli space in a Kéahler polarization.

This paper is organized as follows. In Sect.2, we recall from [15] the
construction of the real polarization of moduli space; the fibres of the polarization
are given by level sets of certain functions on this space. The Hamiltonian vector
fields of these functions will then define torus flows on %, preserving the
polarization. In this formalism, the Lagrangian nature of the fibres is transparent,
but their topological structure is somewhat obscure. As we will need to study the
topology of the fibres, we include in this section an alternative description of the
fibres of the polarization, related to the work of Witten [17]. In this description,
we use trinion decompositions of two-manifolds to construct the moduli space of
flat connections on a two-manifold X from the moduli space .#(D) of flat
connections on a trinion, by considering a collection of trinions whose union is 2?.
A point in %, can then be specified by giving a point in .#(D)** 3 satisfying
appropriate conditions, together with “gluing data” which specify how the
corresponding flat connections on the trinions are to be put together to yield a flat
connection on 2%. From this point of view the fibres of the polarization in question
consist of all possible gluing data for a given point in .#(D)3¢ ~3, It is not immediate
from this point of view that the fibres of the polarization are Lagrangian; as we
mentioned above this fact is proved in [15].

This description of #, in terms of .#(D) naturally occasions a careful study of
the space .#(D), which is none other than the space of representations of the fun-
damental group =, (D) of a trinion — that is, of the free group on two generators —
in SU(2). This is the topic of Sect. 3. At first glance it may seem that the study of the
representations of the free group is fatuous. But the description of (D) as a free
group on two generators is unnatural for us, as it treats the three punctures on the
trinion differently; the loops about two of them are taken as generators of the
fundamental group, and the third loop as the product of the first two. From our
point of view we must treat all three on an equal footing. Any representation of
7,(D)in SU(2) then gives rise to three traces, corresponding to the three punctures;
we wish to ascertain which’combinations of values of the traces can actually occur.
This is the content of Proposition 3.1; when the traces are restricted to values
corresponding to holonomies which are k'™ roots of unity, the quantum Clebsch-
Gordan conditions will arise out of these very simple considerations.

Having described the moduli space in these terms we are ready to look for the
Bohr-Sommerfeld orbits. The method we use to do this is the method of action
variables, as applied in [6] to the case of flag manifolds and the representations of
classical groups. The theorems standard in this subject cannot be applied directly
to the space %, which is not a smooth manifold. However, by dissecting the proofs
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of these theorems we see that the methods of proof remain valid in the main. These
are roughly as follows. The first crucial observation [3] is that in the smooth case,
where a smooth symplectic manifold M fibres over a manifold B with fibres that
are compact Lagrangian submanifolds L,, the fibres L, are of necessity tori. These
tori are given by the level sets of Poisson commuting functions f;: M —IR. These
functions may be adjusted so that the corresponding Hamiltonian vector fields v,
generate flows of period 1. The resulting functions are called action variables.
Suppose then that the fibres of the polarization passing through two points
P, q € M are Bohr-Sommerfeld fibres; then fi(p)— fi(q) € Z for all i (see Theorem 4.4).
The Bohr-Sommerfeld set can then be characterized if one Bohr-Sommerfeld point
can be found, and a set of action variables constructed.

However, %, is not a smooth manifold, and the fibres of the polarization we are
considering are not tori; they degenerate at certain points, corresponding, in terms
of our trinion decompositions, to flat connections on the surface which restrict to
an “abelian” flat connection on some trinion. Using the description of the
polarization given in Sect. 2.3, we can nonetheless show that at the nondegenerate
points the fibres of the polarization are still tori, and that these tori are covered by
the flows given by the Poisson-commuting functions which defined the polar-
ization. This is done in Sect. 5. Hence, for the generic orbits of the polarization
the situation mirrors that of the smooth case.

Turning to the exceptional points, we see that, at such points, although the
Hamiltonian flows of the Poisson-commuting functions no longer cover the fibre,
they do cover a subspace of the fibre which generates the entire holonomy
representation of the fundamental group of the fibre. This is demonstrated in
Sect. 6, using again the topological description of the polarization. Hence, again,
the study of the action variables will suffice to determine whether such a fibre is a
Bohr-Sommerfeld fibre, in the sense that there exists a global covariant constant
section of the line bundle .£* restricted to this fibre.

Hence we see that although Z, is not a smooth manifold and our polarization of
it is not a fibration, the Bohr-Sommerfeld orbits of our polarization may be
described, as in the smooth case, by integer differences of functions we may as well
call action variables. In order to classify the Bohr-Sommerfeld points it remains to
find some known Bohr-Sommerfeld points at which these variables are known to
take integer values. To do so we turn to (classical) Chern-Simons gauge theory, and
yet another description of some fibres of our polarization. In this description,
certain fibres of the polarization correspond to flat connections on the surface 2¢
which extend as flat connections to some three-manifold N3 bounding X?. The
simplest example of such a fibre corresponds to the handlebody bounding 27 it
possesses a global covariant constant section of .# given by a direct topological
construction. It turns out that this is not sufficient for our purposes, as all the
Hamiltonian flows degenerate at this fibre. We find other fibres of this type by
using the branched cover construction of [8], which constructs fibres correspond-
ing roughly to flat connections on X7 extending to the handlebody as connections
with curvature concentrated on a link in the handlebody, or equivalently, to flat
connections on a branched cover of the handlebody, branched over this link.
These fibres possess global covariant constant sections of #* by a similar
topological construction, and for each Hamiltonian flow, we may construct a fibre
of this type where the Hamiltonian flow will not degenerate. This construction
occupies Sect. 7, which is the only part of this paper where Chern-Simons gauge
theory, and indeed, the topology of three-manifolds, enters at all.
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The fibres considered in Sect. 7, which we know to be Bohr-Sommerfeld fibres
of the line bundle #*, correspond to connections whose holonomies about the
boundaries of the trinions forming the surface X¢ are conjugate to k'® roots of
unity. The action variable construction considered above then shows that the
Bohr-Sommerfeld fibres of #* all satisfy this condition. They are, therefore, in view
of the construction of Sect. 3, in one-to-one correspondence with trivalent graphs
corresponding to the given surface, whose edges are labelled with k' roots of unity,
and whose labellings satisfy the quantum Clebsch-Gordan conditions at each
vertex. The number of Bohr-Sommerfeld fibres is thus precisely given by the
Verlinde formula, as stated in our final result (Theorem 8.3).

2. Real Polarization of the Moduli Space

In this section we will review some of the relevant material from [15] about the real
polarization of the moduli space #,. We give several characterizations of this
polarization: the final characterization is related to the work of [17], and will be
needed when we look for explicit generators of the fundamental group of the fibre.

~

2.1. The Moduli Space of Flat Connections

Let 2% be a compact, oriented two-manifold of genus g. The moduli space %, of flat
G =SU(2) connections on X? has two convenient descriptions, between which we
will alternate whenever necessary. The first more topological description of &, is as
the set of conjugacy classes of representations of the fundamental group z,(29)
into G. More explicitly, we choose for n,(Z?) the usual generators A, B; for
i=1,..., g, satisfying the relation IT4;B;A; ' B; ! = 1. Then Hom(r,(29), G) is given
by the set {a;, b;€ G: Ia;b,a; 'b; * =1}. The group G acts on Hom(r,(2?), G) by
simultaneous conjugation of the a; and b;, and we have &, =Hom(r,(2?), G)/G.

Alternatively, we can consider the space 2/ of flat (smooth) connections on the
trivial G bundle P—2%. Given a fixed trivialization P=G x X¢ of P, the space
o =4(29 of connections on P may be identified with the space Q1(29)®g of
g-valued one forms on 2, and &/, is then identified with the subset 2/, C.o¢ given
by {Adess: Fy=dA+A A A=0}. The gauge group ¥ =Maps(Z?, G) acts on </,
with a map ge % taking A€ o, to A?=g~ 'Ag+g~ 'dg. Then F,=sf/9.

The variety #, contains an open set %, corresponding to conjugacy classes of
irreducible representations of =,(2¢), which is a symplectic manifold, with
symplectic form w described in [2]. Furthermore, in [11], there was constructed a
line bundle ¥ —»Z, with a connection V' with curvature equal to 2rmiw. Thus,
setting aside for the moment our concern for the singularities of .9_;, we see we have
the usual prequantum data described in the introduction; we are given a
symplectic manifold (¥, ), and a line bundle ¥ — ¢, with connection whose
curvature is the form 2miw. To produce a quantization we must polarize the
space .

2.2. Real Polarization of the Moduli Space

We recall from [15] the polarization of the moduli space Z,, obtained from some
good functions on %, associated to closed curves on 2%, Let CC27 be a closed,
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oriented curve in 2% and choose a basepoint y € C. We define a function f.: .o/ >R
by setting, for A € o,

Fc(A)=(1/2) Trhol(4), (2.1)

where by hol.(4) we denote the holonomy of the connection A about the oriented
curve C from y to y. The function f then descends to a function f.:%,—~R.

To obtain functions on %,, we need some good closed curves on Z*. These are
obtained from a trinion decomposition of the surface. A trinion (also called a pair
of pants) is a copy of the two-holed disc

D={zeC: |z| 22} —({z: |z—1|<1/2}u{z: |z+ 1| <1/2}),

with marked points on the boundary components of D, and the standard
orientation coming from €. Suppose there is given a decomposition of 2? into a
union of 2g—2 trinions D,, ye'={1,...,2g—2} joined along their boundaries,
with the marked points coinciding whenever two trinions have a nonempty
intersection. Such a decomposition of X gives rise to a trivalent graph constructed
from the trinion decomposition by associating a vertex to each trinion and an edge
to each boundary circle (see Fig. 1). In any event a trinion decomposition of 2¢
provides us with a collection C;, ie # ={1, ...»3g—3} of simple closed oriented
curves with marked points on each curve, given by the boundary components of
the trinions. We can then consider the functions f;: #,— R defined by f;=fc,, using
the functions f¢:%,—R defined in Eq. 2.1 above.
The following is the main result of [15].

Theorem 2.1. Let X=(xy,...,X3,_3) €R>*73. The set L= () f;”(x,) satisfies
a)le = 0 .

Furthermore, L, has dimension 3g—3 for a generic point X in the image of %, under

the f..

It will be helpful to look at this as follows. Let B,CIR*~* be the image of the
functions f;; in other words

B,={(fi(9), ... f34-3(8)): £ T3} .

Then the fibres of the map n=(f), ..., f3,-3): F%,—B, foliate ¥, by isotropic
subvarieties: the generic fibre is a Lagrangian subvariety.

The functions 2f; are traces of SU(2) matrices; they can, therefore, be described
as twice the cosine of angles 6;,. We define the holonomy angle 6, of a connection A
associated to the curve C; by

0(A)=cos™ ! f(A), 22

where we take 6; to lie in [0, 7], and the functions f;= f;, were defined in Eq. 2.1
above. We thus obtain a map

_0=(91,..., 93g—.3):‘2_)]R39_3' (2.3)
Since the 6; are constant on the fibres of =, they may also be viewed as functions on
B,. By abuse of notation, we shall also denote these functions by 0;: B,—»IR.

The function 6, is smooth on the open dense subset U;=0;*((0, n)) of Y Thus
the Hamiltonian flows of all the 6, are defined on & = NUC &,.The Hamlltoman

7 . . . ¢ . | ‘e
flows generated by the 6, on & are periodic with constant period, and so induce a
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torus action on &5. The map 0=(0,, ...,0,_5) : #s—R33 is the moment map
for this torus action. We may, of course, think of 8 as a system of coordinates on
B,: we shall use this notation frequently in what follows.

2.3. Alternative Description of the Polarization

A different way of looking at the polarization = : &, — B, is related to the work of
Witten [17, Sect. 4.5]. In this description the topology of the fibres of the
polarization is transparent, though their symplectic structure as Lagrangian
subvarieties is obscured. This alternative description thus nicely complements the
description of [15] where the reverse is true.

The generalidea of this description of the fibres is to characterize a fibre 7~ (b)
in terms of the gauge equivalence classes of the restrictions of the connections to
the trinions D.,. To do this, we pick a connection 4 on 2? whose gauge equivalence
classisin ™~ I(b), and which satisfies certain good conditions.

Let TCG be a fixed maximal torus, and let tCg denote the corresponding
subalgebra of g.

Definition 2.2. A connection 4 on 2? is said to be adapted to a trinion
decomposition (a.t.d.) if there is a tubular neighbourhood V;=~(—1,1) x S* of each
boundary circle C; (i€ .#), with coordinates on V, given by (s,0), se(—1,1), 0 S?,
such that A|,, = X,d0, where X, is a constant element of t.

One may easily obtain the following

Lemma 2.3. For all yen™'(b), there exists an a.t.d. connection A in the gauge
equivalence class y.

We now define certain subgroups of G corresponding to stabilizers of flat
connections. Suppose A is an a.t.d. connection. Then the stabilizer of the action of
the gauge group %(C;) =Maps(C;, G) on 4|, consists of constant maps, and so may
be identified with a subgroup H; of G. Under this identification, H;= G if 6(b)=0
or 0(b)=m; otherwise, H;=T.

We obtain a similar identification for the stabilizer J, of the restriction A|p, of
the connection A to the trinion D,, under the action of 4(D,)=Maps(D,, G). This
stabilizer also consists of constant maps, and J, = Z(G) ~Z, if A|,, corresponds to
an irreducible representation of n,(D,) into G, while J,=T (resp. G) if the
representation reduces to a representation into T [resp. into Z(G)]. The stabilizers
J,, H;depend only on the point b € B,, and not on the particular a.t.d. connection 4
whose gauge equivalence class lies in 7~ !(b).

We now describe the fibre 7~ !(b) in terms of a.t.d. connections. Suppose we are
given one a.t.d. connection A whose gauge equivalence class [4] is in =~ (b),and a
collection of elements 7;€ H; (i=1, ...,3g—3). We define a map y ,:[[ H;—»>n "~ ()]

. . i
as follows. Given a set of elements 1=(t;);=,,.  3,-3 in [[H; we choose a

13
collection of maps {,:D,—»G such that (,;,{, are constant on a tubular
neighbourhood of C;, where C; is the boundary circle bounding the trinions

D y(i) D (i) and such that
Gole,=Tlyole, - (2.4)

[The orientation of the trinion and that of the surface determine which trinion to
call y(i) and which to call y'(i): we adopt the convention that the orientation of the
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surface is given by v A w, where w is the tangent to the oriented boundary circle C;
and v is a tangent vector transverse to C; and pointing into D,.] We define a
connection A, on X? by

Alp,=Alp.". 2.5)

These connections agree on tubular neighbourhoods of the boundary circles C;,
and hence combine to give a connection 4, on 2. We then define y ,(t)=[4,]; here
[A4.] denotes the point in .%, corresponding to the gauge equivalence class of A4..
We now consider the question of when two such connections, corresponding to
different elements of []H;, are gauge equivalent. We have the following
i

Lemma 2.4. If 7,7’ are two points in [ H;, then the connections A, and A.. are gauge

13
equivalent if and only if there is a system of gauge transformations ®,:D,— G such
that
1. @,eJ, for all y. (In other words, the @, are constant maps taking their values in
the subgroup J,.)
2. If the boundary circle C; bounds the trinions D, D, we have

Dyl Ti=Ti" Pylc, - (2.6)
We are now ready to complete the characterization of the fibre 7~ (b):

Theorem 2.5. The map y,:[[H;~n" L) is surjective. Moreover, the group
F# =1T1J, has a natural action on [1H;, so that the fibre n~'(b) is given by [[ H;/#.
y i i

Proof. To prove surjectivity it suffices to consider a collection of a.t.d. connections
on the trinions with the desired holonomies; the a.t.d. condition then allows them
to be combined to form a connection on the surface 2¢ with the given holonomies.
It remains to construct the group actions. We define the action of an element
(Dy)y=1,...,29-2 by sending (t;);=4, . 3,-3 €[] H; to (@,4TPy))i=1.....39-3- Then

12
two connections A4, A, are gauge equivalent if and only if 7,7" are equivalent
under the action of ¢, by the condition (2.6). []

3. The Moduli Space of Flat Connections on a Trinion

In Sect. 2.3 we showed how the moduli space , of flat connections on 2? could be
described in terms of the space .#(D) of gauge equivalence classes of flat
connections on a trinion, and how the real polarization of [15] arose naturally in
the context of this description. In order to make the connection more explicit, we
study the moduli space .#(D) in more detail, and show how the functions 6;
defining the polarization behave on .#(D).

The space .#(D), just like its counterpart Z,, can be described as the quotient of
the space Hom(n,(D), G) by the conjugation action of G. Now 7,(D) is the group
generated by the homotopy classes [C,],[C,],[C;] of based loops C,,C,,C,
corresponding to the three boundary components of the trinion D, with the
relation [C,][C,][C;]=1. Corresponding to the three boundary components
C,,C,,C, of the trinion D, we may therefore define three functions 8,,8,,d, on
Hom(x,(D), G), given by

G{e)=cos™ ! (3Tre([C}])).
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These maps descend to maps 6;: .#(D)— [0, 7], just as in the case of a closed surface
29, Indeed, if we are given a trinion decomposition of a surface X9, these functions
agree with their counterparts defined on X¥, in that any representation of 7,(2?)
restricts to a representation of =,(D,) for each trinion D,; under the map
&,—#(D,)induced by this restriction, the functions 6; defined on .#(D) agree with
the functions 6, (,, defined on ¥,.

Our main result is the following:

Proposition 3.1. The map 0=(0,,0,,0,): #(D)—[0,n]* sends .#(D) bijectively to
the set satisfying the inequalities

60; — 65| <03 <min(0, + 0, 2n— (6, +6,)).

Proof. We wish to derive the condition on a triple of angles (6,,0,,05) (with
0<60,<m) needed for (0,,0,,0;) to arise as holonomy angles of some flat
connection on the trinion. We use quaternionic notation

. zZ W
zZ+w= [_w z’]

(where z,weC, j*= —1 and zj=jz). We consider elements g;e€ G such that g; is
conjugate to e (i=1, 2, 3). We want to find the condition on 6, in order for there to
exist in these conjugacy classes solutions g; of the equation

218:83=1.

By conjugation, we may assume without loss of generality that g, is of the form e
0=<6, <n. We then have the freedom to conjugate g, and g5 by an element of T. So
we may assume g, is of the form

i0,
b

g, =z+wj, weR™", (3.1)
in other words
g,=cosf, +isinf,(cosf—ij sinff) 3.2)
for some feR. The condition that g,g, be conjugate to ¢** is then
Re{e®'(cosf, +isinb,(cos f—ijsin f))} =cosb,

or
cosf, cosf,—sinb, sind, cosf=cosf; . (3.3)

One may solve this for cosf if and only if
cosf, cosf, —sinf, sinf, <cosb;,
cosf3=cosf, cosf,+sinb, sind,

or
cos(8,+0,)<cosf;=cos(0,—0,).

Noting that cos is a decreasing function on [0, 7], this becomes
|91 _92 l é 93 s
0,<6,+0, if |0,+6,|=m,
0;<2n—(0,+0,) if 6,+0,|>=x.
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In other words, the condition is
01 —0,| <05 <min{6, +0,,2n—(0, +6,)} (34)

as claimed. This equation defines a tetrahedron inscribed in the cube 0<6,<=.
To prove the map 8 is injective, we observe that we have chosen sinf, sinff>0in
(3.1), and Eq. (3.3) determines sinf, cosf if sinf; +0. Thus the equation

g,=cosf,+isinf,cosf+ jsinf,sinf

for g, has a unique solution in terms of cos,, cos8,, cosf;. This is true also for the
degenerate case sinf, =0. Thus the functions 6; can be considered as coordinates
on the space of conjugacy classes of representations of the trinion fundamental

group. []

The image of %, in R3*~3 under the maps 0, ..., 05,_5 is thus given by those
values of 6, satisfying the inequalities (3.4) on every trinion. This is because flat
connections on trinions can be glued together to form a flat connection on the
closed surface, provided the conjugacy classes of the holonomies around the
boundary circles of adjacent trinions agree. This gluing process was discussed
above in Theorem 2.5.

Thus we have the following

Proposition 3.2. The image of %, under the maps (0, ...,0,_3) is the polyhedron
defined by Eq. (3.4) for 6,=0,,,), 0,=0,,(,, 03 =0, corresponding to every trinion
D,, where C, (), C; ), Ci,(, are the boundary circles of D,.

We recall the following fact from [5] (Lemma 2.1):

1(¥) Vi)

Proposition 3.3 [Guillemin-Sternberg]. (a) The differential (d®P), of the moment
map ® for the action of atorus(S*)™ on a symplectic manifold M of dimension2m at x
is a surjection into R™ if and only if the stabilizer at x is discrete.

(b) More generally, the codimension of the image of (d®), in R™ is equal to the
dimension of the stabilizer of x € M under the torus action.

We apply this to the case of %, as follows:

Corollary 3.4. Suppose x e 1(%;)CB,. Then

(a) The Hamiltonian vector fields corresponding to the functions 0, are linearly
independent on the fibre n™*(x) if and only if x is a point where all the inequalities
(3.4) are strict.

(b) More generally, the number of linearly independent Hamiltonian vector fields on
the fibre n~'(x) is equal to 3g—3—s, where s is the number of independent linear
equations of the following type satisfied by 6(x):

0:,(%) + 03,)(X) — 0;,»(x) =0,
0:,0)(X) + 0;,55(X) — 0;, () =0,
0;35)(X) + 0;(55(X) — 0;,(,7(x) =0,
0;,(%) + 05,5(%) + 05, 5(x) =27

(3.5)

These equations are the equalities corresponding to the inequalities (3.4).

We note also the following.
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Lemma 3.5. Let xe.#(D) and let 6,(x),0,(x),05(x) be the holonomy angles of x
around the three boundary circles of D. Then x corresponds to a conjugacy class of
reducible representations of the trinion fundamental group if and only if at least one
of Eq.(3.5) is satisfied.

This lemma motivates the following

Definition 3.6. A triple of angles (6,,0,,05) (6;€[0,7]) will be called an interior
triple if the point in .#(D) with holonomy angles (6,,6,,05) corresponds to a
conjugacy class of irreducible representations of the trinion fundamental group.

For a generic fibre ™ !(x), all triples (6;,,(x), H,Z(y)(x) 0,3(,)(x)) corresponding to
holonomies around the boundary circles of trinions D, are interior. Thus the
generic fibre of n is a torus of dimension 3g—3: this is a consequence of
Theorem 2.5, as stated in the following proposition.

Proposition 3.7. Let x be a point in B, and let A be a flat a.t.d. connection whose
gauge equivalence class lies in l(x) Assume that for each trinion D, the triple
(0;, (), 9,29)()6) 0:,,»(x)) is interior. Then the fibre ™ '(x) zdentlf ies with
T “3/Z,)*~? under the map vy 4 defined in Sect. 2.3.

More generally, it will be convenient to focus our attention on good subsets of
the base space B,. The first good subset is the space Bj=n(¥,;) defined by
By={xe B, | 0{x)e (O n) for all i}. The second good subset is the subspace Bgind of
B‘ consisting of those points x € B, for which all the Hamiltonian vector ﬁelds are
hnearly independent [i.e., for whlch the triples (6;,,(x), 0;,,)(x), 0;,)(x)) corre-
sponding to all y e I' are interior triples]. Both B; and By ind are open dense subsets
of B,.

4. Bohr-Sommerfeld Orbits and Quantization

We summarize the general method for quantizing using a real polarization. This
leads to the consideration of a certain set of points in B, the Bohr-Sommerfeld set.
The Bohr-Sommerfeld set in &, is the main topic of th1s paper. We discuss the
characterization of the Bohr—Sommerfeld points in terms of the values of an
appropriate set of Hamiltonian functions with period 1 (action variables). We
show how this method can be developed into a theorem constructed to apply to the
case of the moduli space 57;; this is Theorem 4.4.

4.1. Quantization in Real Polarizations

Our treatment is taken from [6], whither we refer the reader for more details.
Let (M, w) be a compact connected symplectic manifold of dimension 2m, and
let #—M be a line bundle with connection V of curvature given by 2miw (the
prequantum line bundle with connection). A real polarization of M is a surjective
map n: M— B onto a manifold B of dimension m, such that @|,-1.,=0 for every
x € B; for generic x, the fibre L,={n"!(x)} is a Lagrangian submanifold. The
curvature of the line bundle &, restncted to each fibre, is zero. Among the fibres
will be a finite number on which the restriction of .# will have a global covariant
constant section. The fibres satisfying this Bohr-Sommerfeld condition are called
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the Bohr-Sommerfeld fibres of the polarization, and the points x € B in the image
of the Bohr-Sommerfeld fibres are the Bohr-Sommerfeld points of the space B.

Assume in addition that the map n: M—B is a fibration. Then the relation
between the Bohr-Sommerfeld set and quantization is the following. Let #, denote
the sheaf of local sections of ¥ which are covariant constant along the fibres of .
The quantization of the polarized prequantum data corresponding to M, w, &,
and V is defined as the vector space

2m
H = i(z—BO H{(M, ¢,).

This cohomology can be computed by a theorem of Sniatycki [13]. Let B,,CB
denote the set of Bohr-Sommerfeld points of B; for be B,, let S, denote the (one-
dimensional) space of global covariant constant sections of the restriction of % to
n~1(b). Then Sniatycki’s theorem declares that there is a natural isomorphism

H~ D S,.
beByps
Hence the quantization can be constructed from the sections of . over the Bohr-
Sommerfeld fibres of the polarization.

Sniatycki’s theorem does not apply to our case, since the moduli space &, is
not a manifold and the map n:%,— B, is not a fibration. From our point of
view, Sniatycki’s result instead provides a motivation for considering the Bohr-
Sommerfeld set. On the basis of Sniatycki’s result, we would expect the Bohr-
Sommerfeld set to correspond to a basis of a suitably defined quantum Hilbert
space # corresponding to the real polarization. We shall, indeed, see that the
number of points in the Bohr-Sommerfeld set is given by the Verlinde formula,
which has recently been proved to give the dimension of the quantum Hilbert
space 4 arising from a Kdhler polarization.

4.2. Alternative Characterization of the Bohr-Sommerfeld Fibres

Let us then consider the Bohr-Sommerfeld fibres of a fibration n: M — B. The set of
Bohr-Sommerfeld fibres consists of those fibres L,=n"'(x) of the polarization
for which the holonomies of the connection ¥ around a set of loops generating
n,(L,) are all equal to 1. Then a basis of loops is most conveniently obtained in
terms of a basis of a certain lattice of functions H on B, the period lattice. For
further discussion of the following material, see [3] and [6], particularly Theorems
2.4 and 2.6 of [6].

Let x be a point in B. Elements of the cotangent space T.*B define vertical
vector fields along the fibre ™ !(x): for ae T*B, denote the associated vertical
vector field by v,. Denote by f, the symplectic difftomorphism of the fibre 7™ *(x)
induced by the time 1 map of the flow along v,.

Definition 4.1. The period lattice in T,*B is the set of « in T.*B such that the
corresponding f, are trivial.

This is a lattice of dimension m. One may show (see [3]) that in a sufficiently
small neighbourhood @ of any point x € B, there is a set of functions H, (1€ A) on ¢
forming a lattice 4 under addition, such that the period lattice at x' € @ is given by
{(dH,), } 1 4- (Under suitable hypotheses, the functions in the period lattice exist
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globally: see [3, Theorem 2.2].) By abuse of language, we shall use the term “period
lattice” to designate this lattice of functions as well.

Let us denote a basis of the period lattice by ji;e C*°(B,IR), and define
W= fi;o me C*(M,R); then the Hamiltonian flows of the functions y; have period
1, and the fundamental group =,(L,) is generated by the loops #; which are the
period 1 trajectories of the Hamiltonian flows of y;. These Hamiltonian flows
generate a transitive action on the fibres of the polarization: in other words, these
fibres are m dimensional tori. The functions (g, ..., 4,,) define a moment map for an
action of the torus (S!)™ on M, preserving the Lagrangian fibration.

Remark. In classical mechanics the set of functions y; corresponding to a basis of
the period lattice is known as a set of action variables.

The period lattice is important to us because, as we shall see below, the Bohr-
Sommerfeld set is roughly characterized as the set of points where the functions in
the period lattice take integer values. The precise statement that applies to the
situation we shall consider is Theorem 4.4.

The material summarized in this section applies to the case when M is a smooth
manifold and = is a smooth fibration. This is not the case for our moduli space
situation: the purpose of the remainder of this section is to show how the methods
described here generalize to our setting.

4.3. Flows and Bohr-Sommerfeld Orbits

The setting in which we wish to study quantization differs from the ideal setting
described in the previous sections in several ways; for the map n: &, — B, defining
the polarization is not a fibration, and the moduli space %, is not smooth. The fact
that the map = is not a fibration will turn out to be our main concern, and will
reflect itself in the fact that Hamiltonian flows of period one cannot be defined on
all of &,. In this section we will characterize the Bohr-Sommerfeld orbits of a real
polarization of a smooth manifold M of dimension 2m given by a map n: M—B
onto a manifold B of dimension m, which is not a fibration. The result we obtain in
Theorem 4.4 will apply to the moduli space case also.

Lemma 4.2. Let M be a connected symplectic manifold of dimension 2m with a
surjective map nw: M — B, where B has dimension m. Suppose y,, y, are two points in
M, and x,, x, are their images in B. Suppose that H is a smooth function on B, and
that u=H on is a Hamiltonian function (constant along the fibres of m) whose
Hamiltonian flow has period 1. Let n(y,) (n=0, 1) be the closed loops arising from
the Hamiltonian flow starting at y, and y,. Then there is amap yx:I x S —M such
that y(n,t)=n/y,) (n=0,1). Furthermore, the symplectic form pulls back under y to
a smooth two-form on I x S*.

Proof. We take a smooth path A(s) in B between x, and x,, and consider a lift to
X(s)C M interpolating between y, and y,. We may then define

s, )= (X)),

where ¢, is the Hamiltonian flow of the function p at time ¢. By definition the

0. o .
tangent vector y, En is the Hamiltonian vector field X ,. Thus the symplectic form
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on M pulls back to

0 0 0
X*(u =Wys,1) <X* ;9; > X 5{) dsndt =Wys,1) <x* é—_; . Xﬂ) ds A dt

=(du)<x*§§>dsx\dt=a—H(g@ds Adt, 4.1)

which is a smooth two-form on the cylinder. []

Using the existence of these cylinders constructed from Hamiltonian flows, we
are able to relate the difference of holonomies of the line bundle .# around loops
given by the Hamiltonian flow with the difference of Hamiltonian functions at x,
and x,:

Proposition 4.3. Suppose p is a Hamiltonian function on a symplectic manifold M,
whoge Hamiltonian flow has period 1. Let x:1 x S*— M be a one parameter family

0
of integral curves of the Hamiltonian flow of p, i.e., x, Frie X, forteS', where X,

denotes the Hamiltonian vector field associated to p. Let ¥ be a line bundle over M
with connection V of curvature 2micwo. Then the function u(x(s, t)) depends only on s
(since wis constant along the orbits of the Hamiltonian flow ), and therefore defines a
Junction H(s)= pu(x(s, t)). Then

1
H(1)— H(0)= 5 ~(loghol,(;,y ¥ ~log hol,o, V) (modZ).

(Here, hol,, ,, denotes the holonomy of the connection V around the closed loop
x(n,1).)

Proof. Denote by & the image € = x(I x S')C M. Then € is a region over which the
pullback of the line bundle % may be trivialized: choosing such a trivialization, we
may represent the connection ¥ by a 1-form « on %, such that da=2niw. Thus

loghol; ¥V —loghol, yV= [ a— [ a=2nifw. 4.2)
(1,7 x(0,1) €

Now consider the restriction of the symplectic form to ¥. We have
0
=(X,)ys.1> 0 by (4.1), we see that

X ot
0 0 1 0H

;w— Ixjy dsdtw <x* 357 L at) = !,ds 7 =H(1)—H(©0). O 4.3)

We shall use Proposition 4.3 to find the Bohr-Sommerfeld points, by the
following method. Let us assume we have a function u= H o whose Hamiltonian
flow has period 1; denote by #(y) the closed loop which is the integral curve of the
Hamiltonian flow through a point y e M. Suppose we want to find all points x € B
for which there is a covariant constant section of . over n(y). We may locate these
points x by finding one such point (denoted x,) and using Lemma 4.2 to construct a
cylinder whose (oriented) boundary is —#(y,)un(y), where y, y, are pointsin 7~ *(x)
[resp. #~'(x,)]. Then Proposition 4.3 tells us that there is a covariant constant
section of ¥ over (y) if and only if H(x)— H(x,)eZ.

In order to locate the Bohr-Sommerfeld points, we must then find a set of
functions fi; on B such that the trajectories of the Hamiltonian flows of 'u;=fi;o =
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on M generate the entire fundamental group of each fibre. Given such a collection
of flows, we will be able to characterize the Bohr-Sommerfeld points as given by
integer values of the functions fi; assuming that we can find, for each such function,
a point x; known a priori to be a Bohr-Sommerfeld point, and where fi|(x;) e Z.
Thus our characterization of the Bohr-Sommerfeld points is as follows:

Theorem 4.4. Let (M, w) be a connected symplectic manifold of dimension 2m, and let
n: M— B be a map onto a manifold B of dimension m such that ®|,-1,,=0 for all
xe€B. Let & be a line bundle over M with connection V of curvature 2miw. Let
w=g;om, i=1,...,n (for ji;:B—»R) be a set of Hamiltonian functions constant
along the fibres n~'(x) and with Hamiltonian flows of period 1 with respect to the
symplectic form w. Let X;=n"'(n(X,)) be a connected subset of M where p; is
smooth. Denote by n(y) the closed loop obtained from the Hamiltonian flow of u;
through a point ye€ X ;. Suppose that
1. (Flows generate the fundamental group): For all x € B, the trajectories of those
Hamiltonian flows corresponding to functions y; for which xen(X,) form a set of
generators for the fundamental group of the fibre n~'(x).
2. (Existence of a priori Bohr-Sommerfeld points): For each i, there exists a point
x;e (X ;) with fi{x;) € Z, such that for any y e n™'(x;), the line bundle &\, ., possesses
a global covariant constant section.
3. Whenever x € B is a Bohr-Sommerfeld point, and x ¢ n(X,), then fi(x)eZ.

Then the Bohr-Sommerfeld set By CB is characterized as follows:

x€By, if and only if [i(x)eZ
for all i.

Remark. Condition (1) in Theorem 4.4 may be replaced by the following weaker
condition:

(1) Let x€ B, and suppose [i(x)eZ for all i. The trajectories of the Hamiltonian
flows corresponding to those functions u; for which x € n(X ;) generate the image of
the entire fundamental group of n~'(x) under the holonomy representation
associated to the connection V on the line bundle %.

We wish to apply this result to the moduli space %,, equipped with symplectic
form kw associated to the prequantum line bundle ,S,P"g. This moduli space is not a
smooth manifold; it consists of strata, corresponding to representations of the
fundamental group of the surface ¢ which are irreducible, or which reduce to the
subgroups T or Z(G) of G. The most straightforward approach would be to apply
Theorem 4.4 stratum by stratum. This would require finding a priori Bohr-
Sommerfeld points in each stratum. However, the proof of Theorem 4.4 shows that
a priori Bohr-Sommerfeld points in one stratum can be used to fix the values of the
action variables on the other strata, provided that smooth paths can be
constructed connecting these points to any other point in the moduli space; then
the smooth cylinders of Lemma 4.2 will still exist, allowing the proof of Theorem
4.4 to go through, exactly as in the smooth case. This is the version of the result of
Theorem 4.4 which will be used for the moduli space.

Our plan is now apparent. Our Hamiltonian flows will be given by the functions
0; defined in Sect. 2.2 (and by certain linear combinations of them). These flows will
be defined on Zs = (| U,, where all the 6; are smooth, and will be shown to generate

the fundamental gr(;up of any fibre lying over a point of %; this is the result of
Proposition 5.4. Those fibres of the polarization lying outside ., are treated in
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Proposition 6.13, which applies the alternative form (1’) of condition (1) of
Theorem 4.4. Finally, the a priori Bohr-Sommerfeld points [condition (2) of
Theorem 4.4] are constructed in Sect. 7, using methods of Chern-Simons gauge
theory. Section 7 is the only part of this paper where any is made of Chern-Simons
theory, or indeed of three-manifold topology. The reader who is willing to accept
on faith the existence of the a priori Bohr-Sommerfeld points will find that nothing
else in this paper relies on the constructions of Sect. 7.

5. Torus Actions in &,

The purpose of this paper is to apply the methods of quantization in a real
polarization, studied in Sect. 4, to the symplectic variety (%, kw); in other words,
to look for the Bohr-Sommerfeld orbits of the line bundle #*. In this section we
begin this process by studying torus flows defined in %,, which will allow us to
apply the cylinder construction of Theorem 4.4. These torus flows will come from
the Hamiltonian flows corresponding to the functions 6; defined in Sect. 2. We then
determine a set of Hamiltonian functions generating the period lattice (by
verifying that the Hamiltonian flows of these functions give a set of closed loops
generating the fundamental groups of all fibres). One set of functions in the period
lattice are, as one might expect, given by the functions

h;= EB,. for ies;
T

however, there are additional generators
8y =3, o)+ hiyy thiy) for yel.

Integer values of these functions will then correspond to the Bohr-Sommerfeld set,
assuming, first, that we can find points known a priori be in the Bohr-Sommerfeld
~ set [as in condition (2) of Theorem 4.4], and, second, that we can deal with the
singularities of the torus actions. The former will be the topic of Sect. 7; the latter
of Sect. 6.

5.1. Twist Flows

The construction of the torus flows in &, is due to Goldman [4]. In [4] it was
shown that associated to every closed orlented curve CC 2 there is an S' action

¢:Uc— U, defined on an open dense subset U.C %, and called by Goldman a
thst flow. To define twist flows, we first need the followmg auxiliary construction.
For any conjugation invariant function f:G—IR, we may define an associated
G-equivariant function F:G—g by

d
(X, F(A) =dfX)= - f(AexptX).
[Here, < -, - > denotes the basic inner product on the Lie algebra g, in other words

X, Y)=-Tr(XY).]
For the function f(A4), the associated function is

F(A)=4(4—A"").
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In Sect. 2, we also find it useful to study functions on &, related to the invariant
function 0: G—g defined by

0(A)=cos™ ' (f(4)),

where the value of cos ™! is chosen to lie between 0 and . We observe thus that if
A=diag(e e ),! we have F(A4)=1diag(isinf, —isin6). Then the function F,
associated to the invariant function 6 (where the values of 6 are taken to be in
[0,x]) is

1
"=~ 5l F, (5.1
(as dcosf= —sinfOdb). Thus we get
F,(A)=3diag(—i,i) (5.2

for A=diag(e”®, e and 6€(0,n). For B=gAg~ ! and A of the above form, we
define .
Fy(B)=3gdiag(—i,)g™".

For the values =0, n (corresponding to A= +1), F, is undefined.

We now give the definition of twist flows. To do so we must first
construct an action of S! on an open dense subset of Hom(x,(Z?), G). Given
a simple closed curve C in 2% and a basepoint *, we may choose an arc
joining * to a point xeC; then [C]=[d°C-6 ']en, (2% *) is canonically
defined up to conjugation by =,(2? *). We may then define open dense
sets Uc={peHom(n,(29), G) | ([C])+ £ 1}, and UcCY, is defined as the
image of U in #,. Then we define {{(¢)€G, for teR and ¢ e U, by>

{F(¢)=exp4n*{tF ($([C])}, (5:3)

where F,: G—g is the G-equivariant function defined above.

In defining the twist flow, we will deal first with the case where C is a
nonseparating curve in 29, ie., 29— C is connected. Suppose CC2? is a simple
closed oriented curve in 2¢ which does not separate X9 There exists another
(oriented) simple closed curve BCX¢ which intersects C once transversely with
positive intersection number. The fundamental group =,(29) is then generated by
the two subgroups 7,(2?—C) and {[B]), with the relation [B]4,[B] '4AZ%,
where A ,, A _ are the elements of n,(2?— C) whose image in =,(29) is [C].

We then define a flow on U by the map 5¢: U.— U, given by

E{(P))=¢(a) for aem,(2*~C),

(5.4)
Ed(9)([B)=¢([BIL(¢).-

a 0
! 'We denote by diag(a, b) the matrix [0 b:l
2 We normalize the symplectic form & on </ as follows:

. 1

@(a,b)= e gTr(a Ab),
where a,be T/ | ,=Q'(29)®g; this differs from Goldman’s normalization, which omits the
factor 4n. In our normalization, @& gives rise to a class in the integer cohomology group
H*(¥,,Z). The discrepancy between our normalization and Goldman’s explains the difference
in normalization between our formulas and those given in [4]
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There is a similar formula if C is a separating curve; let X, X, be the two
components of X?—C. The fundamental group of =,(29) is then generated by
n,(Z,) and 7,(2,), amalgamated over the subgroup generated by [C]. We define a
flow on Hom(z,(2?), G) by the map E¢: U.— U, given by

E{@) )=o) for aem(Z)),
E{D) ) =LA@ (9) " for aemy(Z,).

The following is a summary of the results of Theorems 1.10, 4.3, 4.5, and
4.7 of [4].

(5.5)

Theorem 5.1 [Goldman]. The flow & on U covers the Hamiltonian flow on U,
associated to the function 0c: %, —R defined in (2.2).

It is now apparent from (5.2), (5.3), (5.4), and (5.5) that the Hamiltonian flow
associated to the function f=6 has period 1/z if C is a nonseparating curve, and
period 1/2n if C is a separating curve. More generally, if we multiply the symplectic
form by k € Z, we see that the functions k0/= (if C is nonseparating) and kf/2x (if
C is separating) have Hamiltonian flows with period 1. Corollary 3.4 gives the
condition for these Hamiltonian vector fields to be linearly independent.

A trinion decomposition of X¢ determines a set {C;} of 3g—3 closed oriented
curves on 2%. Hence it gives rise to a collection of 3g— 3 flows given by £ on Uy,
and corresponding flows we denote by 2 on Ue,=U;=67((0, m)). Smce the
Hamiltonian functions 0, are constant on the fibres of , the1r Hamiltonian flows
also preserve the polarization given by n: #,— B,. Further, the functions f;=cos®),
(and hence also the 6,) Poisson commute: this property was shown in [4] and
by a different method in [15], and was used to construct the polarization 7.
Hence the flows generated by the §; commute.

In summary, then, we have the following:

Proposition 5.2. Let C,,i=1,...,3g—3 be the curves defined by the boundary circles
of a trinion decomposition for X°. Then there exist 3g—3 functions h; defined by
h;=kOc/n:F,—[0,k]. The Hamiltonian flow of h; is defined on the open dense
subset U; C.V it has period 1 if C; is a nonseparating curve, and period 1/2 if C;isa
separating curve. The functions h,, h; Poisson commute on U;nU ;. F urthermore the
corresponding Hamiltonian vector fields are linearly mdependent whenever the
inequalities (3.4) corresponding to all trinions are strict inequalities. []

5.2. The Period Lattice in &,

We have seen above that the Bohr-Sommerfeld set is characterized by integer
values of a set of functions generating the period lattice. We must, however, point
out a subtlety arising in finding such a set of generators. Certainly, our functions
h;=k0,/m are in the lattice, but they do not form a set of generators. There is an
additional set of flows of period 1, namely those given by the functions

8y =i, +hiyoy Fhisy)/2, yel, (5.6

and defined on the dense open subset U,= =U;,(»pnUs»n Uiy of &,; here i(y),
i5(p), is(y) label the boundary components of a trinion D,. To see that the flows
associated to these functions have period 1, it will be necessary to understand the
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relationship between the Goldman flows and the description of the fibration in
Sect. 2.3 in terms of connections over trinions.

Proposition 5.3. Let A be a flat a.t.d. connection on 2? whose holonomy (starting at
a point (*,1)€ 29 x G ) is a representation ¢ : w,(2%, *)— G (where * is the basepoint
of the fundamental group). Let C; be a boundary circle in a trinion decomposition,
and suppose that the holonomy angle 6; corresponding to ¢ is in (0, ). Then the map
S'— %, given by the Goldman twist flow Efi(@) in the fibre n~'(x) containing the
conjugacy class of ¢ is the same as the map v, embedding S* as the copy of T

corresponding to the boundary circle C; (given in Theorem 2.5): that is,

EtCJ((b) = tPA(Tj(t)) s
where t(t)e[] H; is given by

Tn=1  (+)),
(Tj(t))j — e2n2it .

Proof. For simplicity we treat the case when the boundary loop C; is nonseparat-
ing. The proof when C; is separating is similar.

The Goldman flow (5.4) is given in terms of the evolution in ¢ of the holonomy
(around certain curves in X2?) of a one parameter family of flat connections with
parameter t. In accordance with Sect. 2.3, we consider the fibre 7~ (x) to consist of
the family of gauge equivalence classes of flat connections A, corresponding (under
the map y , of Theorem 2.5) to elements 7 € [ H,. We examine the evolution in ¢ of

1

the holonomies of this family of flat connections as one component t; [given by
e?™e U(1)=T] varies in S*.

Let f be a curve that intersects C; once transversely. We want to compute the
holonomy of a connection A, around . We take the basepoint to be a point * near
C; inside the trinion y,, as in Fig. 2. As shown in the figure, the curve f decomposes
as

B=lyohyo...oh,

where the /;, i=1,...,n, are arcs each of which lies within one trinion y;. The
parallel transport with respect to the flat connection A(6;,(y), 0,,(7), 0,,(y)) along a
(non-closed) curve A within a trinion y is well-defined as an element in G, since we

Fig. 2. The closed curve § is decomposed into arcs 4; lying wholly in the trinion y;, as in the proof
of Proposition 5.3
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are working with a fixed trivialization of the principal bundle G x 2?— X9, With
respect to this choice of trivialization, parallel transport along an arc A, using the
connection A corresponds to left multiplication by an element g, e G. Likewise,
parallel transport along 4, using A, is left multiplication by g,t; , where C; is the
boundary circle shared by y, and y,_,.

Since

B=ﬂ.1 02'20 e OA",
we have
holy 4. =9,7;, ... 1,017, - (5.7

We also see that if « is a closed loop not intersecting C;= C;,, then hol, 4, is given
by an expression similar to (5.7), but one which does not involve 7; =7;. So a
variation in 7; does not change the holonomy around such loops a.

The set of possible t; is the image w ,(1 x ... x H;x ... x 1) of the group H;=T

under y:[[H;>n~ !(x) (see Theorem 2.5). We may now compare (5.7) with the

formula (5.4J) for the Goldman flow, to see that the image of H;indeed corresponds

to the closed loop given by the Goldman twist flow 2% for 0<t<1/n. O

5.3. The Fundamental Group of the Fibre

We now confirm that

Proposition 5.4. Let xeBS™. The fundamental group of the fibre n~'(x) is
generated by the closed loops given by the period 1 flows of h; and g,.

(Recall By was defined at the end of Sect. 3.)

Proof. We have shown that ™ !(x) is isomorphic to T3¢~ 3/(Z,)?* 2 (Proposition
3.7). This is the same as R3¢ ~3/4, where A is the lattice generated by the usual basis
vectors e; (i=1,...,3g—3) for R** 73 and by f,=3(e;,,) + €irep) +€is) Y. We
have already (Proposition 5.3) identified the loop te; (0=<t<1) with the loop
arising from the time 1 Hamiltonian flow of 4;. Thus by definition of
8, =13, + iy + iy, the loop tf, arises from the time 1 Hamiltonian flow

of g,.

To find the Bohr-Sommerfeld orbits it suffices to verify that there are points
x;, X, € B, for which we can construct covariant constant sections of L* over the
loops in # ™ (x;), #~ (x,) arising from the Hamiltonian flows of ; and g,, and for
which the functions h; and g, take integral values on n~'(x;) and 7~ '(x,),
respectively. This will be the result of Proposition 7.1. Once we have achieved that
result, we see that the hypotheses of Theorem 4.4 are satisfied, and hence that the
Bohr-Sommerfeld points are those points in B, for which h; and g, have integer
values. In other words, we have

Proposition 5.5. Let x be a point in BS ™. Then x is a Bohr-Sommerfeld point if and
only if, for any yen™(x),
h{y)=leZ, (5.8)
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where I, is even if C; is a separating loop; and

&) =3{ln+lun i} €Z (5:9
for all boundary circles C; and trinions D,

Finally, we shall need the following observation characterizing the subspace 7,
of reducible connections:

Proposition 5.6. Suppose ye %, (as defined at the end of Sect.2.2). Then y
corresponds to a conjugacy class of reducible representations of ©,(2%) if and only if,
for each trinion D,, one of Eqs. (3.5) is satisfied.

Proof. The “only if” part is obvious. For the “if ” part, Egs. (3.5) guarantee that the
flat connection A, representing y on the trinion D, is abelian, i.., it takes valuesin t.
Moreover, as none of the 0; are 0 or 7, the stabilizer groups H; from Sect. 2.3 are
copies of T. Thus also the gauge transformations ¢, from Sect. 2.3 may be chosen to
have values in T. Hence the restrictions of the flat connection 4, to the trinions D,,

AJ,=A", all take values in t: in other words, A4, is reducible. O

Corollary 5.7. For ye 7,n%;, the Hamiltonian flow of h; at y preserves the
subspace I, of reducible connections.

Proof. 7 ,is defined in a neighbourhood of y by the vanishing of a set of functions
f»v=1,...,2g—2, wherefor each y, either f,is 0;,(,) — 0, + 0;,,) (or a permutation
of iy,iy i3 in this), or else f,=0; ) +0,,,+0;,,—2n. But then h; Poisson
commutes with all the f,, so that its Hamiltonian flow preserves thelr Zero
locus 7,. [0

6. Singular Bohr-Sommerfeld Fibres

In this section we consider those nongeneric points x € &, where some of the
Hamiltonian flows degenerate. In this case the fibres containing x may not be tori,
but by Theorem 2.5 have the form of products of tori with factors of G, G/Z(G), and
G/T. In this section we study the holonomy of the line bundle #* on these fibres
and show that naive extrapolation of the Bohr-Sommerfeld rule derived for fibres
which are tori suffices to characterize the singular Bohr-Sommerfeld fibres also.

The fibres may degenerate for two reasons. First, if some 6; take values 0 or 7 on
a fibre, the Hamiltonian flow Z¢ is not defined on that ﬁbre This is because the
functlon 0; is continuous but not smooth at these points. We may see this
behaviour explicitly from the fact that Goldman’s function F,: G—g defined by
(5.1) is constant with the value +diag(i/2, =i/2) on each component of T—{+1}
but takes a different value on each maximal torus, determined by the requirement
that the function F, must be equivariant under the action of G by conjugation. It
thus cannot be defined on the central elements, which belong to every maximal
torus.

Second, even if all the flows are defined, there will be some values of 6, for which
the flows degenerate, i.e., the 3g — 3 Hamiltonian vector fields are no longer linearly
independent. This phenomenon is well known in the study of global actions of the
torus T™ on a compact symplectic manifold M of dimension 2m [1, 5]. In this
situation, the image of the moment map is a convex polyhedron cut out by
hyperplanes in R™, and the flows degenerate on the boundary: the number of
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linear constraints satisfied by the flows in the fibre over peIR™ is equal to the
number of boundary hyperplanes containing p. (This follows from Proposition 3.3
above.) Fibres where only this type of degeneration occurs will be tori of
dimension lower than m.

In our case, at those points lying in the domains of definition of all the
Hamiltonian flows [that is, where all the 6, lie in (0, 7)] the boundary hyperplanes
are given by the equalities corresponding to the inequalities (3.4). They correspond
to trinions where the flat connection restricts to an abelian connection.

Because of these degenerations, we do not have a polarization in the strict sense,
since the fibres of a genuine polarization should all be smooth manifolds and
indeed be tori whose dimension is half the dimension of the symplectic manifold. A
similar difficulty was encountered by the authors of [6] in quantizing flag
manifolds: to get the correct dimension for the Hilbert space arising from
quantization, they found they had to include certain degenerate orbits correspond-
ing to integer values of the action variables. In the present case, we shall also
include such orbits in our count of the Bohr-Sommerfeld fibres.

Justification for the inclusion of these extra fibres is provided by the fact that
these degenerate fibres of the polarization do admit a global covariant constant
section of £*. Although some Hamiltonian flows degenerate or are not defined, the
fundamental group of the fibre degenerates correspondingly. Thus, for fibres of
this type where the action variables take integer values, the holonomy represent-
ation of the connection on #* still sends the entire fundamental group of the
fibre to 1.

An important example is the fibre consisting of those points x where 0,(x)=...
=03, 3(x)=0, which corresponds to those flat connections on Z¢ which extend as
flat connections over a handlebody bounding the surface 29. This fibre is
“maximally degenerate” in that it is not in the domain of definition of any of our
Hamiltonian flows. However, we can explicitly construct a global covariant
constant section over this fibre using the Chern-Simons functional, as described
below in Sect. 7. This fibre will be of central importance in the companion
paper [9].

Our result is

Theorem 6.1. Let xeB,.
(@) The first homology group (with coefficients inZ) of the fibre n~'(x) is given by

H,(n Y(x)~Z°DZ;.

Here, the free summand may be taken to be generated by the trajectories of the
H am(lgo)man flows of those functions h; for which x € (U ) and of those g, for which
Xemn

(b) If in addition hy(x) and g.(x) are integral for all i and y, with h(x) an even integer
whenever C; is a separating loop (as in Proposition 5.5), the image of the torsion
subgroup Z5 vanishes in the holonomy representation of m,(n~'(x)) corresponding to
the line bundle F*,

Remark. Because the holonomy of a line bundle is a homomorphism from the
fundamental group into U(1), the holonomy representation of the fundamental
group reduces to a representation of the first homology group of the fibre. It will
therefore suffice to study the image in this representation of generators of the first
homology group in order to verify condition 1’ of Theorem 4.4. '



Bohr-Sommerfeld Orbits and the Verlinde Dimension Formula 615

Proof of Theorem 6.1. We shall first prove the result for the case when no
boundary circles C; have the corresponding boundary holonomies 6; equal to 0 or
7; we shall then reduce the general case to this case.

Proposition 6.2. The conclusion of Theorem 6.1 is true for fibres n~1(x), where
X€B;.

Proof. If x e n(U,) for all i, we obtain the result by Theorem 2.5. Recall that in Sect.
4.2, flat connections A, corresponding to points in the fibre above x were formed by
gluing together flat connections A(6;,,)(x), 0;,,)(x), 0;,,(x))=A4, on trinions D,
along the boundary components of the trinions. We must simply extend the
construction given in Theorem 2.5 to allow for the possibility that on some trinion
D,, the flat connection A, is reducible: this happens whenever (6;,,)(x), 6;,,(x),
0;,»(x)) is not an interior triple, i.e., whenever one of the inequalities (3.4) becomes
anequality. Then the stabilizer of A4, is T. [Since we are assuming all 0,(x) € (0, n), 4,
cannot correspond to a representation into Z,.]

Suppose there are a trinions for which the flat connection A, has stabilizer T. By
Theorem 2.5, the fibre n ™ !(x) is then T3¢ 3/{T* x (Z,)*~ >~ “}, where the action of
T*x(Z,)**~2"“1is by

7,2 P, TP -
Here, 7;e T denotes an element in the i™ copy of T in T3¢~ 3 the copy
corresponding to the boundary circle C;. Likewise, @, ?,; denote the elements
of T or Z, in T*x(Z,)**"27° where y(i),y'(i) designate the two trinions
bounding C;.
The stabilizer group of the action of T x(Z,)**~2* on T3¢~ 3 is thus

in other words, it is T if the flat connections on all trinions are abelian, and Z(G)
otherwise. Thus the fundamental group of the fibre is Z**~3~°*! if the flat
connections on all trinions are abelian, and Z39~ 3¢ otherwise.

By Proposition 5.3, the Hamiltonian flow of the function h; was identified with
the action of T on T3¢~ 3 given by multiplication on the i'® copy of T'in T3¢~ 3, The
number of linearly independent Hamiltonian vector fields from the torus action is
also given by 3g—3 —a+1 (resp. 3g —3 —a) under the above hypotheses. For one
begins with 3g —3 vector fields, which are subject to one linear constraint from
each trinion whose associated flat connection is abelian. This follows from
Proposition 3.3: indeed, Propositions 3.3 and 3.4 say that the linear equations
satisfied by the vector fields are the same as those (3.5) satisfied by the coordinates
0,. If the number of constraints a is less than 2g — 2, then the constraints are linearly
independent: indeed, by considering the trivalent graph one sees that each
additional constraint equation introduces a new coordinate 6; not involved in the
previous equations. However, if a=2g—2 (ie., if the flat connections on all
trinions are abelian), then since the flat connections 4, being glued have structure
group T, the global connections we obtain by gluing are T connections (see
Proposition 5.6). Now the flows of the Hamiltonian functions h; preserve the
subspace J, of reducible connections (see Corollary 5.7). In fact, they give g
linearly independent Hamiltonian vector fields, so the number of linearly
independent vector fields is indeed g=3g—3 —(a—1) in this case, as needed. []

In the following, we shall find a relation between fibres in the polarization of &,
where certain flows degenerate and fibres of moduli spaces corresponding to
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surfaces (with boundary) of lower genus. To keep track of the corresponding
coordinates 6, it will be helpful to introduce the following

Definition 6.3. Let X9 be a surface (possibly with several boundary components)
equipped with a trinion decomposition. A labelling of the trinion decomposition
by holonomy angles 6 is a set of elements 6;€ [0, 7] associated to each boundary
circle C; in the trinion decomposition (including the components of 02¥).

If 27 is a closed surface, a point x e B, with coordinates (x) gives rise to a
labelling of a trinion decomposition by holonomy angles ¢(x).

We now reduce the proof of Theorem 6.1 to the case proved above, where
04(x)e(0,n). To do so we relate the fibre of our polarization above a point where
some of the 6,(x) are 0 or @ to a product of fibres of polarizations of lower genus
surfaces. These surfaces X, are obtained from 2¢ by cutting 2¢ along those
boundary circles C; marked 0 or 7. In doing this we will use the following notation:

Let v:Hom(n,(29), G)—%, denote the BI‘O]CCUOH to the quotient under the
%onjugation action, and let the function 6;: Hom(n,(29), G)—IR be defined by

i— 9 i°V.
1. X,CX%is a surface with several boundary components C{”, ¢, is a map from the
set of boundary components of X, to {0,1}, and the boundary component C{ is
labelled by the holonomy angle ne,(j). We also define Hom“")(nl(za) G)
={eeHom(n,(Z,), G) | o([C{’])=(—1)* for all j}.
2. Let#, ,: Hom®(n,(Z,), G)—»[O ] be the function given by the holonomy angle
around the boundary circle C,.
3. Let H® denote the subset of representations in Hom®(r,(2,), G) for which all
of the functions &, , corresponding to boundary circles in the interior of X, take
values in (0, ).
4. Let B® denote the base space corresponding to H®; that is, B¢ is the image
of H¢ under the map (f);c¢, corresponding to the subset %,CF corre-
sponding to those boundary circles C; which are in Z,.
5. Let v¢):He)>H)/G and ¥ :H¢/G—B¢ be the natural projection
maps.
6. Let x, € B be a point whose coordinates are the values of the functions f{(x,)
correspondmg to the boundary circles C;€%,.
7. Let H®[x,] denote (n& o v¥=)~!(x, )CH““’

Now all of the results developed in Sects. 2, 3, and 5 about Hamiltonian flows
have a straightforward generalization to moduli spaces of representations of
fundamental groups of surfaces with boundary, of the type considered above. This
can be seen directly as in [10]. Alternatively, we note that the spaces H¢[x,], H¢*
and their quotients by the action of G are all subspaces of the spaces
Hom(r,(2?), G) and its quotient %, and that these subspaces are preserved by the
flows corresponding to the functlons h; and g,. Thus these flows give rise to flows
on H®[x,], H® and their quotients by G, which can in fact be seen to correspond
tothe Hamrltoman flows of the functions constructed from the 7, ;. We will refer to
these flows, by abuse of language, as the flows defined by the functions h;and g,;
note that when C; is in the interior of X, the flow corresponding to h; is defined
everywhere on H®J[x_], H® and their quotients by G.

Lemma 64. Let C; be a nonseparating boundary curve in a surface X, with N
boundary components, and consider 7, ;: Hom®(n,(Z,), G)—[0,7]. If e= 0 1 then

i (em)=G x Hom®?(n,(24), G), where Z is the surface formed by cutting X, along
C,, and the map &, is obtained from the map ¢, by extending it so it sends the two new
boundary circles to e.
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Proof. Without loss of generality the curve C; may be assumed to be the generator
a, in the standard set of generators a; b, d; for n,(X,), satisfying the relation

[Tabia; 'b; ')d, ... dy=1.Let ¢ be a representation of ,(Z,) in G. Then if g(a,) is

central, the condition that ¢ be a representation of 7,(X,) reduces to the condition
Q((H aibiai_lbi_l>d1...dN> =1. D
i+l

Suppose, on the other hand, that C; is a boundary circle in a trinion
decomposition of Z,, which separates 2, into surfaces 2;, and Xy, of genus g, and
g, with N, +1 (resp. N, +1) boundary components. Denote by ¢ the element of
n,(Z,) corresponding to C;. Then

(2D =m,(Zp,) *5m1(Z4,),

where 7,(X ) have standard generators af’, ...,al, b0, ..., b3, d¥, ...,d), 5, and the
amalgamated product is defined by taking the free group on these generators and
imposing the relations?

(a5 057 .. )=,
i

(T 6R) ) d .. =07

J

Thus we have

Lemma 6.5. Suppose ¢=0,1 and suppose C; is a separating boundary loop in X,,.
Then 8 }(em)={0 e Hom®(,(Z,), G): o(8)=(—1)} satisfies

8, }(em)=Hom®"(n,(Z,,), G) x Hom®*(m,(2,,), G),

where &4, 65, are obtained from the restrictions of the map ¢, to the subsets of
boundary components of X, in Z,,%,,, by extending them to send C; to .

Remark. The identifications given in the previous two lemmas equate the values of
the functions &, on elements of Hom(r,(2?), G) with the values of the functions 7, ,

on corresponding elements of Hom®(rn,(Z,), G): thus the fibre 8 }(y,)
!

CHom®(z,(X,), G) (for any values y,) is identified with the corresponding
fibres in Hom®(x,(Z;,), G) x Hom®#)(n,(X;,), G) (if C; is separating), or in
G x Hom®(n,(X;), G) (if C; is nonseparating).

For any loop C;C 29, we obtain a new (possibly disconnected) surface by cutting
29 along C;. We may cut X9 along all boundary circles C; for which 6,(x)=0 or
0{(x)==, and obtain a collection of surfaces X,, each with several boundary
components, and each equipped with a trinion decomposition labelled by
holonomy angles. All boundary circles C; in the interior of X, are labelled by
holonomy angles 6;€(0, n), while all boundary circles C; in 0%, are labelled by
0,=0or 0,=m.

! Thus, bly repeated application of Lemmas 6.4 and 6.5, we therefore relate our
fibre (z o v) ~ *(x) CHom(=,(Z?), G) to subspaces of Hom(r,(Z,), G), where each X, is
a surface with several boundary components. Each X, is equipped with a trinion
decomposition labelled by holonomy angles, with all boundary circles C; in the
interior of X, labelled by holonomy angles 6;€(0, ), and for which all boundary

3 Here we have chosen a basepoint in C;
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circles C; in 0%, are labelled with 6;=0 or 6;=n. Thus, we relate our fibre
(mov)~ 1(x)CHom(17:1(27"), G) to the product of a number of fibres (7 o v&) ~1(x,)
CHom®(n,(X,), G), where X, are surfaces with trinion decompositions labelled by
holonomy angles.

Summarizing, we have shown

Proposition 6.6. Let 29 be a surface of genus g, and let #' be an arbitrary subset of #.
Let £¢=(&)icp:# —={0,1}, and let Hom%(n,(2?), G)CHom(r,(Z¢), G) denote the
space of representations of n,(2?) into G sending the boundary loops C;, i€ #' (and
only these), to (—1)*= +1. This space can be written in terms of representation
spaces of surfaces of lower genus, as follows:

1. The representation space Hom#(rn,(2?), G) decomposes into a product of repres-
entation spaces of lower genus surfaces:

N
Hom(n,(29),G)= [] H{ xG™ for some n,eZ, n,=0.
a=1

2. The surfaces X, are equipped with trinion decompositions labelled by holonomy
angles, and there are functions 8, ;: H®®—(0, ) ( for all boundary circles C, in the
interior of X,) which generate Hamiltonian flows at all points on H/G. Under the
identification given in (1), there functions 8, , agree with the functions 0, defined on
Hom(n(2?), G).

3. Under the above identification of the coordinates on Hom?(n,(29), G) with those
on lower genus surfaces, the fibres of the map nov decompose into fibres of the
corresponding maps on lower genus surfaces, as in part (1): ie., (mov)” }(x)
= [T(HE[x,] x G™)

The surface X, has a trinion decomposition labelled by holonomy angles, and
there are no boundary circles (in the interior of X,) labelled 0 or n: by Proposition
6.2 (and its analog for a surface with several boundary components labelled 0 or =)
we thus also have that

Proposition 6.7. The first homology group (with coefficients in Z) of the fibre
H®)[x,1/G is generated by the trajectories of the Hamiltonian flows of those
functions h; where C, is in the interior of X, and those g, where D, is in the interior
of Z,.

In completing the proof of Theorem 6.1, the following observation, which
follows from Proposition 5.6, will be useful:

Lemma 6.8. If H®I[x,] contains any abelian representations, then it consists
entirely of abelian representations.

It will be helpful also to have the following explicit characterization of the space
HY9[x,]:

Lemma 6.9. The space H¢*[x,] is of one of the following types:

(@) If H [ x,] consists of representations into Z,, then X, is a trinion (with all three
boundary circles labelled by holonomy angles 0 or ) and H¢[x,] is a point.

(b) If H®[x,] consists of reducible representations which are not representations
into Z,, then H®[x,] is of the form G/T x T™,

(¢) If H®I[x,] consists of irreducible representations, then H®[x,] is of the form
G/Z,x T,
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Proof. Part (a) follows immediately from the definition of H®<[x,].

(b) In this case, we have the fibration G/T—H%[x,]-H%[x,]/G. Here
H®)[x,]/G is a torus (by Theorem 2.5). We may show this fibration is trivial by
exhibiting a section of it, i.e., a G equivariant map H¢[x,]—G/T. Such a map is
given by the restriction map H®[x,]—»Hom(rn,(D),G) to some trinion DCZX,
chosen so that the representations in H®[x,] do not restrict on 7,(D) to
representations into Z,: the image of this restriction map forms one orbit G/T of
the action of G on Hom(=,(D), G) by conjugation.

(c) The proof is the same as in (b) except that G/T is replaced by G/Z,, and D is a
trinion such that the representations in H®[x,] restrict on =,(D) to irreducible
representations. []

We now use the decomposition theorem of Proposition 6.6 to complete the
proof of Theorem 6.1. We do this by showing that certain maps induce
isomorphisms on the free part of the integer homology of the spaces we consider.
There are four such maps. The first map is simply the projection v[x]: (m o v) ™ *(x)
-7~ !(x). The second map is given by the identification of Proposition 6.6: this is a
homeomorphism

m[x]:(mov)”(x)—> ll'_vl H®)[x,]x G™.

The third map is the projection map P,[x]: H H¢[x,] x G"™=— ]'[ H¢)[x,].
Finally, we consider the projection map v‘s"’[x ] H Calx, ]—»H‘““)[xa]/G

Proposition 6.10. The maps v[x], m[x], P,[x], and v¢<[x,] induce isomorphisms on
the free parts of homology groups with coefficients in Z. In particular,

1 (x) =~ DH:(H x.)/6),

where the isomorphism carries the trajectories of the flows of the Hamiltonian
functions h; and g, on n~'(x) (where xen(U,) and x e n(U,), respectively) to their
counterpartsin H(”“’[xa] /G for appropriate a. ( Here, the homology groups H, are of
the form Z*®Z5, as in the statement of Theorem 6.1: we denote by H' the Z°
summand.)

Proposition 6.10, taken along with the identification (Proposition 6.7) of the
homology of the fibres H®[x,]/G with the trajectories of the flows h; and g,,
allows us to identify the free parts of the first homology of the fibres in Theorem 6.1
as also generated by these trajectories. The torsion in H,(n ~*(x)) will be dealt with
in Proposition 6.12.

Proof of Proposition 6.10. The map m[x] is a homeomorphism by Proposition
6.6; whereas P,[x] induces an isomorphism on H, since G is simply connected.
The fact that v[x] and v¢+[x,] induce isomorphisms on the free parts of H, will
follow by an argument using path lifting and the exact homotopy sequence of a
fibration.* We may restrict our attention to the case where none of the spaces
H®[x,] that appear are of the type givenin Lemma 6.9(a), since these H*[x,] are

* The spaces in question all have abelian fundamental groups, as one sees from Lemma 6.9: thus
exact homotopy sequences yield the results (6.1) and (6.2) as stated for their first homology groups
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just points. We must then show that the maps

Ve[ x,], : Hy(H[x,])~Hy (H[x,]/G), (6.1)
and v[x1y: Hi((mov) ' (x) > Hy(n ™ !(x)) (6.2)

are isomorphisms.
First we prove statement (6.1). This follows from the fibration

G/S ——— H®[x,] ——"1 H&[x,1/G, (63)
where S is the stabilizer of the conjugation action of G on H*[x,]. By Lemma 6.8,
S is either Z, or T globally; thus n,(G/S)=Z, or 1, so H,(H®[x,],Z)
=H,(H¢’[x,]/G,Z) up to factors of Z,.
Now we turn to the proof of (6.2). We introduce the notation [see item (3) of
Proposition 6.6]
Y=(mov)~'(0)= [JH [x,] x G (6.4)

The statement (6.2) follows from consideration of the map Y -, Y/G given by
the quotient of Y by the conjugation action of G on Y. The inverse image
v[x]1~'(v[x](p))is G/S,, where S, is the stabilizer at p of the conjugation action on

Y. Unless all H®)[x,] consist of reducible connections, S, is Z,: in this case

) Y/G is a fibration and (6.2) follows from the associated exact homotopy

sequence. .

We thus have reduced the proof of (6.2) to the case where our fibre is such that
all H{”[x,] consist of reducible connections. In this situation, the group S,
depends on the point pe Y: S, is still Z, unless pe Y corresponds to a reducible
connection on X?, in which case S, = T. Thus the map v[x] is not a fibration in this
case. Let us define Y, ., ={pe Y:S,=7,}. Since the map v[x] restricted to Y., is a
fibration, the statement (6.2) will follow from the homotopy exact sequence of
v[x]: Y~ Y,,/G if we can show n,(Y)=mn,(Y,,) and 7,(Y/G)=m(Y,/G). To
check this, we need to prove

Lemma 6.11. Let Y= [] H¥[x,] x G™, where all the H[x,] consist of reducible
connections. Then:
(a) Everyloopo:S'—Y is homotopicto aloop o’ :S'— Y, (and likewise with Y and
Y, replaced by Y/G and Y,,/G).
(b) If fy, f>: 8" > Y,  are homotopic as maps S* — Y then they are homotopic as maps
S'>Y,, (and likewise with Y and Y., replaced by Y/G and Y,./G).

Now under the assumption that H®[x,] consists of reducible connections,
we have [from Lemma 6.9(b)]

H¢[x,]=T"xG|T. 6.5)
Hence Y becomes
Y=]][T"xG/T x G"=, (6.6)

where G acts on T™= trivially, on G/T by left multiplication, and on G™ by
conjugation. Thus we have

N N
Y/G= [] T™x < Il G/TxG"ﬂ>/G
a=1 p=1
=[1T"x(G/T)" "' xG*)/T, (6.7)
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where A=Y n, and T acts on G by conjugation while it acts on G/T by left

@
multiplication.

To prove Lemma 6.11 for Y, note from (6.6) that Y is a smooth manifold, so the
lemma follows provided the codimension of Y—Y,,, is =3 (see [7, Propositions
VIL.12.4 and VIL.12.6]). This is the case except in a few special cases (specifically,
Y=G x H®[x,] or H®[x,] x H§?[x,], where H[x,], H§?[x,] consist entirely
of abelian representations, or Y=G x G). For these special cases, (6.2) can be
checked directly.

To prove Lemma 6.11 for Y/G, we need to modify the argument of [7, VIL.12]
so it applies in this case, since Y/G is not a smooth manifold; for this, we shall need
a more careful analysis of Y/G near (Y—Y,.,)/G. Define Z=(G/T)"~ ! x G*: then
either T acts with stabilizer Z, at ze Z, or z is a fixed point of the T action. The
space Z/T is smooth wherever T acts with stabilizer Z,: to find a local model for
neighbourhoods in Z/T near the fixed points of the T action, we look at the
tangent space to Z at a point z in the manifold of fixed points W¥ "1 x T4CZ
[where W= N(T)/T denotes the Weyl group]. We then have the identification

TZ|,=RA@C"~1*4, (6.8)

where e e T acts trivially on R, and on € by multiplication by e?®.
By considering this linear action of T on TZ|,, we see that a local model for a
neighbourhood of [z] in Z/T is

0=TZ|,/T=RAx C(CPN~2*4), (6.9)

where C(CPY~2+*4)=CP"~2*4x [0, 0)/(p,0)~(p’,0) is the cone on CP¥~2%4,
We are now ready to prove Lemma 6.11(a) for Y/G. We choose the basepoint
for m,(Y/G) to lie in the regular locus [] T™ x Z, /T, where Z,,, is the set of points

in Z, where the stabilizer of the T ;ction is Z,. We must show that any loop
0:S'—>Z/T can be deformed into Z, .,/ T keeping the basepoint fixed: then Lemma
6.11(a) will follow from the exact homotopy sequence of the fibration

Yoeg T Yoo/ G=[] T™ X Z,,/ T.

It suffices to prove (cf. [7, Proposition VIL.12.4]) that a path ¢ in Z/T with
0(0)=y,, 6(1)=y, € Z, /T lying entirely in an open neighbourhood of a point in
Z|T—Z,.,/T may be deformed (keeping y,, y, fixed) to a path ¢’ in Z,,,/T. But we
have seen in (6.9) that such a neighbourhood @ is of the form
O=IR*x C(CPY~2*4), which is in particular contractible. We thus denote our
path by 6=(0,,0,), where a,:[0,1]->IR“ and ¢,:[0,1]—C(CP"~2*4), Further,
there is a path ¢’ joining y, to y; and lying entirely within ONnZ,,/T. (We ob-
tain this path by projecting y, and y; on CPY~2*4  and joining their images
under the projection by a path ¢ in CPY~2*4, Then, for an appropriate function
7:[0,1]—(0, 00), the desired path is given by 6%, = (g, 7): [0, 1] > CP" 24 x (0, 0).
The path ¢'=(0,,0%) is homotopic to ¢ because ¢ is contractible.) This proves
Lemma 6.11(a).

To prove Lemma 6.11(b) for Y/G, we recall that given an open cover of a
topological space X, two homotopic paths in X are homotopic by a sequence of
homotopies each of which is the identity outside one of the sets in the open cover.
Thus we may assume fi, f,:[0,1]1->0NZ,.,. We may project fiof, ' onto
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CP"~2*4 and then the existence of the desired homotopy in Z, /T follows, by an
argument similar to that given above, because CPY~2*4is simply connected. This
completes the proof of (6.2) and hence of Proposition 6.10. []

We now show that the Z, summands that appeared in Proposition 6.10 vanish
in the holonomy representation. More precisely, we have

Proposition 6.12. Let x € B, satisfy (5.8) and (5.9). Let £ € H (n ™ '(x)) be an element
of the torsion subgroup of H,(n~'(x)); that is, 26=0. Then the holonomy
representation of H,(n~'(x)) (defined by the connection V on ¥*) takes & to 1.

Proof. We must recall how the factors of Z, appear. These factors arise for fibres
corresponding to labelled trinion decompositions of the surface X?, where the
collection of curves C; labelled with ;=0 or §,== separates X? into two (not
necessarily connected) surfaces X, X,. In our earlier notation, X, is one of the 2,
and X, is 29— ZX,. An element in this fibre can be represented by a flat a.t.d.
connection 4 on 27, which give rise to flat connections 4, = 4|5, and A, = A|;, on
X, and X,. A loop generating a nonzero torsion element of H,(n~*(x)) is then
represented by a path A, of flat a.t.d. connections on X9, where

Als, =A%, Als,=4,, (6.10)

and where {,=diag(e™, e ™) (0<t<1)is a path of (constant) gauge transforma-
tions from 1 to —1. If 2?=2X,0%,, then the path 4, is a closed loop in 7. The
connection form for the trivial line bundle &/ x €— 2/, which descends to the line
bundle ¥ — ¥, is given by the one form 6 which assigns to an element a€ T.o/| , the
number

0, (a)= Zl; Ej'g Tr(AAa) (see [11, p. 412]).

1
We then must check that the integral of the connection form | k6 ,, (%) dt is
0

an integer multiple of 27i, since the exponential of this integral is the parallel
transport in #* along the path A. This follows by explicit calculation: we have

[ Tr<A,/\ d—A—')dt
59 1e[0,1] dt

_ _,d¢, ., d
=) TG0~ A S a
£y te[0,1] dt dt
=2{ Tr(AfC,“%) dt
2y te[0,1] dt
= —2n | Tr((diag(i, —i))dA4,)
2
= —2x | Tr((diag(i, —i))4,)=4nn, 6.11)
0Zy
where n is the number of boundary circles C; in 6, for which 6;=n. Thus
1
(KO 4, (%‘:—’) dt=inkn. But it will follow from Lemma 8.2 that n is even when k is
0

odd. This completes the proof. [J
This completes the proof of Theorem 6.1. [
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We now apply Theorem 6.1 to extend the characterization of the Bohr-
Sommerfeld set given in Proposition 5.5 to the singular fibres. Once we have found
a point for which there is a covariant constant section over the loop corresponding
to the Hamiltonian flow (which will be dealt with in Sect. 7), we shall be able to see
(as we did in the case of nonsingular fibres, Proposition 5.5) that the hypotheses of
Theorem 4.4 are satisfied, and hence to conclude:

Proposition 6.13. Let x € B,— BS™. Then x is a Bohr-Sommerfeld point if and only
if Egs. (5.8), (5.9) are satisfied for all boundary circles C; and trinions D,.

Proof. First, if these conditions are satisfied then x is a Bohr-Sommerfeld point:
for the holonomy representation of the fundamental group of =~ (x) is generated
by the trajectories of the Hamiltonian flows corresponding to a subset of the h; and
g,, and by certain Z, factors, and by Proposition 6.12, the Z, factors vanish in the
holonomy representation given by #*. ’

On the other hand, if x is a Bohr-Sommerfeld point then one can verify [as
needed for condition (3) of Theorem 4.4] that (5.8) and (5.9) are satisfied, for all i for
which x e n(U), for all y for which x e n(U,), and in fact for alliand y. For x e n(U ) if
0(x) € (0, m); likewise x e m(U.,) if 0, ,\(x) € (0, @) for all the boundary circles C; (,, of
the trinion D,. Thus if x ¢ n(U,) for some i, h(x) must be integral, and one of the
following possibilities must occur:

0:,(¥)=0, 0;,(x)=0;,,\(x) € {0, 7},
0:,n(¥) =T, 0;,0(x) =7 — 0,,,)(x) ¢ {0, 7},
0:, (%) = 0;,(X) = 0;,)(x) =0,

0i,(n(X) =0, 0, (x) =0;,(x) =7

Thus we see that (5.9) is satisfied in all cases. The fact that hy(x) is an even integer if
C, is a separating loop will then follow from Lemma 8.2. [J

(6.12)

7. Normalization of the Action Variables via Branched Covers

The objective of this section is to establish the following result:

Proposition 7.1. There exist points x;e m(U;)CB, (resp. x,en(U,)) such that

1. The function h; (resp. g,) takes an integer value on the fibre n~'(x,) (resp.
= 1(x,)).

2. There exists a covariant constant section of ¥* along one orbit of the
Hamiltonian flow of h; (resp. g,) in n~(x;) (resp. n‘l(xy) ).

Proposition 7.1 plays an important part in the proof of Propositions 5.5 and
6.13, since the a priori Bohr-Sommerfeld points constructed in Proposition 7.1
allow the moduli space case considered in this paper to be fit into the framework of
condition (2) of Theorem 4.4. Thus the construction of these few Bohr-Sommerfeld
points allow us to characterize the entire Bohr-Sommerfeld set.

To find the a priori Bohr-Sommerfeld points, we employ constructions from
Chern-Simons gauge theory. These constructions will enable us to construct
explicit covariant constant sections of the line bundle #* restricted to fibres
n~!(x;), n~ !(x,), for which the action variables h; and g, assume integer values as in
Eqgs. (5.8), (5.9). Chern-Simons gauge theory enters the picture since the fibres we
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work with are related to moduli spaces of flat connections on handlebodies. On the
fibre corresponding to such a moduli space, the line bundle % has a global
covariant constant section, constructed from the Chern-Simons invariant in [9].
The actual fibres we use correspond to handlebodies which are k-fold branched
covers of the handlebody bounding 2?; the corresponding covariant constant
section descends to a section of #* on the fibre. Thus we see an intimate
connection between the holonomy of the flat connections in a fibre (related to the
branching index) and the power of the line bundle possessing global covariant
constant sections on such a fibre.

The present section of the paper is the only one that employs Chern-Simons
gauge theory: those readers who are willing to accept on faith that one can find
suitable points x; and x, will find that nothing else in the paper depends on the
arguments presented here.

7.1. Results on the Chern-Simons Cocycle

We recall from [11] the following construction of the prequantum line bundle ¥
over &,. As mentioned in Sect. 2, the moduli space is given by %, = «/;/9, the space
of flat connections on 2¢ modulo gauge transformations. So we begin with the
trivial line bundle .7 x C over the space .« of all connections over X¢. This line
bundle has a connection V with curvature 2miw, which may be written as a one
form 6, defined by

0.0)= - J Te(A—-A40)Aa),

where a e T#/| , and where A, denotes the product connection. We lift the action of
an element { of the gauge group ¢ to & x € as follows:

(:(4,2)~(45% O(4,0)z). (7.1)

Here, the Chern-Simons cocycle ©(4, () is defined as follows. We choose a path A(t)
in & from the product connection 4, to A. This path defines a connection 4 on
29x 1. We extend the gauge transformation { on X9=29x {1} to a gauge
transformation on 2? x I which is equal to 1 on a neighbourhood of 29 x {0}. The
Chern-Simons cocycle is then defined as

O(4, () =exp2mi[CS(X)— CS(A)] e U(1). (12)

Here, CS(B) is the Chern-Simons functional on connections B on X9 x I,

8n 2 zgjx 3
The cocycle @ is independent of the choice of the extension { and of the choice of
the path A(t). In [11] it was shown that the lift (7.1) preserved the connection ¥V on
& x €. Thus (the restriction to &/ of ) the line bundle &/ x C descends to give a line

bundle .# with connection on «/;/%.
We also note the following facts:

CS(B)=-L | Tr (BdB+ g15z3> .
I

Proposition 7.2. Let H be a genus g handlebody with boundary X?. Denote by .4 (H)
the space of conjugacy classes of representations of the handlebody fundamental
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group into G, and by Ly its image in F, under the restriction map. Then
1. The map from M(H) to F, is m]ectwe
2. Givena flat connection A whose gauge equivalence class lies in Ly, denote by A an
(arbitrary) extension of A to a flat connection over H. Then the map
§: o> x C given by i

§(A) = eZnik CS(4)

is well-defined (independent of choice of extension) and descends to give a section s
of £* over Ly. This section is covariant constant.

Proof. To see that this map defines a section of .#, we use the construction of the
line bundle .% from the trivial bundle o7 x C— /5. The definition of § in terms of
the Chern-Simons invariant of connections on a three-manifold bounding X?
guarantees that it has the correct equivariance property under the action of the
gauge group to descend to a section of &Z|; . — Ly C¥,. The proof that the section 3,
and therefore the induced section s: Ly— %, is covariant constant, is given in [9].

7.2. Covariant Constant Sections over Loops

The construction of covariant constant sections over the fibre Ly may be
generalized to yield covariant constant sections over submanifolds of certain
Lagrangian fibres other than Lyg: in particular, it will enable us to produce
covariant constant sections over certain loops #; coming from Hamiltonian flows
of period 1. The construction uses branched covers, in much the same way as these
were treated in [8].

We give first, in Proposition 7.3, the proof that if C; is a nonseparating loop,
then #* has trivial holonomy over an orbit of the Hamiltonian flow of h; precisely
when h; takes an integer value on that orbit. We will prove this by explicitly
constructing a fibre L; ,, where there is a covariant constant section of #* over
each trajectory of the Hamiltonian flow of h;, and on which h; takes an integer
value. The analogous result when C; is a separating loop will then be deduced from
the nonseparating case in Proposition 7.6.

Suppose then that C; is a nonseparating boundary circle in the trinion
decomposition. There is then a cycle §; in the trivalent graph representing the
trinion decomposition, which contains the edge representing C;. This cycle
corresponds to a simple closed curve g; in the interior of the handlebody H
determined by the trinion decomposition, which has linking number 1 with C;. For
every trinion D, the curve g, either does not meet D,,, or else links precisely two of
the boundary circles of D, with linking number + 1 and has linking number 0 with
the other boundary cn‘cle

We now construct the k-fold branched cover H of H branched over o,. We have

Proposition 7.3. The branched cover H is a handlebody.

Proof. We construct H explicitly as follows. Consider a solid torus U =D? x S'CH
with meridian C;, which retracts onto the curve g;={0} x S*. The solid torus U
meets the closure H—U of H—U in N disjoint disks E, ..., Ey (see Fig. 3). The
k-fold branched cover H is constructed as the union of a sohd torus U =D? x §*
and k copies of H— U, each of which is joined to U along N disks. The covering
map U—-U is the standard map

(z,)=(z5t): D?*xS'-D*xS';
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Fig. 3. The handlebody H and its k-fold branched cover H, branched over the curve o;CUCH
(here k=3)

the Nk disks in U c U, along which the k copies of (H— U) are attached, are the
components of the inverse images of E, ..., Ey under this map. The branch locus g;
has inverse image g; under the covering map. The space H is a handlebody; in
particular, the boundary of H is a surface 2¢ of genus g'=1+k(g—1), which is a
k-fold regular cover of 2%. []

We consider a particular fibre L; , of the polarization 7 of %,, defined by
L ,={r*(¢)| ¢ e Hom(n,(H —¢)), Tr§([C.])=2cos(2nn/k)}/G ,

where r:2?—H—p; is the inclusion map. In other words L;, consists of
(restrictions to Z, of) gauge equivalence classes of flat connections on H —g; for
which the holonomy around the meridian C; of g¢; is conjugate to
diag(exp2nin/k, exp —2nin/k). We now have

Proposition 7.4. Consider the fibre L; ,, of the polarization n of %,. Then the natural
map &,— %, associated to the covering map q: 2% — 2 takes L; , into the fibre Ly of
&, consisting of gauge equivalence classes of flat connections which extend to flat
connections over the handlebody H. Moreover, this map lifts to a bundle map
V: L*— 2 fromthe k™ power of the line bundle £ over F, to the corresponding line
bundle Z over &, which is a map of bundles with connection.

Proof. Under the covering map, a representation ¢ :7,(H —g;)— G sending the
meridian [C;] to an element of order k pulls back to a representation
#=q*(¢):n,(H—§)— G which comes from a representation of 7,(H) into G. In
terms of flat connections, a flat connection A of this form on H —g, pulls back to a
connection which extends as a flat connection over all of H.

Let g*: /(29— o/(2¢) denote the map induced on the spaces of connections by
the covering map q. Let k denote the map x:C—C defined by x(z)=z* Let
P=q* x k: AL (2% x C-H(29) x C denote the map of trivial line bundles induced
by g* and k. Let A€.2/(2? be a connection on 29, and let {: 29— G be a gauge
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transformation on X?. The k'* power of the Chern-Simons cocycle on X4, ©(4, {)¥,
then lifts to the Chern-Simons cocycle on 2¢'; that is,

(4,0 =06(g*A4),{q).

Thus the map § is compatible with the action of the gauge group, and descends to
a bundle map y: £*— 2. It remains to show that the map  is in fact a map of
bundles with connection. If ae To/(29)|,, then g*(a) can be considered as an
element of T&/(Z‘ g+ The connection one form 6 on the trivial bundle
& (Z%) x € given by

0, (a)— jTr(A’/\a)
then pulls back to the connection one-form kf on /(29 x C; that is,
= L = _l_ * * -0 *
KO @)=k [ Tr(Ana)= 1 [ Tr(g(4) ng*@) =Oypn(d*(@).

Thus the bundle map y: #*— .2 is a map of bundles with connection. []

The flow generated by the Hamiltonian function h; preserves the fibre L; ,.
Further, the map of L; , to Ly is injective. Thus we may pull back the covariant
constant section over Ly to get a covariant constant section over L; ,,. Since such a
section exists, the holonomy of ¥ around loops in L;, generated by the
Hamiltonian flow of h; is 1.

Since h; takes the integer value 2n on the fibre L, ,, this suffices to establish:

Proposition 7.5. If C, is a nonseparating loop in X, then £* has trivial holonomy
over an orbit of the Hamiltonian flow of h; precisely when h; takes an integer value on
that orbit.

We now turn our attention to

Proposition 7.6.. The result of Proposition 7.5 holds also when C; is a separating loop
in 29,

Proof. By adding another handle, we may construct a surface 2¢* ! in which C;is a
nonseparating loop. There is then a map 2?*'—ZX¢ which collapses the extra
handle to a point. Thus we get a map %,—%,,, which is compatible with the
Hamiltonian flow of h;, and with (&, V). We wish to show that a covariant
constant section of #* exists over the orbit of the Hamiltonian flow of h; through
ye ¥, whenever h{y)eZ: but this may now be inferred using Proposmon 7.5 from
the correspondmg fact for <, O

We now turn our attention to normalizing the Hamiltonian function g,

Proposition 7.7. The functwn g, takes integer values on orbits of the Hamiltonian
flow over which there is a covariant constant section of ¥*.

Proof. Welet 7, C7,C¥, denote the subspace of conjugacy classes y of reducible
representations [1e representatlons 7,(2%)—TCG] for which 6; ,)(y)+ 0;,.,)(»)
+0,;,,)(¥)=27 (cf. Lemma 3.5). If we examine Hamiltonian flows beginning at a
point y € 7, then since the flows of the h; preserve 7 (see Corollary 5.7), so does
the flow correspondmg to g,, ie., the Hamlltoman vector field X, lies in the
tangent space to 7. (This flow is defined on the open subset 7, ’mU of 7,.
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However, the flow corresponding to g, is trivial restricted to 7, since w restricts
to give a (nondegenerate) symplectic form on 7, and g, —k (and hence also dg,) is
identically zero on 7, while X, is tangent to 7. Thus there is a global covariant
constant section of £ over the (vtrivial) loop arising from the Hamiltonian flow of
g, through ye 7. This, combined with the observation that g, =k on 7, suffices
to establish the Hamiltonian function g, is normalized so as to take integer values

~on orbits over which there is a covariant constant section of £* 0O

This completes the proof of Proposition 7.1.

8. Counting the Bohr-Sommerfeld Orbits

We now conclude by counting the Bohr-Sommerfeld fibres of our polarization, to
determine the dimension of the putative quantization. We shall see that the
number of fibres obtained agrees with the Verlinde formula for the dimension of
the quantization in a Kédhler polarization.

We have seen in Theorem 4.4 that to find the Bohr-Sommerfeld orbits, it
suffices to verify that there are points x;,x,€B,, for which we can construct
covariant constant sections of #* on the orbits of the Hamiltonian flow of h; (resp.
g,)on ™ !(x;) [resp. ©~!(x,)] and for which the Hamiltonian functions ; (resp. g,)
take integer values. The existence of these points was proved in Sect. 7 (see
Proposition 7.1). The resulting characterization of the Bohr-Sommerfeld set was
given in Propositions 5.5 and 6.13. We may restate the situation as follows:

Theorem 8.1. The set P™ of Bohr-Sommerfeld points in B, is given by
P*={xeB,|h, g, take integer values on =~ !(x) Vi, 7},
where the value of h; must be an even integer if C; is a separating curve.
In terms of the coordinates §=0(x) of the point x € By, this condition reduces to
(@) Ox)=m=l/k  with ;=0,1,...,k for all i,
and [;e2Z if C, is separating; 8.1

Pbs —
*€Ba| (o) by Iyl €22 for all y
The condition (8.1)(a) arises from the integrality condition for 4;, while (b)
arises from the integrality condition for g,.
To obtain our final result, we recall that a set of values §=(0, ..., 05, 3) arises
as the image (0,(x), ..., 05,_3(x)) of a point x € B, if and only if the conditions (3.4)
are satisfied for the triples (0;,(,), 0}, 0;,(,)) corresponding to each trinion D,. As
discussed in Sect. 2, trinion decompositions correspond to trivalent graphs, where

Fig. 4. The trivalent graph of Fig. 1, labelled by integers giving the holonomies of connections in
the corresponding Bohr-Sommerfeld leaf
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one associated a vertex to each trinion and an edge to each boundary circle joining
two trinions, as in Fig. 1. Therefore, the Bohr-Sommerfeld points may be seen to
correspond to labelled trivalent graphs, where one assigns the integer label
1,=0,1,...,k to each edge i (see Fig. 4).

In terms of the labels ;e Z such that 8;,==l;/k is the holonomy angle around a
boundary circle, § actually is equal to g(x) for a point x € B, if and only if

sy = i | £ By S 000 { (s, )+ Liy09)s 26— Uiy )+ D)} -

Thus we see that the Bohr-Sommerfeld set is in 1—1 correspondence with
labellings of a trivalent graph by integers in [0, k] such that for each vertex with
labels 1,,1,,1, the following conditions are satisfied:

(@) lh—LISLsh+1,,
(b) L+L+1,=2k, 8.2
(©) L+L+15Le2Z,

and such that edges corresponding to separating boundary circles are labelled by
even integers. Equations (8.2a, b) arise from the condition (3.4) that the point 6 be
in B,, while Eq. (8.2¢) results from the integrality condition for g,

An elementary combinatorial argument establishes that

Lemma 8.2. Suppose X2?=X,0X,, where X,nX,= U C;. Suppose that the

boundary circles C; of 27 are labelled by integers I; such that Loy iy tliyy €2Z
for each trinion y. Then Z l;is even. (In parttcular separating boundary circles are

always labelled by even mtegers )

Proof. The corresponding trivalent graph is separated in two components S, S,
corresponding to 2, and 2,. We denote by V(S,) and E(S,) the sets of vertices and
edges in S, and consider the sum

I = 2 l,’l(y) + liz(')’) + li3(7) € —"Z [by (8.20)] .

re¥(s)
This sum is equal to ) [;+2 ) I, and hence Y [; must be even. []
jes’ ieE(Sy) jes'

Thus the condition that separating boundary circles be labelled by even
integers follows automatically from (8.2): in other words, the solutions of (8.2) are
in bijective correspondence with the points in the Bohr-Sommerfeld set.

Equations (8.2a—c) are the quantum Clebsch-Gordan conditions: this system of
equations arises from the “fusion rules” in conformal field theory, specifically in the
SU(2) Wess-Zumino-Witten model [14]. The number of labellings of a trivalent
graph satisfying (8.2) is also known to give the dimension of the quantization
H = HO(2?, #*) associated to a Kihler polarization (i.e., the space of holomorphic
sections of the line bundle .#¥).

Our final result is then

Theorem 8.3. Consider a fixed trinion decomposition of a two-manifold X*; it gives
rise to a trivalent graph and to a real polarization of &,. There is a one-to-one
correspondence between the set of Bohr-Sommerfeld fibres of the real polarization
and the set of labellings (by integers in [0,k]) of the edges of the trivalent graph
satisfying the quantum Clebsch-Gordan conditions (8.2a—c) at each vertex.
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