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Abstract. We show that global asymptotically flat singularity-free solutions of the
spherically symmetric Vlasov-Einstein system exist for all initial data which are
sufficiently small in an appropriate sense. At the same time detailed information is
obtained concerning the asymptotic behaviour of these solutions. A key element of
the proof which is also of intrinsic interest is a local existence theorem with
a continuation criterion which says that a solution cannot cease to exist as long as
the maximum momentum in the support of the distribution function remains
bounded. These results are contrasted with known theorems on spherically sym-
metric dust solutions.

1. Introduction

The Vlasov-Einstein system describes a self-gravitating collisionless gas within the
framework of general relativity. The only available theorem on the initial value
problem for this system is a local in time existence result due to Choquet-Bruhat
[3]. There are two reasons why it is of interest to study this initial value problem. In
recent years there has been considerable progress in understanding the closely
related Vlasov-Poisson and Vlasov-Maxwell systems and similar equations. In
particular, it has been shown by Pfaffelmoser [19] (see also [17, 23]) that the
Vlasov-Poisson system, which is the non-relativistic analogue of the Vlasov-
Einstein system, has global classical solutions for general initial data. In the case of
the Vlasov-Maxwell system the corresponding question is still open but a number
of partial results have been obtained. (For details see [20].) Since the Vlasov-
Einstein system, which up to now has been studied very little, has deep relations to
these other equations, one motivation for studying it is to obtain a better under-
standing of the initial value problem for a whole class of differential equations
which are of intrinsic mathematical interest and have varied physical applications.
The other motivation is that the Vlasov equation provides a matter model for
general relativity which seems particularly suitable for the study of the long-time
behaviour of matter in gravitational fields.
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To see the special role of the collisionless gas among matter models which can
be used in general relativity, note that the global existence theorem for the
Vlasov-Poisson system mentioned above implies that it is reasonable to expect
global existence of classical solutions of the equations describing this kind of
matter in rather general situations. This contrasts with other kinds of matter where
it is known that singularities occur even for small initial data. Notable examples are
perfect fluids [24] and elastic solids [16]. Of course it is possible to concentrate on
the case where spacetime is empty or only contains radiation, and very important
results have been obtained in this direction [5-11]. If, however, one wishes to
describe "normal matter" (i.e. matter which from a physical point of view ultimately
consists of massive particles) then the only known reasonable candidate for a type
of matter which does not form singularities of its own accord is the collisionless gas.
The importance of such singularities is that they may prevent the investigation of
the spacetime singularities which are essentially gravitational in nature and which
are of central interest in general relativity. (For a more detailed discussion of this
point see [22].) Support for these ideas, which are based on plausible analogies, is
provided by the main theorem of this paper (Theorem 4.1) which shows that global
singularity-free solutions of the Vlasov-Einstein system exist in one particular
situation, namely that of small spherically symmetric asymptotically flat initial
data. In fact this appears to be the first time a theorem has been proved which
guarantees the existence of non-static asymptotically flat spacetimes without singu-
larities and containing normal matter in the sense indicated above. The theorem
also shows that there is a striking contrast between the general relativistic collision-
less gas and a superficially similar matter model, namely dust, which was studied in
[4]. As discussed in Sect. 5, this could have significant consequences for the cosmic
censorship hypothesis. In this paper the speed of light always has a fixed numerical
value but it is also possible to replace this by a variable parameter in order to
investigate the non-relativistic limit of the Vlasov-Einstein system. The nature of
the local existence proof is such that it is feasible to control the equations uniformly
in the parameter. It has been shown elsewhere [21] that under appropriate
circumstances solutions of the Vlasov-Einstein system converge to solutions of the
Vlasov-Poisson system as the speed of light tends to infinity.

The paper is organized as follows. Section 2 contains some basic information on
the Vlasov-Einstein system in general and on the special case of solutions which
are spherically symmetric and asymptotically flat. A reduced system of equations is
introduced in the latter case, and it is shown that in order to solve the initial value
problem for the Vlasov-Einstein system in that case it is enough to solve the
reduced system. In Sect. 3 a local existence theorem is proved for the reduced
system. At the same time a continuation criterion is obtained which says that if the
maximum momentum in the support of the distribution function is finite on some
time interval then the solution can be extended to a larger time interval. This may
be compared with existing criteria in the Vlasov-Poisson [2] and Vlasov-Maxwell
[13] cases. These results are applied in Sect. 4 to obtain global existence for small
initial data together with information on the asymptotic behaviour of the solu-
tions. An important element of the proof is the study of the rate at which geodesies
spread on long time intervals. This is closely related to a technique used by Bardos
and Degond [1] in their proof of global existence of solutions of the
Vlasov-Poisson system for small initial data. However, the details of the argument
in the present paper rely essentially on differential geometric ideas. It is shown that
the global solutions constructed are singularity-free in the sense of the definition
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which is standard in general relativity, i.e. that they are timelike and null geodesi-
cally complete. In Sect. 5 the results of this paper are compared with those of
Christodoulou [4] on spherically symmetric dust solutions, and possible implica-
tions for cosmic censorship are discussed.

2. Preliminaries

We consider the Vlasov-Einstein system for particles which all have the same mass.
Units are chosen so that the gravitational constant, the speed of light and the mass
of a particle all have the numerical value 1. The sign conventions for geometrical
objects are as in [15]. If (M, gaβ) is a given time-oriented spacetime then the mass
shell P is the submanifold of the tangent bundle TM of M consisting of vectors p"
which satisfy gaβPΛpβ = — 1 and are future pointing. The geodesies of the metric
gap are the projections onto spacetime of the curves in TM defined in local
coordinates by

~

where Γβγ are the Christoffel symbols. The solutions of (2.1) are the integral curves

of the vector field (geodesic spray) X = Paj~^ — Γβγp
βp7 — . X is tangent to P.

The Vlasov equation for a non-negative real-valued function/on P is Xf= 0.
Given a function f:P -• R define the particle current density and the energy-
momentum tensor by

l p ' d p U p 3 , (2.2)

T"β:= -f/p'pWVPodpUptdp* . (2.3)

Here it is understood that P has been coordinatized by xa and pa (Latin indices run
from 1 to 3) and the coordinates are such that p° > 0 is equivalent to p" being
future-pointing for vectors satisfying gaβPapβ = — 1. The determinant of the metric
gaβ is denoted by g. If/satisfies the Vlasov equation then the covariant divergence
of each of these objects vanishes.

VaN« = 0 , (2.4)

VaT«β = 0. (2.5)

These relations can most easily be proved by using normal coordinates [12].
However, at this point we encounter a type of problem which will occur several
times in what follows. The argument using a transformation to normal coordinates
only works if/is C 1 and gΛβ is C 3. However, the solutions which will be constructed
are less differentiable than this. The problem can be overcome by approximating
the given objects by smoother ones and passing to the limit as will be shown below.
The Einstein equation is

β β (2.6)

where Gaβ is the Einstein tensor of gaβ.



564 G. Rein and A.D. Rendall

In the following these equations will be studied in the case where coordinates
can be found such that the metric takes the form

ds2 = - e2μ{ur)dt2 + e2λ{ur)dr2 + r2{dθ2 + s i n 2 0 # 2 ) . (2.7)

Here the coordinates (£, r) range over [0, T) x [0, oo) for some T > 0. Such a metric
is spherically symmetric, i.e. it admits an action of the group SO (3) by isometries. It
will be assumed that λ(t, 0) = 0 for all ί, which means that a regular centre exists,
and that μ and λ tend to zero as r -> oo, which means that the metric is asymp-
totically flat. Let z 0 and z1 be the vectors e~μd/dt and e~λd/dr respectively and
define

p:=Taβz"oz$, p:=Taβzlzl. (2.8)

Then two of the Einstein equations take the form (where a prime denotes a partial
derivative with respect to r)

e~2λ(2rλ'-1)+ l = 8 π r 2 p , (2.9)

e~2λ{2rμf + 1) - 1 = Sπr2p . (2.10)

If an auxiliary quantity is defined by

m(t,r):=4π]s2p(t,s)ds (2.11)

o

then (2.9) can be integrated to give

e-2λ(t,r)= j _2m(ί,r)/r . (2.12)

It is clear from this equation that λ ^ 0. Adding (2.9) and (2.10) gives

Hence λ' + μ' ^ 0. Since it has been assumed that λ + μ->0asr->oo this implies
that μ ^ - λ ^ 0.

While it is important to use polar coordinates for the Einstein equation it turns
out to be more convenient to use Cartesian coordinates for the Vlasov equation in
this problem. Define therefore x1 := r sin θcos φ,x2:=r sin θ sin φ and x3 := r cos θ
and let x° = t. Then in these coordinates the metric takes the form

ds2 = - e2μ{ur)dt2 + lδab + (e2λit>r) - l)δacδbdx
cxd/r2-] dxadxb . (2.13)

Let (xα, pa) denote the coordinates on the tangent bundle naturally associated with
xa. The mass shell can be coordinatized by (xα, pa) but there is a better choice for
the present purposes. Define a frame on R 3 by

ef:= δ? + (e~λ - l)xaδibx
b/r2 . (2.14)

Here i is a frame index and a a coordinate index. This frame is orthonormal with
respect to the metric (2.13). A vector in R 3 will be parametrized not by its
coordinate components pa but by its components vι in the frame (2.14). Since
pa = efv1

(eλ - l)xaδbcx
bpc/r2 . (2.15)
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In the coordinates (xα, va) the Vlasov equation has the explicit form

dt

|p|2Γ1/2Γ ~1μ\v\2xa-rvrv
a)

. υrx"

Here vr:= r 1δabx
avb, \v\2:= δabv

avb and a dot denotes a partial derivative with
respect to t. Equation (2.16) simplifies considerably if the function/is spherically
symmetric, i.e. if it is invariant under the action of SO (3) on the mass shell induced
by the action on spacetime corresponding to the spherical symmetry. In that case it
can be shown that, locally in a neighbourhood of any point of the dense subset of
P where the group acts freely, the function/can be written as a function of the three
invariants r, vr and \v\. It follows that

( r V - rvrx
a)^-a = (\v\2xa - rvrv

a)^-a (2.17)

so that (2.16) is equivalent to the equation

(2.18)

The only derivatives of the metric coefficients which occur here are λ and μ'. In the
coordinates (xα, pa) the derivative λ' also occurs in the Vlasov equation, and this
leads to problems in treating the equation directly in that form. The explicit
expressions for p and p in these coordinates are

p(xβ) = J/(xβ, t?β)(l + \v\2)1/2 dv1 dv2 dv3 , (2.19)

p{x«) = lf{x\υa)v2{\ + \v\2y1/2dvίdv2dv3 . (2.20)

The spherically symmetric Vlasov-Einstein system consists of (2.18) together with
(2.9) and (2.10) (with p and p given by (2.19) and (2.20).) In fact (2.9) and (2.10) only
constitute a subset of the Einstein equations but it will be shown below that the
reduced system consisting of (2.9), (2.10) and (2.18) is in fact equivalent to the full
Vlasov-Einstein system for a metric of the form (2.7) with the boundary conditions
already assumed.

The question of the justification of (2.4) and (2.5) when the metric is not C 3 will
now be answered. The kind of differentiability obtained in the existence theorems
motivates the following definition.

Definition. A triple (/, λ, μ) is called regular if

(i) fis non-negative, spherically symmetric and C 1 andf(t) has compact support for
each ί,
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(ii) all partial derivatives of λ and μ up to the second order except the second time
derivatives exist and are continuous,
(iii) the quantities λ, λf and μ' vanish at r = 0 for each t.

Suppose now that (f λ, μ) is a regular triple and that/satisfies the Vlasov equation
with respect to the metric determined by μ and λ via the formula (2.13). The
assumption of regularity implies that the Christoffel symbols with respect to
Cartesian coordinates are continuous. Thus it suffices, by continuity, to check that
(2.4) and (2.5) hold at an arbitrary point with r φ O . Let λn and μn be sequences of
C 3 functions defined on an open neighbourhood of a given point with this property
which converge uniformly to λ and μ respectively together with all those partial
derivatives whose existence is demanded in the definition of regularity. A sequence
of metrics g"β can then be defined by replacing λ and μ in (2.13) by λn and
μn respectively. If t0 denotes the value of t at the given point, let/M be the solution of
the Vlasov equation in the geometry determined by gn

aβ which agrees with/on the
hypersurface t = ί0. Each/M is C 1 and these functions converge uniformly together
with all their first order partial derivatives to / This is true because of the
differentiability and convergence properties of the coefficients in the Vlasov equa-
tion which are rather easy to control provided the neighbourhood is chosen so that
it contains no points with r — 0. (If the neighbourhood did contain such points it
would in fact still be true, as will be seen in the next section.) Since the analogues of
(2.4) and (2.5) hold for each triple (fn9λn9 μn\ and passing to the limit in these
equations is justified, these equations hold under the sole hypothesis that (f λ, μ) is
regular.

It will now be shown that Eq. (2.4) leads to an a priori estimate for a solution of
the Vlasov equation. It is equivalent to the equation

da(\g\ί/2N«) = 0. (2.21)

Here g denotes the determinant of the metric gaβ in the given Cartesian coordinates.
This shows that if N° has compact support on each slice of constant time (and this
will always be the case in the situations considered in this paper) then the quantity
J \g\1/2 N° dx1 dx2 dx3 is time independent. This quantity is equal to

M(oo) := j$ eλf(t, x\ va) dxa dva . (2.22)

The equivalence of the reduced system with the full Vlasov-Einstein system will
now be demonstrated.

Theorem 2.1. Let (f A, μ) be a regular solution of the reduced system defined by Eqs.
(2.9), (2.10) and (2.18)-(2.20). Then all Einstein equations are satisfied.

Proof Let Eaβ = Gaβ — %πTaβ. The aim is to use the equation VaE
aβ = 0 and in

view of (2.5) this is equivalent to VaG
aβ = 0. The latter equation holds for any C 3

metric but once again the problem comes up that this amount of regularity is not
available. One of the components of this equation has the following explicit form
for a metric of the type (2.7):

dtG
00 + drG

Oί + G00(2μ + λ) + G0 1(3μ' + λ' + 2/r) + G^e^-^λ = 0 .

(2.23)
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Now approximate λ and μ by C 3 functions as above. Then it is possible to pass to
the limit in (2.23) and obtain that equation for the metric of interest. Combining
this with (2.5) and using the fact that (2.9) and (2.10) are equivalent to the vanishing
of £ 0 0 and E11 respectively we see that

dr(r2E01) + (3μf + λ'){r2E01) = 0 . (2.24)

This implies that E01 is zero. Now the fact that/is C 1 implies that Γ 0 1 is C 1 and
this means under the present circumstances that G 0 1 is C 1 . If G 0 1 is calculated it
turns out that this gives the statement that λ is C 1 . In particular λ exists and is
continuous. Another component of the equation FαGα/? = 0 reads

dtG
01 + drG11 + G ° V ( " - V + G01(3Λ + μ) + G n ( μ ' + 2λf + 2/r)

AB = 0. (2.25)

Here the upper case Latin indices take the values 2 and 3 and refer to the
coordinates θ and φ. The quantity GAB involves λ. If the approximating sequence is
chosen so that λn converges to λ then it is possible to pass to the limit in (2.25).
Combining with (2.5) gives gAB^AB = 0. As a consequence of the symmetry EAB is
proportional to gAB and so in fact EAB = 0. The components E0A and E1A also
vanish because of the symmetry. Thus all Einstein equations are satisfied. D

3. Local Existence

The aim of this section is to prove the existence of a local in time solution of (2.9),
(2.10) and (2.18) corresponding to an initial datum / . For the convenience of the
reader who is not interested in the derivation of the equations we present the full
reduced system here in a notation which emphasizes its relationship to the Vlasov-
Poisson system,

- lr~2χ-vλ + r~ V~A(1 + N 2 ) 1 ' 2 / / ] * - VΌf= 0 ,

e~2λ{2rλf - 1) + 1 = Sπr2p ,

e~2λ(2rμ' + 1 ) - 1 = 8πr2p ,

p{t,x) = i(l + \v\2m(t9x9Ό)dv ,

V{Ux) = \r-2{x-υ)2{\ + \υ\2γ1l2f{Ux,υ)dυ. (3.1)

Here r = \x\ and x v denotes the usual inner product of vectors in R 3 . The
distribution function / is assumed to be invariant under all rotations and hence
p and p can be regarded as functions of t and r. Spherically symmetric functions of
t and x will be identified with functions of t and r whenever it is convenient.

o
Theorem 3.1. Let f ^ 0 be a spherically symmetric function which is C and has
compact support. Suppose that

f $(l + \v\2)1/2f(x,v)dvdx<r/2 (3.2)
| x | < r
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for all r > 0. Then there exists a unique regular spherically symmetric solution of (3.1)

on an interval [0, T) wίthfφ, x, v) = / (x, v).

Note that the condition (3.2) cannot be weakened. For if it is not satisfied Eq.
(2.9) has no solution for t = 0. The proof of the theorem will be broken up into
a number of lemmas and is based on an iteration of the following type. First define
λo(t, r) and μo(ί, r) to be zero. If λn and μn are given on a time interval [0, 7̂ ) then
/„ is defined to be the solution of the Vlasov equation with λ and μ replaced by
λn and μn and initial datum / . This solution can be described in the following way.
Let (Xn, Vn)(s, t, x, v) be the solution of the characteristic system

dV

- ^ = - (\XnΓ
2Xn- VX + | * J - 1 * * -*»(l + I Vn\

2γ'2μ'n)Xn (3.3)

with (Xn9 Vn)(t9 ί, x, v) = (x, v). Then

If fn is given define

fn(U x, v) = f ((Xn, VH){09 ί, x, v)) . (3.4)

Pn(t9x):=l(l + \Ό\2)1i2fn(t9x9Ό)dv9 (3.5)

Pn(t,x):= \r~2{x'v)2{\ + \v\2y1'2fn(t,x,v)dv . (3.6)

Define mn by replacing p by pn in (2.11) and let

Tn + 1 := sup{ί: 2mM(s, r)/r < 1, Vr > 0,0 ̂  s <£ ί} .

To get λn + 1(t9 r) solve (2.9) on the interval [0, Tn + 1) with p replaced by ρn using
(2.11) and (2.12). Then determine μn+ι(t,r) by solving (2.10) with p replaced by
pn with the boundary condition that μn + 1{t, r) -> 0 as r -> oo for each ί.

o
Lemma 3.1. // / is an initial datum satisfying the hypotheses of Theorem 3.1 the
iterates fn, λn and μn exist and are regular on [0, Tn) where Tn > 0 for all n.

Proof It will be supposed as inductive hypothesis that (/„, λn, μn) is regular and
that μn ^ — λn ^ 0. Since/„ is regular the quantities pn and pn are also C 1. It is not
difficult to show that as a consequence mπ(t, r)/r is C 2 at each fixed time and
continuous in t and r (which implies in particular that Tn+1 > 0) and then that
λn+1 and μn + 1 have all the properties required in the definition of regularity. The
least trivial part of this is to show the continuity at r = 0 of the quantity mn(t, r)/r3

which occurs in the expressions for the second derivatives of λn+1 and μn+i This
can be done as follows:

|m M (ί ,r)/r 3 -(4π/3)p M (ί ,0) |=4πr- 3

o

sup |p(t,s)-p(ί,0)|

0 as r -• 0 .
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The fact that μn+1 ^ — λn+ί < 0 can be seen just as in the case of the correspond-
ing statement for λ and μ proved in the last section. Consider next the problem of
solving the characteristic system (3.3) with n replaced by n + 1. Its coefficients
depend on λn + ί, μn + ί9λn + 1 and μ'n + ±. It is easily seen that for r Φ 0 the coefficients
in (3.3) and their first derivatives with respect to x and v are continuous. In fact all
these quantities extend continuously to r = 0 as a consequence of the regularity of
λn + 1 and μn + 1. Consider for example the expression

d/dxa(μ'n+ιx
b/r) = r-2μ:+1x

axb + r~3 μ'n + ί(r2δab - xaxb) . (3.7)

Regularity implies that μ'n + i(r) = rμ'ή+1{0) + o{r\ and as a consequence this ex-
pression tends to μ'ή+ ί {0)δab as r -* 0. The proof of the continuous extendibility of
other relevant quantities is similar but easier. It can be concluded that (3.3) has
a unique C 1 solution on a short time interval [14]. Furthermore

dX.tn+ί
^ 1 , (3.8)

ds

(1 + I K + 1 | ) . (3.9)
ds

Thus the solution of the characteristic system can be extended to the whole of
[0, Tn + 1). This means that we have recovered the statement of the inductive
hypothesis with n replaced by n + 1. Since this statement is evident for n = 0 it
holds for all n. D

Before going further we recall the following useful estimate (cf. [2]). Let
m(£, GO) = lim,.-^ m(ί, r). Then for any R > 0,

m(t,r)/r2 g (4π/3)||p(ί)||L-« + rn(t,π)R-2 . (3.10)

Putting R = (3w(ί, oo)/2π || p(ί) | | L ~ ) 1 / 3 in (3.10) gives

m(ί,r)/r2 ^ (12π 2 ) 1 / 3 1 | p(ί)| |^3(m(ί,oo))1 / 3 . (3.11)

Lemma 3.2. If the hypotheses of Theorem 3.1 hold there exists some T > 0 such that
Tn ^ Tfor all n. The quantities λn, λn and μ'n are uniformly bounded in n on the interval
[0, Γ).

Proof For ίe[0, ΓJ define Pn(t):= sup{|ι;|: (x, t?)esupp/(ί)} and βn(ί):=
II e 2 λ n ( ί ) ||L». The quantities Pn(0) and βM(0) are independent of n for n ^ 1; they will
be denoted by u0 and q0 respectively. If a positive constant C o is given let (zl9z2)bQ
a solution of the system of integral equations

ί

0

t

zi(t) = qo + Co J (1 + s)(l + z1(5))5z|(5)exp[C0(l + s)2(l
0

on a neighbourhood of zero. Let T be any positive number such that a solution of
these equations exists on [0, T~\. It will be shown by induction that, provided the
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constant C o is chosen appropriately, for all n the number Tn is greater than or equal
to Γand that on the interval [0, T) the inequalities Pn(ή S zx(t) and Qn(ή ^ z2(ή
hold. In the course of the proof it will also be shown that λn, λn and μ'n can be
bounded in terms of Pn(t) and Qn(t) in a manner which is independent of ft, and so
this is enough to prove the lemma. 0

The Vlasov equation implies that the quantity H/πίOllz,00 is equal to || / ||L=o.
Hence

II Pn(t) IIL ^ (4π/3) || / | |L (1 + Pn(t))4 , (3.12)

II Pn(t) | |L- ύ (4π/3) || / | | L .(1 + Pn{t)f . (3.13)

Next note that the fact that M(oo) is independent of t implies the inequality

/ i

mH(t9 oo) ^ (1 + Pn(ί))|| / | | L ^ ( 3 1 4 )
o

From now on C will denote a constant only depending on the initial datum / (and
in particular not on ri) whose value may change from line to line. Combining (3.11),
(3.12) and (3.14) gives

m n ( ί , r ) / r 2 ^ C ( H - P Π ( ί ) ) 3 . (3.15)

Now

2λ , (3.16)

(3.17)

Applying (3.12), (3.13) and (3.15) gives

ll^ + i ( ί ) k - ^ C(l + ί)(l + Pn(t))*QH + i(t) , (3.18)

I I ^ + IWIIL ^ C(l + 0(1 + Pn(t))*Qn + i(t) (3.19)

Here the fact has been used that, because of (3.8), at time t the supports of p(t) and

p(t) are contained in the ball of radius r 0 + t about the origin, where r0 is a bound

for |x| on the support of / . Estimating λn + 1 is more complicated.

λn + ί(t,r) = 4πr-1e2λ^ J f | x | 2 ( l + |ϋ|)1/2/»(ί9 *> v)dυdx . (3.20)
| x | < r

In handling this it is useful to notice that r~1λ'n + 1 and r~1 μ« + I c a n be bounded by
an expression of the form C(l + PM(ί))4β« + I W Now substitute for/, in (3.20) using
the Vlasov equation. This introduces the quantities Vxfn and Vυfn and these must
be got rid of by integration by parts in x and υ respectively. Now

= r-1 J J IxΓ^x t Je^-
\x\ = r

_r-ij j ^ Ή F ^

| x | < r

= /l + / 2 ,
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say. Furthermore,

r " 1 J
\x\<r

\x\ < r

-r-1 f \2\x\-χe»»-Hx v)μ'nfndvdx
\x\<r

say. Using the estimates already obtained and taking account of the fact that
e"n~λ" ^ 1 these integrals can be estimated as follows:

\h\ύC(ί+Pn(t))4]s\λn(t,s)\χtds,
0

Here Pn(t) = max{P0(ί)> > Pn(t)} and χ, denotes the characteristic function of the
interval [0, r 0 + ί]. Putting all these together gives

|An+1(t, r)\ ί C(l + ί)(l + Pn{t))5Q2

n+,{t) + (1 + P π ( ί )) 4 β n + i ( ί )} s\λn(t, s)\χtds ,

(3.21)

where Qn(t) = max{βo(ί), , β»(0}
Now define Λn(t, r) = max{|io(ί, r)\,..., \λn(t, r)\}. Then (3.21) implies an inte-

gral inequality for Λn+1. Applying GronwalΓs lemma to this leads to

ΛH+I(t,r) ύ C(ί + ί)(l + Pn(ί)) 5βn

2

+i(ί)exp[C(l + t)2{\ + P n (0) 4 β B

(3.22)

Putting (3.19) and (3.22) into (3.9) gives

P π + 1

On the other hand

d 2 / U

Hence by (3.22)

(t) ^ u 0

= 2\L

+ C f (1 + s)(l -
0

xexp[C(l + s)2

(1 + ?n(s))

•Qn+Λt)\\Λ

+i(s)

*β n + i (s)]is. (3.23)

(3.24)

+ C } (1 + s)(l + Pn(s))5βn

3

+1(s)
0

x exp[C(l + s)2(l + P n (s)) 4 β n + 1 (s)] ds . (3.25)
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We are now ready for the promised induction argument. Note first that P0(t) = w0,
Qo(ή = 1 ^ q0 and To = oo. Now suppose that for some n we have Tn^.T,
Pn(t) S zχ(t) and Qn(t) ^ z2(ί). Then (3.23) and (3.25) hold on the interval [0, Tn+1).
It is possible to replace Pn + 1 and Pn by Pn + 1 in (3.23) and still get a valid inequality.
Let C o be a value of the constant C such that, for the given initial datum, these
latter inequalities are valid. A comparison of the pair (Pn + ι,Qn + i) with the pair
(zuz2) shows that Pn+1(t) g zx{t) and Qn+1(t) ^ z2(t) on [0, Tn+1) n [0, T). Now
Qn+i(t) tends to infinity as t tends to Tn+1 while z2(t) is bounded on [0, T). Hence
7i + 1 ^ Γ, and the proof is complete. D

Lemma 3.3. Under the hypotheses of Theorem 3.1 the quantities μl and λ'n are
uniformly bounded on the interval [0, T) defined in Lemma 3.2.

Proof First the expressions for the derivatives of interest will be examined. Only
those terms which were not already estimated in the course of the proof of Lemma
3.2 will be written out explicitly,

p'p'n + ... , (3.26)

K + 1 = elλ^l- rhjr2 + 4πrpJ + . . . . (3.27)

Differentiating (3.4) with respect to t leads to an estimate of the form

I I / J L - ^ C H / I I C I . (3.28)

With this estimate it is straightforward to show that ρn and mn(r)/r2 are bounded.
The boundedness of λf

n follows. It only remains to take care of p'n. To do this
multiply the Vlasov equation by (x v)/r and integrate the resulting equation with
respect to the variable v. The term involving Vvfn can be estimated by partial
integration while dfjdt can be bounded using (3.28). There results a bound for

Since/„ is spherically symmetric equation (2.17) can be applied, and so this is
enough to bound rp'n and hence μ'ή+1. D

Lemma 3.4. Under the hypotheses of Theorem 3.1 the solutions Xn,Vn of the
characteristic system (3.3) and the quantities λn9 μn, μ'n, λn converge uniformly on the
interval [0, T).

Proof Note first that with the results of Lemma 3.2 in hand it is possible to obtain
an estimate of the following form for the differences of the metric coefficients and
their derivatives,

- λn(t)\\L~ + | |μ n + 1 (ί) -

(3.29)

In order that this make sense it is necessary to impose the restriction n ^ 1. Define
<xn{i) to be equal to

1 -Xn\ + \VH+1 - Vn\){s,t9x,v):

0 ^ s ^ ί, (x, ί;)esupp/Π+1(ί) u supp/n(ί)} .
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Then by (3.4) for each n ^ 1,

Unit) -fn-i(t)h« ύ II / llciα»-iW (330)

To estimate the differences of the derivatives λn the same kind of argument is
necessary as was used to bound λn above, namely express λn in terms of/π_1?

substitute for the latter quantity using the Vlasov equation and eliminate the
resulting derivatives oί fn-x by partial integration. There results for n ^ 2 the
estimate

μ n + 1 ( ί , r) - λn{u r)\ ^ cLn-Λή + απ_2(ί) + } s\λn(t> s) - λn-ΛU s)\χtds) .

Let βn(t) = ocn(t) + αn_ 1(ή. It can now be proved by induction (starting with n = 2)
that

rn-l 2(n-l) n-l

\λn + 1(t, r) - λπ(t, r)\ ύ C i 2 B - 1 ( n _ 1 ) , + t Σ

where CΊ = || Xx \\L* + || λ2 ||L°° Next the differences of the characteristics must be
estimated. Using the results of Lemmas 3.2 and 3.3 it can be shown that

dXn+ι

ds
dXn

ds
dVn+1

ds
dV,
ds

+ ||μH + 1(s) - μn(s)\\L»

+ | | i B + 1 (s) - Us)h" + llni + i(s) ~ μί(s)h") • (332)

Integrating this equation and using (3.29) and (3.30) leads to the integral inequality

απ(ί) ^ C } (απ(s) + α.-iίs) + | | i B + 1 (s) - X»(s)||L-)ds . (3.33)
0

This leads to a similar inequality for βn and summing the latter from 2to N gives

Σ βn(t) ̂  c( 1 + ί Σ (βn(s) + Un+i(s) - l(s)\\L«)ds) . (3.34)
n=2 \ 0n=2 /

The inequality (3.31) will now be substituted into (3.34). Note that the character-
istics are only affected by the values of λ on the support of the distribution function
so that for this purpose r can be replaced in (3.31) by r 0 + T. There then occurs
a double sum which can be estimated as follows:

JV n-lΓrn-i( ιηr\2(n-i-l) Ί / N ΓC 1\ ί N \

Σ Σ P U ^ . - U Γ H S ( Σ [>- - "'«•])(.?,H
(3.35)

The first sum on the right-hand side of (3.35) converges as N -> oo, and the other
sum which arises when (3.31) is substituted into (3.34) also converges in that limit.
Replacing these sums by their limits gives a linear integral inequality for Σn = 2 βn{t)
and so by Gronwall's inequality £ * = 2 βn(t) is bounded independently oϊN and t on
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the interval [0, T). It follows that Xn and Vn are uniform Cauchy sequences and
hence converge uniformly. The inequalities (3.29) and (3.30) then give the remaining
claims in the statement of the lemma. D

Proof of Theorem 3.1. The uniform convergence of Xn and Vn implies that of
fn because of (3.4). The limiting function satisfies the initial condition

/(0, x, v) = f (x, v). From the definition of ρn and pn they too converge. This in turn
implies the convergence of mn/r, mjr1 and mn/r3. It follows from these facts and
Lemma 3.4 that the field equations (2.9) and (2.10) are satisfied by the limiting
functions. Differentiating (3.4) with respect to t shows that dtfn converges uniformly
to dtf. It is then immediate that pn9 rhn/r and λ'n converge uniformly. The conver-
gence of μ'ή can be obtained by using the same kind of estimate previously used to
show its boundedness. Now enough is known about the limiting functions λ and
μ to see that the Vlasov equation in the geometry they determine has a C 1 solution

with initial datum / . It obviously agrees with the limit /of the/,. Thus the triple
(/ λ, μ) satisfies the reduced system and has the correct initial datum. Since/is C 1

the regularity of (/ λ, μ) can be checked by using the same arguments as in the
proof of Lemma 3.1. Thus it only remains to show uniqueness. Suppose that
(/ λ, μ) is also a regular solution of the reduced system on [0, T) with initial datum

.Let

a(t):=sup{(\X-X\ + \V- V\)(s, t, x, υ): 0 ^ s ^ ί,(x, t;)6supp/(ί)usupp/(ί)} .

It is enough to show the uniqueness on [0, T') for an arbitrary T' < T. The
regularity of both solutions implies the boundedness of many quantities on [0, 7").
Using this \dX/ds - dX/ds\ and \dV/ds - dV/ds\ can be bounded by α(ί) and
differences of metric coefficients and their derivatives as in (3.32) above. The
analogues of (3.29) and (3.30) also hold and show that all these differences, with the
exception of that involving λ9 can be bounded using α(ί). By a procedure analogous
to that used twice already in connection with λ an integral inequality can be
obtained for the remaining difference, and applying GronwalΓs lemma shows that
this difference can also be bounded using α(ί). It follows that

] (3.36)
o

GronwalΓs lemma now shows that α = 0, and the two solutions coincide. D

Next a continuation criterion will be derived. For any solution (/ A, μ) of the
reduced system let P(t):= sup{|t>|:(x, *;)esupp/(ί)} and Q(t) = \\e2λ{t)\\L™.

Theorem 3.2. Let (/ A, μ) be a regular solution of the reduced system on an interval
o

[0, T) with compactly supported initial datum f. If T < oo and [0, T) is the right
maximal interval of existence then P is unbounded.

Proof We suppose that P is bounded and show that the solution is extendible.
Define

j(t,x):=$r-1(x-v)f(t,x,v)dv. (3.37)
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By Theorem 2.1 the Einstein equations which are not part of the reduced system
are satisfied. One of these reads

λ= -4πreμ + λj . (3.38)

If P is bounded then rj is bounded. Also eμ + λ g 1. Hence λ is bounded. Integrating
in t shows that λ and hence Q is bounded. Consider now the question of what
determines the time of existence obtained in Theorem 3.1. This is only limited by
the size of the constant C o required in the proof of Lemma 3.2 and the size of u0 and

q0. The size of C o is determined by || / HzΛ || / IIL°° and r0. Since P and Q are
bounded on [0, T) all the quantities which influence the size of the interval of
existence obtained when giving f(t0) as initial datum at ί = ί0 are also bounded.
Hence a solution exists on [ί, t + δ) for all t e [0, T) and some δ > 0 independent of
t. The extendibility of the given solution then follows. D

4. Global Existence

In this section global existence of solutions of the Vlasov-Einstein system will be
proved for small spherically symmetric initial data. The essential ingredient of the
proof is an examination of the long-time effects of geodesic deviation. Before
coming to that, however, we need to establish some properties of spherically
symmetric solutions of the Einstein equations where the energy-momentum tensor
has certain decay properties.

Lemma 4.1. Consider a spherically symmetric asymptotically flat solution of the
Einstein equations on a time interval [0, T) with the property that the support of the
restriction of Taβ to each hypersurface t = const, is contained in the ball of radius
r0 + t about the centre and suppose that

Xi (4.1)

for some constant Kx > 0 and some δe(0,1]. Then

' 1 ^ 0 ^ C(l + ί ) " 1 " ' , (4.2)

where the constant C only depends on Kλ and the restriction of the solution to the
initial hypersurface. Moreover λ and μ can be uniformly bounded,

cα + ίΓ1-* (4.3)

and the components of the Riemann curvature tensor satisfy

SC(l + t)-2-δ. (4.4)

Proof In the vacuum region e~
2λ{Ur) = 1 — 2m(ί, oo)/r. Differentiating with re-

spect to t and applying (3.38) gives — (m(ί, co)) = 0, which is the conservation of

ot
ADM mass in this situation. From (3.11) it follows that

4 2 2

m(ί, r)/r2 ^ C(l + ί ) " 1 " 1 * JC? (4.5)
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for a constant C only depending on the restriction of the solution to the initial
hypersurface. From (3.38)

μ'wik-gcα + ί ) - 1 " ' . (4.6)
Integrating in time shows that λ can be bounded in terms of a constant multiple of
its values at t = 0. Next,

||rp(ί)||L- ^ C||Γn(ί)llL-(l + t)£C(l + ί ) ' 1 " ^ . (4.7)

Using the field equation for μ! now shows that

C(l + ίΓ1-<5, (4.8)

where C depends only on the restriction of the solution to the initial hypersurface
and K1. This implies a bound for |μ | on the whole interval. The field equation for λ'
shows that it satisfies an estimate similar to (4.6) and (4.8). The corresponding
estimate for (e~λ — ί)/r is a consequence of (4.5). This proves (4.2) and if the
Christoffel symbols are computed it is immediately clear that (4.3) is implied by
(4.2). In order to obtain the estimate for the curvature the following additional
estimates are needed.

e'2λ-l

r2

λ'(t, r)\ g

2m(t, r) ^
- r 3 =

C(m(t, r)/r3

8π,, ,x^ P(ί) L - ^ C (
3

+ I lp( ί ) l l i - )^C(

(<5α6(5Cίί - δacδbd)(x

i + t ) - 2 - ,

t + t ) - 2 -

(4.9)

(4.10)

(4.11)

Now

Combining this with (3.38) shows that

2 £ C { l + t)-2-*. (4.12)

Next consider Rlcd. This is a sum of terms, each of which is the product of
a bounded quantity with either r~2(e~2λ — 1) or r " 1 ^ ' . Hence, by (4.9) and (4.10),

tr2-δ. (4.13)

Noting that R%Ob = Rab — Rc

acb and that the Ricci tensor Rab can be constructed
pointwise from the energy-momentum tensor and the metric we find that

HΛαOob(ί)llL-^C(l + ί ) " 2 " * . (4-14)

This completes the proof of the lemma. D

The following lemma, which is an easy consequence of GronwalΓs inequality,
will be required in the following.

Lemma 4.2. Consider the ordinary differential equation — = F(t9 u) for a C1 func-
dt

tion F satisfying the inequality \F(t, u)\ ^η(ί + ί)~ 1 ~ a ( l + \u\)for some constants
δ > 0 and η > 0. Then given any initial datum at t = 0 the corresponding solution
exists on the whole of [0, oo) and satisfies the inequality \u(t) — w(0)| ^
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Consider now a timelike geodesic y passing through a point with coordinates
(ί, xa) and suppose that it intersects the initial hypersurface t = 0. Let τ be the
proper time measured along y, starting at t = 0. Let {e'σ} be an orthonormal frame
along y which is parallelly transported and which is such that e'o is the tangent
vector to y. Let e'σ be the dual coframe. A Jacobi field along y is the derivative with
respect to the parameter of a one-parameter family of geodesies in which y is
embedded. If it is expressed as a linear combination Zse's of e'u e'2 and e'3 then Zs

satisfies the equation (see [15], p. 96)

^ = {Rfae'SeifefeO')? . (4.15)

The quantity which must be estimated is the Jacobian determinant of the mapping

υ

a\-+Xa(09t9x
a

9v
a) (4.16)

for fixed t and xa, where Xa(s, t, xa, va) is defined in terms of the characteristic
system of (2.16) in the same way as Xa(s, t9 x

fl, va) was defined in terms of that of
(2.18). This mapping can be described in words as follows. First construct the unit
timelike vector pα at the point with coordinates (ί, xa) corresponding to υa. Then
follow the geodesic y through (ί, xa) with tangent vector pa backwards until it meets
the hypersurface t = 0. The derivative of this mapping takes vectors tangent to the
mass shell at e'o to vectors tangent to the initial hypersurface t = 0. Now a vector
tangent to P at ef

0 can be identified with an element of the tangent space to M at
(ί, xa) which is orthogonal to e'o. This can then be expressed as a linear combination
Yse's. The derivative of (4.16) can now conveniently be written as a composition of
three linear mappings from R 3 to itself. The first linear mapping is the one sending
va to Ys which has just been described. Let L2(YS) be the value at ί = 0 of the

dZs

solution of (4.15) with the initial data Z s = 0 and - — = Ys at the point (ί, xa).
aτ

Finally, let L3(ZS) be defined by the Cartesian components of the vector obtained
by projecting the vector Zse's onto the tangent space to the initial hypersurface
along ef

0. Then the derivative of (4.16) at the point of interest is L3L2L1. It may be
objected that the differentiability requirements on a geometry needed in order to
derive the relation between (4.15) and (4.16) are stronger than those satisfied by
a general regular solution of the Vlasov-Einstein system. However, Eq. (4.15) is
used in the following only in twice integrated form, and the latter can be justified by
approximating the given geometry by smoother ones.
Lemma 4.3. Consider spherically symmetric solutions of the Vlasov-Einstein system
on intervals [0, T) satisfying the following conditions'.

(4.17)

where r0 = sup{|xβ | : Γα/*(0, xa) φ 0}, and the inequality (4.1). Then ifε and Kx are
sufficiently small there exists a constant K4, depending only on ε, Kί9 K2 and K3,
such that

^ X 4 ( l + ί ) " 3 . (4.18)
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o
Proof. First note that || / | |Li can be bounded by (4π/3)2K2Klε so that for fixed

K2 and K3 making ε small forces || / | |Li to be small. Lemma 4.1 provides a lot of
information on the decay of geometric quantities as t -• oo. In particular the
estimate (4.2) can be combined with Lemma 4.2 to show that if K1 is small enough

P(t) ^ u0 + 1 . (4.19)

The inequality (4.19) implies a uniform bound for the Cartesian components of e'o if
the tangent vector to the geodesic y is contained in the support of the distribution
function. (Only such geodesies are of interest here.) The remaining frame vectors
e's satisfy

e&etf + Γ^e'/e'J = 0 . (4.20)

The spatial components of (4.20) can be written as

To profit from this it is necessary to have some information about the relation
between proper time and coordinate time along y. In fact

^ = eμ(l + \ v \ 2 ) - 1 / 2 . (4.22)
dt

Since |μ| has already been bounded (4.21) and (4.22) imply that

d ,a /o -is

dt ' = ^ + ''* + *' ' ^ ' '

On the other hand, since e's is a unit vector \e's°\ ^ C | ^ β | . It follows by Lemma 4.2
that (4.23) implies the global boundedness of e's

a and hence of e's°.
Consider now once again a timelike geodesic y whose tangent vector is con-

tained in the support of the distribution function. As a consequence of (4.22) there
are positive constants Cx and C2 such that

Cit^τSC2t (4.24)

along y. We can assume without loss of generality that C2 ^ 1 and then

(1 + t)-2~δ ^ Cl+δ{\ + τ)-2~δ . (4.25)

Thus if Ks

t\= Rβγδe'a
seΌβe't

γeΌδ an estimate of the form

|Xf(τ)| g C ( l +τ)~2-δ (4.26)

holds along y. Let τ 0 be the value of τ at the point (ί, xa) and let Zs(τ) be the solution
dZs

of (4.15) with Zs(τ0) = 0 and — (τ0) = Γs. Let
dτ

Es(τ):=Zs(τ)-(τ-τ0)Ys. (4.27)

Then by Taylor's theorem

Es(τ) = f (τ - σ)(σ - τo)Kί(σ) Tdσ + J (τ - σ)Kt

s(σ)Et(σ)dσ . (4.28)
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The first integral can be estimated as follows:

579

since

τo
rt\ ί Cσ(l

I (4.29)

~2~δdσ < oo. Combining (4.28) and (4.29) and applying

+ σΓ 2 "^σ. (4.30)

GronwalΓs inequality gives

τo

|£s(τ)| ^ C(τ0 - τ)| F|exp j C(σ -
τ

Hence

(4.31)

In fact Kγ could be chosen so that C ^ \ and then using (4.31) and the definition of
Es shows that

|de tL 2 | ^ Cτl . (4.32)

The inequality (4.24) shows that τ 0 can be replaced by t in (4.32). The determinant
of L x can be bounded below uniformly for all geodesies whose tangent vectors are
contained in the support of the distribution function. The same is true of the
determinant of L3. Thus (4.32) can be converted into the statement that

'dXa

>α 3. (4.33)

This has been shown to be valid for all va in the support of the distribution function.
If we knew that the mapping (4.16) was injective then we could change variables
from va to Xa in the definition of the energy-momentum tensor. As a consequence
of (4.33) and the boundedness of P this would give an estimate of the form (4.18),
completing the proof of the lemma. It will now be shown that for Kλ sufficiently
small this mapping is indeed injective. Suppose that, on the contrary, there are two
distinct geodesies y0 and γί starting at the point with coordinates (ί, xa) which meet
the initial hypersurface at the same point. Let va

0 and υ\ be the coordinates of their
initial tangent vectors on the mass shell. For / e [0, 1] let va

x = (1 — l)va

0 + lυ\. Let yt

be the geodesic with initial tangent vector corresponding to v?. Denote the spatial
coordinates of the point of intersection of yt with the initial hypersurface t = 0 by
ξa(l). Then ξa{0) = ξa(l) and ξa(l) is a closed curve. It can be concluded from (4.33)
that the tangent vector to the curve ξa(l) can never vanish. For each yι choose the
frame e'σ so that e\ lies in the plane spanned by the vectors on the mass shell with
coordinates v\ and va

2. Then Y2(l) = Y3(l) = 0 for all /. The constant C in (4.30) can
be made as small as desired by making Kx small. Hence Es(0) can be made very
small in comparison to τ 0 Y

s. This implies that the angle between Zs(0) and Ys

(considered as elements of R 3 ) can be made as small as we wish. In other words
Z2(0) and Z3(0) can be made small in comparison with Zx(0), uniformly in /. On
the other hand making the constant C in (4.3) small (which can also be achieved by
reducing the size of K^ means that ef

0 and e\ are close to vectors in the plane
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spanned by d/dt and (va

0 — vΊ)d/dxa. This can be proved by applying Lemma 4.2 to
the geodesic equation and to the equation of parallel transport (4.20). It can be
concluded that the angle between the tangent vector to the curve ξa(l) and va

0 - v\
is always small. Due to the fact that the former never vanishes this is inconsistent
with the curve being closed. This contradiction shows that in fact (4.16) is injective,
as required. D

Theorem 4.1. Let a non-negative C1 compactly supported spherically symmetric

initial datum f for the Vlasov-Einstein system be given which satisfies the inequalities
(4.17) for some positive constants ε, K2 and K3. Then if ε is small enough the
corresponding solution exists globally in time. Moreover, for this solution

£C{l + t)-3

9 (4.34)

the metric coefficients λ and μ are bounded and the estimates (4.2)-(4.4) hold with

Proof Let Kx and ε be positive constants which are small enough so that the
conclusions of Lemma 4.3 hold for some δ < 1. Let 7\ be a positive number
satisfying

K4(1 + Γ 1 Γ 1 < X 1 . (4.35)

The constant Co appearing in the integral equations used in the proof of Lemma
3.2 must be chosen in a way which depends on the initial data. If (4.17) is satisfied it
can be made as small as desired by making ε small while keeping K2 and K3 fixed.
This has the eίfect that the solution of the integral equations exists on any
prescribed time interval if ε is sufficiently small. Moreover the solution can be made
smaller than any given positive number on that interval by the same means. The
argument used to prove Theorem 3.1 then shows that the solution of the

Vlasov-Einstein system with initial datum / will exist on any prescribed time
interval provided that ε is small enough. Now restrict ε so that the assumptions of

the theorem imply that the local solution corresponding to / actually exists on the
interval [0, 7i) and that on that interval (4.1) is satisfied. Consider a fixed initial

o
datum / satisfying (4.17). Define

Γ* = sup{Γ: || r"(ί)llL« £ Kx(l + ί ) " 2 " ' Vίefl), T)} .

Here T* = oo is possible. In fact we will show that it is the only possibility. For
suppose Γ* < oo. The assumptions already made ensure that T* ̂  T1. The defini-
tions of 7\ and T% and Lemma 4.3 then show that the continuation criterion is
satisfied on [0, Tj) and that

| | Γ ^ ( Γ J | | < ί : 1 ( l + 7 ; Γ 2 - ί . (4.36)

This means that the solution can be extended to a time interval [0, T2) with
T2> T*. Also T2 can be chosen so that (4.1) is satisfied there. This contradicts the
definition of T* and so in fact it must be the case that 7^ = oo. The inequality (4.1)
holds on [0, oo) for some δ < 1. Applying Lemma 4.3 shows that an inequality of
this form also holds for δ = 1. The remaining conclusions of the theorem then
follow from Lemma 4.1. D
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This theorem can be strengthened by observing that if (/, λ, μ) is a solution of

(3.1) with initial datum / then (/α, λΛ9 μα) is a solution with initial datum fΛ9 where

fa(t, x, v) = cc2f(ctt, αx, v),

λa(t, r) = λiμt, or) ,

μa(t, r) = μ(oct9 ocr) ,

o o
fa(x9 v) = ot2f(ax9v) .

Fix positive constants K2 and K3 and choose ε small enough so that (4.17) implies
the existence of a global solution. We claim that a global solution exists for any

initial datum / satisfying || / ||L°oΓo ^ εK2. To see this, choose α so that ro,α = K3.

Then it follows that || fa ||L» ^ ε. Hence there is a global solution of (3.1) with initial

datum fa. A global solution with initial datum / can now be obtained by using the
inverse of the above transformation.

Up to now we have only discussed solutions on intervals of the form [0, T) but
the whole situation is time symmetric and so Theorem 4.1 gives solutions where
t ranges over the whole real line. From the theorem it can be seen that all these
solutions satisfy an inequality of the form

| |Γ^( ί ) | | L oo^C(l + | ί | ) - 3 . (4.37)

It follows that λ and μ are uniformly bounded and that decay estimates can be
obtained for the components of the curvature tensor as \t\ -+ oo. Decay estimates
are also obtained for the quantities A, μr and (e~λ — l)/r which all fall off like | ί | " 2 .
Using this information in the equation for timelike geodesies shows that the
solutions of that equation exist globally in t. It then follows from (4.22) that the
spacetime is timelike geodesically complete. Consider next null geodesies. If these
are parametrized by t then the resulting equation is very similar to that for timelike
geodesies: it is merely necessary to replace the expression y/l + \v\2 by \υ\ in some
places. The relation between an affine parameter τ and t is obtained by the same
process from (4.22). Using the fact that the tangent vector to a null geodesic can
never become zero at any point so that \v\ can never become zero for finite t null
geodesic completeness can be shown in just the same way as timelike geodesic
completeness. These spacetimes are in fact also spacelike geodesically complete but
since this is only of marginal interest the proof will be omitted.

5. Comparison with Dust Solutions

The Vlasov equation is linear, and so there is no problem with considering
distributional solutions. It also makes sense to talk about distributional solutions
of the Vlasov-Einstein system provided the integration in v which is carried out
produces an energy-momentum tensor which is defined pointwise and not only in
a distributional sense. One kind of solution of this type is that where / takes the
form

f(x*,p") = -«o|flfΓ1 / 2p(* )5(Pβ - « f l(xα)), (5.1)
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where p and ua(x*) are smooth functions on spacetime. In this case the energy-
momentum tensor takes the form Taβ = pu"up. Such an energy-momentum tensor
represents dust, i.e. a fluid without pressure. Conversely any solution of the
Einstein equation with dust arises from a distributional solution of the Vlasov-
Einstein system in this way. Thus we see that dust solutions in general relativity
arise formally from the Vlasov-Einstein system by a singular limiting process. It
was found by Yodzis, Seifert and Muller zum Hagen [25] that spherically symmet-
ric solutions of the Einstein equations with dust as matter model can form naked
singularities; they produced a finite-dimensional family of such solutions. A more
general investigation of the development of naked singularities in spherically
symmetric dust spacetimes was carried out by Christodoulou [4]. He considered
solutions for which the matter is at rest at some initial time. He also- assumed that
the initial density was monotonically decreasing from the centre outwards which
rules out singularities of the type found in [25]. It was shown that in a variety of
circumstances where these assumptions are satisfied a singularity develops at the
centre which is locally or even globally naked, thus violating strong or even weak
cosmic censorship. For the discussion here we only require one detailed feature of
these results, namely that a naked singularity can occur even if the initial data are
arbitrarily small. Of course the kind of smallness assumption on the data which we
made to get global existence for the Vlasov-Einstein system does not make sense
for dust. What we wish to claim is that there is no reasonable definition of smallness
for dust which will rule out globally naked singularities since Christodoulou's
results show that these can occur even if the initial density is compactly supported
and the L00 norms of it and all its partial derivatives of all orders are smaller than
any prescribed collection of positive constants.

The wider significance of this observation for the cosmic censorship hypothesis
is as follows. Our intuition about the nature of gravitational collapse in general
relativity is based to a large extent on the exact solution of Oppenheimer and
Snyder [18] which is a spherically symmetric dust solution. Perturbing this within
the class of spherically symmetric dust solutions leads to a qualitative change in the
behaviour (formation of naked singularities). The results of this paper provide
evidence that this may merely be due to the pathological nature of dust as a matter
model. Moving to the Vlasov equation could restore the standard picture where
strong cosmic censorship is valid. To confirm this idea will, however, require
a generalisation of the results of the present work to the case where the data are no
longer assumed to be small.
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