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We show that unless the target density is particularly smooth, cross-validation applied directly to

nonlinear wavelet estimators produces an empirical value of primary resolution which fails, by an

order of magnitude, to give asymptotic optimality. We note, too, that in the same setting, but for

different reasons, cross-validation of the linear component of a wavelet estimator fails to give

asymptotic optimality, if the primary resolution level that it suggests is applied to the nonlinear form

of the estimator. We propose an alternative technique, based on multiple cross-validation of the linear

component. Our method involves dividing the region of interest into a number of subregions, choosing

a resolution level by cross-validation of the linear part of the estimator in each subregion, and taking

the ®nal empirically chosen level to be the minimum of the subregion values. This approach exploits

the relative resistance of wavelet methods to over-smoothing: the ®nal resolution level is too small in

some parts of the main region, but that has a relatively minor effect on performance of the ®nal

estimator. The fact that we use the same resolution level throughout the region, rather than a different

level in each subregion, means that we do not need to splice together different estimates and remove

arti®cial jumps where the subregions abut.
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1. Introduction

1.1. Smoothing-parameter role of the resolution level

Wavelet estimators are well known for their ability to capture irregular features of a curve,

and for their performance in distinguishing between stochastic aberrations and deterministic

¯uctuations; see, for example, Donoho and Johnstone (1994; 1995) and Donoho et al. (1995;

1996). However, they generally do less well at estimating smooth parts of a curve, for

example in regression problems when the signal to noise ratio is low.

A common cause of this problem is that elementary approaches to wavelet estimation

take the primary resolution level equal to 1, which produces over-smoothed estimates in

places where the target curve is smooth. This is re¯ected in the relatively large bias that

such estimates exhibit in peaks and troughs. The high bias also means that the estimates
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suffer from relatively prominent `Gibbs phenomenon' wiggles in places where the true

curve changes sharply, for example at jump discontinuities.

One way of avoiding these dif®culties is to choose the primary resolution level

empirically, taking account of the fact that it is a smoothing parameter. From several

viewpoints the primary resolution level plays the role of bandwidth ± or more concisely, the

inverse of bandwidth ± in the `linear' part of a thresholded wavelet estimator, and so

correct choice of this quantity can alleviate dif®culties caused by over- or under-smoothing

in simpler approaches to wavelet-based estimation.

1.2. Cross-validating linear estimators

Substantial progress in choosing the primary resolution level has been made by Tribouley

(1995), who suggested a cross-validation algorithm for choosing the level for linear wavelet

estimators. When applied to nonlinear estimators, however, Tribouley's approach can produce

substantial under-smoothing. It is in the nonlinear case that the majority of interest lies;

linear wavelet estimators generally perform no better, and sometimes worse (when rough or

asymmetric wavelet functions are used), than their kernel counterparts. Tribouley (1995) uses

the nonlinear part of the estimator only as a diagnostic.

To appreciate why problems can arise if one applies an algorithm developed for the

linear case to a nonlinear estimator, let us consider wavelet estimation of one of the target

densities considered by Tribouley (1995), the double exponential density, as a case in point.

The derivative of this density has a discontinuity at the origin, and we argue in Section 5

that this forces an estimator of primary resolution level based on a linear wavelet estimator

to be of size n1=4, where n denotes sample size. By way of contrast, the optimal resolution

level, in terms of minimizing integrated risk, is n1=(2r�1), where r > 2 denotes the order of

the wavelet. Since n1=4 is an order of magnitude larger than n1=(2r�1), the cross-validation

algorithm under-smooths by an order of magnitude. (Recall that resolution level is like the

inverse of bandwidth.) This can result in an erratic curve estimate.

Wavelet estimators are forgiving of over-smoothing. That is why the simple estimator

employed in the WaveThresh program (Nason and Silverman 1994), which takes the

primary resolution level equal to 1, performs relatively well; in asymptotic terms, the

penalty for even this very large degree of over-smoothing is only a logarithmic function of

sample size. However, wavelet estimators are no more forgiving of under-smoothing than

are conventional kernel estimators, and so choosing the resolution level too large, by an

order of magnitude, can have serious consequences. Therefore, the severe under-smoothing

noted in the previous paragraph can be a signi®cant problem.

1.3. Direct cross-validation of nonlinear estimators

On the other hand, applying cross-validation directly to the nonlinear form of a wavelet

estimator is unsatisfactory, for at least two reasons. First, the hard-thresholded version of a

nonlinear estimator is a discontinuous function of the primary resolution level. That dif®culty,

combined with the usual stochastic ¯uctuations of the cross-validation criterion, makes it very
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dif®cult to select the resolution level. In principle these problems can be alleviated by passing

to a form of soft thresholding, but in practice the erratic ¯uctuations persist.

More serious, at least for large samples, is the fact that in the nonlinear case the cross-

validation criterion does not accurately approximate the integrated squared error (ISE) of

the wavelet estimator. The rationale behind cross-validation is that the criterion should equal

ISE up to terms that either do not depend on the resolution level or are negligibly small

relative to ISE. However, we show in Section 5.6 (see particularly Theorem 5.4) that in the

nonlinear case, and in the case of target densities that are only piecewise smooth, the

criterion includes stochastic terms that are of larger order than ISE yet depend non-

negligibly on the primary resolution level. Therefore, choosing the resolution level so as to

minimize the cross-validation criterion does not produce asymptotic minimization of ISE.

Instead, it minimizes a measure of stochastic error that has a different order from, and has

no close connection to, ISE.

1.4. Multiple linear cross-validation for smoothing nonlinear estimators

In the present paper we suggest a means of overcoming the problems discussed in Sections

1.2 and 1.3. We introduce a `multiple cross-validation' algorithm for linear wavelet esti-

mators, enabling us to estimate the resolution level that is appropriate for nonlinear

estimators. Our technique involves dividing the region of estimation into subregions, applying

cross-validation of the linear estimator to estimate the resolution level for each subregion,

and taking the minimum of these values as the resolution level for the entire curve. (On some

occasions a larger value than the minimum might be used, but typically the minimum is an

appropriate choice.) We argue that this is more satisfactory than employing a different

resolution level over each of the subregions, since that approach requires curve estimates to

be spliced together where the subregions join, in order to remove arti®cial jump

discontinuities. We show, both numerically and theoretically, that the high-degree resistance

of wavelet methods to over-smoothing confers good performance in places where a larger

resolution level might otherwise have been used.

We also point out, in the context of adaptive choice of primary resolution level, that it

makes a lot of sense to eschew the usual dyadic de®nition of resolution level, and instead

choose it in the continuum. The issue of choice of smoothing parameter is really only

important, at least for wavelet estimators, when signal to noise ratio is low; and in such

cases a large body of statistical experience with kernel methods argues strongly against

restricting oneself to dyadic bandwidth choice. So it does too for choice of resolution level

for wavelet estimators.

Nason (1996) suggested using cross-validation to select the threshold parameter for

wavelet shrinkage, and Hurvich and Tsai (1998) proposed a threshold selector based on

cross-validation and Akaike's information criterion. Both contributions focused on a mean-

squared-error view of ®delity. It should be noted that in conventional asymptotic terms,

where the data distribution is kept ®xed as sample size increases, and the target function is

piecewise smooth, the threshold has only a high-order effect on mean squared error; see, for

example, Hall and Patil (1996). This property is also readily seen numerically. Thus, the
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threshold would not normally be regarded as a smoothing parameter. By way of contrast,

varying the resolution level can have a substantial, ®rst-order impact on both mean squared

error and qualitative numerical properties of the curve estimator.

The main features of our algorithm, and its relationship to other methods, are given in

the next section. Details of the algorithm, and theoretical properties, are presented for

density estimation in Sections 3 and 5, respectively. In Section 5.6 we show that cross-

validation for choosing the primary resolution level, when applied directly to nonlinear

wavelet estimators, does not produce asymptotic optimality in squared-error terms.

Numerical properties, for both density estimation and regression, are summarized in

Section 4.

2. Summary of methodology

Our algorithm is as follows.

1. Construct a wavelet pilot estimator of the true curve. The approaches suggested by

Donoho and Johnstone (1994; 1995) and Donoho et al. (1995), essentially the same as

that incorporated into the WaveThresh package, are possible choices for this step since

they do not require explicit selection of threshold or resolution level. However, the

nonlinear estimator whose resolution level is computed using the linear method of

Tribouley (1995) is often a better choice for the pilot. The fact that it tends to be

under-smoothed means that it gives a good indication of places where the target

density is rough.

2. Visually divide the region R, where the ®nal estimator is required, into disjoint

subregions S 1, . . . , S m, such that R � S l S l . Each subregion is an interval or a

union of intervals, where the pilot estimator has relatively homogeneous roughness.

3. Using a relatively standard cross-validation algorithm, but employing only the linear

part of the wavelet curve estimator, make an empirical choice of resolution level for

each of the subregions. Take the minimum of these levels as the `®nal' estimator of

the resolution level.

4. Substitute this resolution level estimate into the nonlinear, thresholded wavelet

estimator, and apply it across the full region R.

To elaborate on the kind of subdivision that we have in mind in step 2, let us suppose

the pilot estimator suggests that the target curve exhibits several clearly de®ned `bumps', as

well as an interval where the curve behaves particularly erratically. Then we could put the

latter interval into one of the subregions S l , put each of the high-curvature `tops' of the

bumps into a separate subregion, and put the relatively low-curvature `sides' of the bumps

into further subregions. Alternatively, we could put the union of the high-curvature parts of

bumps into one subregion, and the union of the low-curvature sides into another, in which

case there would be just three subregions in all (including the interval where behaviour is

particularly erratic). Note particularly that we do not necessarily put the entire bump into

the same subregion; this avoids problems with under-smoothing, caused by curves where the

tops of bumps are relatively sharp.
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The algorithm is surprisingly robust against misspeci®cation of different subregions S l .

We shall explain why in Section 3, noting there that in most cases it is necessary only to

specify a subregion where f is smooth; subregions where it is rough take care of them-

selves.

When determining resolution level in step 3 of the algorithm we have a choice of

following `standard' practice, where the level is taken to be an integer power of 2, or

allowing resolution level to vary in the continuum. The former approach allows use of

Mallat's pyramid algorithm for computation, but can produce signi®cant deterioration in

performance in mean-squared-error terms; see Hall and Nason (1997). It is analogous to

using a kernel smoother with its bandwidth restricted to being an integer power of 1
2
. We

adopt the continuum approach, and in Section 4 give a numerical illustration of its superior

performance (although at the expense of greater computational labour).

The good performance of estimators computed using our algorithm is underpinned by the

following three properties, each of which will be veri®ed theoretically in Section 5.1.

(A) In places where the true curve is smooth, the linear form of the wavelet estimator is

virtually equivalent to its nonlinear, thresholded form, in the sense that the

thresholding operation is essentially degenerate. Therefore, since the focus of our

resolution-level choice method is effectively on places where the true curve is

smooth (see (C) below), then almost nothing is lost through con®ning attention to

the linear part of the estimator in step 3 of the algorithm.

(B) The `optimal' resolution level, which acts like the inverse of the bandwidth of a

conventional kernel estimator (see, for example, Hall and Patil 1995a; 1995b; 1996),

is smaller for smoother parts of the curve. Therefore, by using the smallest of the

resolution levels determined by cross-validation, as suggested in step 3 of the

algorithm, we are in effect focusing on the smoothest parts of the curve.

(C) In places where the true curve is rough, choice of primary resolution level for the

nonlinear wavelet estimator has only a minor impact on performance. This is because

nonlinear terms capture relatively erratic ¯uctuations of the true curve, and their

ability to do this is largely unaffected by the primary resolution level. This provides

support for our decision to focus on relatively smooth parts of the curve.

Property (B) also indicates a potential shortcoming of our algorithm: if the smoothest

part of the curve is virtually ¯at then we might wish to exclude that part from calculation

of the minimum resolution level, since a level that represents a compromise between

`smoothest' and `roughest' places is generally preferable in such extreme settings. Of

course, our technique of identifying smooth and rough parts of the curve through a pilot

estimator provides the opportunity to identify such cases.

A fourth property argues that we should not, in place of step 3, apply cross-validation to

the whole region where we wish to estimate the curve, unless the curve is particularly

smooth and homogeneous there (in which case we may not be interested in using wavelet

methods at all). For simplicity we discuss this property below in the case where roughness

comes about through a jump discontinuity; but, more generally, other forms of roughness

cause the same problem. Theoretical justi®cation for the property is given in Section 5.1.
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(D) If a low-order derivative of the true curve has a jump discontinuity at a point in the

interior of an interval I , and if we choose the resolution level by applying cross-

validation to the linear form of the wavelet estimator on a region that includes I ,

then the empirical level that we obtain will be too large by an order of magnitude,

relative to that which gives good mean-square performance.

It is for this reason that our approach differs from the main method suggested by Tribouley

(1995), which, we argue in Sections 4 and 5, does not necessarily produce nonlinear

estimators that have good mean-squared-error performance or give qualitatively pleasing

results. It should be stressed, however, that Tribouley developed her methods for the linear

case.

Tribouley (1995) also proposed a second method for linear estimators. This involves: (a)

dividing R into subregions S l that are each fairly homogeneous in terms of their

smoothness; (b) using separate cross-validations on those subregions; (c) constructing the

respective curve estimates over the sets S l ; and ®nally, (d) putting these estimates together,

side by side, to form the ®nal linear estimate. While this method is related to our own, we

argue that ours has advantages even in the linear case. In particular, the estimate produced

by steps (a)±(d) has jump discontinuities in places where subregions join, which need to be

removed using a separate `splicing' algorithm.

Secondly, putting the `joins' at valleys between separate modes or bumps, as suggested

by Tribouley (1995) for her second method, can be inadequate if there is a discontinuity in

the derivative of the curve at the mode. In this case the ®nal wavelet estimator will again

under-smooth on the sides of bumps, since it focuses too hard on getting the tops of bumps

right. In our experience the pilot wavelet estimator is often not capable of distinguishing

between a sharp peak on the one hand, and a smooth peak with stochastic ¯uctuations near

the mode on the other; hence our suggestion earlier that the `tops' and `sides' of bumps be

treated as different subregions S l . However, treating the tops and sides separately, and

using Tribouley's second method, will lead to a large number of jump discontinuities at

joins in the ®nal estimate; all of these need splicing.

Thirdly, our experience with local smoothing in the kernel case suggests that attempting

local smoothing of wavelet estimators, for example by using a different primary resolution

level for each of two different bumps in a smooth, bimodal density, is often fruitless if the

resolution level is constrained to be a power of 2. For example, if the bumps are of

approximately the same height then the width of one has to be about twice that of the other

before different bandwidths on a dyadic scale (as employed by Tribouley, 1995) are going

to be capable of applying effective adaptive smoothing. We shall give an example in

Section 4, employing the same bimodal density as Tribouley (1995), and showing the

marked improvement that can be achieved by choosing resolution levels in the continuum.

3. Details of methodology

For the sake of brevity we give details only in the case of density estimation; that of

regression is similar. Let the wavelet basis be the sequence of functions represented by

322 P. Hall and S. Penev



ök(x) � p1=2ö( pxÿ k) and øik(x) � p
1=2
i ø( pixÿ k), where p . 0 denotes the primary

resolution level, pi � p 2i, and the scaling function ö and wavelet ø are assumed to be

compactly supported. We assume, too, that the wavelet is of order r, in the sense that for a

largest integer r > 1 and a constant k 6� 0,�
xsø(x) dx � 0 if 0 < s < r ÿ 1,

r!k if s � r:

�
(3:1)

Then the wavelet expansion of a density f is given by

f �
X

ÿ1, k,1
bk ök �

X1
i�0

X
ÿ1, k,1

bik øik ,

where bk �
�
ök f and bik �

�
øik f . Given data X1, . . . , X n from the distribution with

density f , estimators of bk and bik are respectively b̂k � nÿ1
P

j ök(X j) and b̂ik �
nÿ1

P
j øik(X j), giving rise to the thresholded wavelet estimator,

f̂ (xj p) �
X

ÿ1, k,1
b̂k ök(x)�

Xqÿ1

i�0

X
ÿ1, k,1

b̂ik I(jb̂ik j. äi)øik(x), (3:2)

where äi denotes the threshold at resolution level i.

There are various ways of selecting äi, of which the two most popular are the `constant'

threshold äi � C (nÿ1 log n)1=2 (not depending on i) and the `level-dependent' threshold

äi � C(i=n)1=2, where in each case C is a constant depending only on f (or empirically, on

a pilot estimator of f ). The constant threshold case is widely used, and there we may take

C > (2 sup f )1=2, where the supremum is over the region R where we wish to estimate f .

See, for example, Donoho et al. (1995). Level-dependent thresholding has been treated in

the context of density estimation by Delyon and Juditsky (1996) and Donoho et al. (1996),

for example.

In our numerical work in the case of density estimation we shall explore both the

constant and level-dependent thresholding approaches. In the case of regression, and in our

theoretical arguments, we shall con®ne attention to constant thresholding. Using that

approach, but taking p � 1 in the de®nition of f̂ (xj p) in (3.2), we obtain the pilot estimator

mentioned in step 1 of the algorithm in Section 2.

The linear part of f̂ (�jp) is the estimator

f̂ lin(xj p) �
X

ÿ1, k,1
b̂k ök(x) � (nh)ÿ1

Xn

j�1

K(x=h, X j=h),

where

K(x, y) �
X

ÿ1, k,1
ö(x� k)ö(y� k) (3:3)

and h � pÿ1. Thus, the linear estimator is a generalized kernel estimator with bandwidth

equal to the inverse of the resolution level; see, for example, Hall and Patil (1995a). Let
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f̂ lin,ÿ j(�j p) denote the version of f̂ lin(�jp) in which the sample size is reduced to nÿ 1 by

deleting observation X j.

Let the subregions to which we apply cross-validation be S 1, . . . , S m. The cross-

validation criterion on S l , as a function of the resolution level p and computed for the

linear estimator f̂ lin(�j p), is

CVl ( p) �
�

S l

f̂ lin(xjp)2 dxÿ 2nÿ1
Xn

j�1

f̂ lin,ÿ j(X jj p)I(X j 2 S l ): (3:4)

This is borrowed from Hall and Schucany (1989), where it was used for local bandwidth

selection in the context of conventional curve estimators. See Mielniczuk et al. (1989) for a

closely related criterion.

Let p̂l denote the value of p that minimizes CVl ( p). Following the algorithm given in

Section 2 we do the minimization in the continuum, not just for the dyadic sequence 2k for

k > 1. Put

p̂ � min
1<l <m

p̂l : (3:5)

We take p̂ as our estimator of primary resolution level for constructing the ®nal estimator,

which is ~f � f̂ (�j p̂).

Tribouley (1995) suggests calculating CVl , and in particular the series on the right-hand

side of (3.4), using Parseval's identity. However, it may be shown that, since only a subset

of the support of f is involved, this leads to edge effects which can reduce performance of

the ®nal estimator. In particular, the cross-validation function produced by Parseval's

identity is different from that in (3.4).

The fact that the estimator of primary resolution level is taken as the minimum of values

for different subregions makes our algorithm inherently robust against misspeci®cation of

the regions S l in step 2. Indeed, provided that only one of the subregions is an interval

over which the target function is relatively smooth, the resolution level de®ned in (3.5) will

be appropriate for estimating f in places where it is erratic or rough. The relative resistance

of wavelet methods to over-smoothing comes to our aid here: the ®nal resolution level may

be too small in some parts of R, but that nevertheless has only a minor effect on

performance of the ®nal estimator.

We shall show in Section 5 that if f is piecewise smooth on R, and if the S l are such

that none of their endpoints is a point of jump discontinuity of f or of one of its ®rst r ÿ 1

derivatives, then our algorithm will produce an estimator of primary resolution level of the

correct order. Of course, it is possible to consistently estimate all the jump discontinuities of

f and all its derivatives, for example using wavelet methods; see, for example, Wang

(1998). Therefore, an automatic procedure for selecting S 1, . . . , S m, giving minimal order

of ISE, is readily constructed in this case. Of course, f would not be as simple as a

function whose only irregularities were jump discontinuities, but nevertheless the robustness

properties noted in the previous paragraph ensure that selection of appropriate subregions

S l is not a critical task; in most cases it is necessary only to ®nd one subregion where f is

relatively smooth, and then the subregions where f is rough will be accommodated.
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4. Numerical results

4.1. First problem: bimodal densities

Our ®rst example is of the case where f is the density of a normal mixture,

1
2
N (0, 1)� 1

2
N (3, 0:32): (4:1)

The same density was treated by Tribouley (1995). Figure 4.1 shows typical graphs of the

two abutting linear estimates produced by Tribouley's approach (dotted line), and the

nonlinear estimate obtained using our method (long-dashed line). The ISE values are

respectively 1:73 3 10ÿ2 and 1:24 3 10ÿ2. To enable close comparison with Tribouley's

method, we used only two subregions to construct both estimates; they were the subregions

employed by Tribouley (1995), i.e. [ÿ3, 2] and [2, 5]. Primary resolution level was chosen in

the continuum for our method, and dyadically for the method of Tribouley. (However, for her

approach, here and below, we used the cross-validation formula (3.4) directly instead of the

0.6

0.4

0.2

0.0

22 0 2 4

f(
x)

x

Figure 4.1. First bimodal example. The solid line depicts the true density of the normal mixture in

(4.1), the dotted line is the estimate suggested by Tribouley's (1995) second method, and the long-

dashed line is the estimate proposed in section 2, although using only two subregions.
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approximation based on Parseval's identity; this removed problems arising from inexactness

at edges of subregions.) Sample size was n � 200. We employed constant thresholding for

both estimators. The wavelet used in this example was from the Daubechies family with

r � 5. Filter coef®cients for this wavelet are given by Daubechies (1992, p. 195). Given its

support width, the wavelet has extremal phase and the greatest number of vanishing

moments. Similar results are obtained with different wavelets, but we rely on our theoretical

account in Section 5, rather than repeated simulation, to af®rm the validity of this gen-

eralization.

The main disadvantage of Tribouley's method in this setting is the visually displeasing

`join' between estimates of the separate bumps. That problem can be overcome by

constructing the linear or nonlinear estimate over the whole real line, using the primary

resolution level derived for the linear estimate. However, that can lead to serious under-

smoothing problems, particularly if the second bump of the density is sharper than that for

the distribution at (4.1).

For example, consider the normal mixture

1
2
N (0, 0:52)� 1

2
N (1:5, 0:12): (4:2)

To construct a density estimate using multiple cross-validation we employed four subregions,

as suggested in Section 2; these were (ÿ1, ÿ0:4], [ÿ0:4, 0:6], [0:6, 1:2] and [1:2, 1).

Typical results are illustrated in Figure 4.2. Figure 4.2(a) shows the nonlinear wavelet

estimate based on the multiple cross-validation estimate of primary resolution level; and, for

comparison, Figure 4.2(b) shows the linear and nonlinear wavelet estimates when resolution

level is chosen by standard cross-validation on the whole real line. For all three estimates

depicted in Figure 4.2 we chose resolution level in the continuum, and took n � 800.

The in¯uence of the narrower second bump is clearly evident from Figure 4.2; it leads to

signi®cant under-smoothing of the ®rst bump, and hence to excessive stochastic ¯uctuations,

unless the multiple cross-validation approach is used. Depending on sample size, as well as

sample, these ¯uctuations can be either more or less pronounced if resolution level is

chosen dyadically rather than in the continuum. Figure 4.3 shows the effect of using

dyadically chosen primary resolution level in the nonlinear estimate in Figure 4.2(a);

random ¯uctuations have now become even more of a problem. In the realization illustrated

in Figure 4.3, continuum choice of primary resolution level suggests p � 2:43 (giving rise

to the estimator depicted by the long-dashed line), whereas dyadic choice requires p � 4

(indicated by the dotted line). Using the latter results in ISE being in¯ated by a factor

of 1.55.

4.2. Second problem: double-exponential density

This example, where the derivative has a jump discontinuity at the origin, was investigated by

Tribouley (1995) using a linear wavelet estimator and conventional cross-validation.

Theoretical arguments given in Section 5 show that better ISE performance can be achieved

using a nonlinear estimator and multiple cross-validation. Figure 4.4 illustrates this point

numerically. There, the values of ISE, averaged over 500 samples of size n � 800, are
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graphed as a function of the choice of the subregions used for multiple cross-validation. In

this section alone, the wavelet used was from the Daubechies family with r � 3.

We employed two subregions, [ÿî, î] and (ÿ1, ÿî] [ [î, 1), and so the ®gure plots the

average value of the ISE as a function of î. Virtually identical results are obtained for three

subregions, [ÿî, î], (ÿ1, ÿî] and [î, 1). The sampled density was f (x) � eÿ2jxj, and

resolution level was chosen in the continuum. The optimal value of î is about 0.7. As

î!1, the value of the average ISE is asymptotic to that which would be obtained using

Tribouley's method, although for continuous choice of resolution level. (The average ISE for

dyadic choice of resolution level is greater.) Graphs of nonlinear estimates obtained using

our multiple cross-validation method with î � 0:5 generally have fewer spurious bumps

than linear estimates constructed using standard cross-validation.

Figure 4.2. Second bimodal example. (a) The true density of the normal mixture at (4.2) (solid line)

and the nonlinear estimate (long-dashed line), with resolution level computed using multiple cross-

validation. (b) The true density, the linear wavelet estimate with primary resolution level computed

using standard cross-validation (dotted line), and the nonlinear wavelet estimate using the same

resolution level (short-dashed line).

2.0

1.5

1.0

0.5

0.0

22 21 0 1 2
x

f(
x)

(a)

2.0

1.5

1.0

0.5

0.0

22 21 0 1 2
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4.3. Third problem: comb density

Here we consider the `comb density' of Marron and Wand (1992), being the density of the

®ve-component normal mixture,X5

i�0

(25ÿi=63)Nf(65ÿ 96 3 0:5i)=21, (32=63)2=22ig:

It is depicted by the solid line in Figure 4.5.

The ®gure also shows typical results of ®rst applying standard cross-validation to the

linear wavelet estimator, and then using the resolution level derived in that way to construct

either the linear estimate (dotted line in Figure 4.5) or the nonlinear estimate (long-dashed

line). Both estimates are highly susceptible to stochastic ¯uctuations among data in the

support of the lowest-frequency bump of the comb density, and for this reason neither is
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0.0

22 21 0 1 2
x

f(
x)

Figure 4.3. Effect of using dyadic resolution level. The solid line depicts the true density of the

normal mixture in (4.2), the long-dashed line shows the nonlinear estimate with resolution level

chosen in the continuum, using multiple cross-validation, and the dotted line depicts the nonlinear

estimate with dyadic resolution level chosen by multiple cross-validation. The sample was the same as

that for Figure 4.2.
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satisfactory. However, by virtue of having been constructed using a primary resolution level

that is heavily in¯uenced by high-frequently parts of the curve, the linear estimate performs

about as well as its nonlinear counterpart here. (For Figures 4.5 and 4.6, sample size was

n � 800 and constant thresholding was used. Resolution level was chosen in the con-

tinuum.)

Next we divided the support of the density into three subregions, representing the

supports of the lowest-frequency bump, the second lowest-frequency bump, and the rest of

the density, respectively. We performed multiple cross-validation, taking the estimate of

primary resolution level to be the minimum of the three cross-validated levels for the

subregions, and used this level to construct ®rst the linear estimate (dotted line in Figure

4.6) and then the nonlinear estimate (long-dashed line in Figure 4.6). The sample was the

same as for Figure 4.5.

The linear estimator now performs much better in the ®rst two low-frequency bumps of

the comb density, since the primary resolution level has (in effect) been optimized for at

least the ®rst of these places; but it performs poorly in the high-frequency bumps. On the

other hand, the nonlinear estimator now performs well across the entire range of
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î

Figure 4.4. Effect of choice of subregions: plot of average value of ISE as a function of î. The true

density was eÿ2jxj, and the estimates were computed using multiple cross-validation for two

subregions, of which one was [ÿî, î].
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frequencies. Using a level-dependent threshold for the nonlinear estimate improves

performance of the estimate of the third lowest-frequency bump, but introduces three

small, spurious wiggles to the estimate of the lowest-frequency bump.

4.4. Fourth problem: nonparametric regression

We made observations of the pair (xi, Yi), for 1 < i < 1000, where the xi were equally

spaced on I � (ÿ17ð=30, 17ð=30], Yi � f (xi)� åi, the åi were independent and identically

distributed standard normal random variables, and the regression mean f was de®ned by

f (x) � ÿ cos 2fx� (ð=15)g if x 2 (ÿ17ð=30, 0],

cos 2fxÿ (ð=15)g if x 2 (0, 17ð=30]:

�
Our aim was to estimate f over I . The wavelet used was from the Daubechies family with

r � 5.
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Figure 4.5. Comb density estimates using one-subregion cross-validation. Primary resolution level was

calculated using standard cross-validation for the linear estimator on the whole real line. This level

was then used to compute the linear estimate (dotted line) and nonlinear estimate (long-dashed line).
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First we chose the primary resolution level, p, using conventional crossvalidation for a

linear estimator. The results were satisfactory, but particularly in its right-hand half the

estimated regression curve showed many spurious wiggles that were due to using too small

a value of p.

Next we divided I into three subregions, (ÿ17ð=30, ÿ0:1], (ÿ0:1, 0:1] and

(0:1, 17ð=30], and employed multiple cross-validation there, taking the overall estimate

of primary resolution level to be the smallest of the three cross-validated values. A typical

realization of the resulting nonlinear estimate is depicted in Figure 4.7. The long-dashed

and dotted lines there show estimates for continuous and dyadic choice, respectively, of

resolution level; they correspond to ISEs of 1:15 3 10ÿ2 and 1:85 3 10ÿ2, respectively. This

extent of reduction of mean squared error is typical of the quantitative advantages of choice

of resolution level in the continuum.

The wiggles at the left-hand end of the curve estimate, and at the jump discontinuity, are

caused by effects of Gibbs phenomenon type. They are less serious than those which arise

when taking the primary resolution level equal to 1, as in the WaveThresh package, since
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Figure 4.6. Comb density estimates using three-subregion cross-validation. Primary resolution level

was calculated using multiple cross-validation of the linear estimator on three subregions. This level

was applied to the linear estimate (dotted line) and nonlinear estimate (long-dashed line).
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they are produced by excessive bias at discontinuities, and bias is less pronounced for our

cross-validated estimates.

5. Theoretical properties

5.1. Properties (A)±(D) in Section 2

Our aim here is to provide theoretical support for the four main properties asserted in Section

2, which underpin our cross-validation algorithm. As in Section 3, we con®ne attention to the

case of density estimation, although regression may be treated similarly. For the sake of

simplicity we quantify `roughness' of the target function in terms of the order of the

derivative where the ®rst discontinuities occur. Alternative approaches will be discussed in

Section 5.5.

1.0

0.5

0.0

20.5

21.0

21 0 1
x

f(
x)

Figure 4.7. Regression mean with discontinuity. Both the graphed wavelet-based estimates are

nonlinear. Primary resolution level was calculated using multiple cross-validation of the linear

estimator on three subregions, using either dyadic choice (giving the estimate shown by the dotted

line) or choice in the continuum (long-dashed line) of resolution level.
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We begin by addressing the basic behaviour of the estimators f̂ (�j p) and f̂ lin(�jp).

Assume that R is a compact interval, and ö and ø are compactly supported, HoÈlder

continuous on the real line, and satisfy the rth-order condition (3.1) with r > 1 and k 6� 0.

Suppose, too, that the threshold in the de®nition of f̂ (�jp) is taken as ä � äi �
C(nÿ1 logn)1=2, where C > (2 sup f )1=2. Call these conditions (C1). Note that they imply

that the series at (3.3) has only a ®nite number of non-zero terms, that number being

bounded uniformly in x and y, and that K is HoÈlder continuous in both variables. These

properties make limit theory for the linear estimator f̂ lin(�j p) relatively straightforward.

In our ®rst result below we suppose that f has r continuous derivatives in an open

interval R9 containing R; call this condition (C2). In the second result we address the case

of a relatively irregular function, for example where f has r continuous derivatives in R9
in a piecewise sense, where for each 0 < s < r, f (s) has only a ®nite number of points of

discontinuity at each of which it has left- and right-hand limits. Call this condition (C3).

De®ne

A1 �
�

R
f and A2 � k2(1ÿ 2ÿ2r)ÿ1

�
R

( f (r))2,

where k is as at (3.1).

For smooth functions f the estimators f̂ lin(�j p) and f̂ (�j p) enjoy essentially the same ISE

expansions on R, as our ®rst theorem shows.

Theorem 5.1. If (C1) and (C2) hold, and p!1 and n=p!1, then�
R
f f̂ lin(xj p)ÿ f (x)g2 dx � A1 nÿ1 p� A2 pÿ2r � op(nÿ1 p� pÿ2r): (5:1)

If (C1) and (C3) hold, and p!1, q!1, pqä2 ! 0 and p2r�1ä2 !1, where pq � p2q,

then �
R
f f̂ (xj p)ÿ f (x)g2 dx � A1 nÿ1 p� A2 pÿ2r � op(nÿ1 p� pÿ2r): (5:2)

Results (5.1) and (5.2) are derived by Hall and Patil (1995a; 1995b), respectively.

The terms in nÿ1 p and pÿ2r on the right-hand sides of (5.1) and (5.2) represent the

dominant contributions to error about the mean and to squared bias, respectively, in the ISE

formulae. Of course, (5.1) and (5.2) are very similar to their counterparts in ISE and mean

ISE expansions for standard kernel estimators; see, for example, formula (2.12) of Wand

and Jones (1995, p. 21). It follows from (5.1) and (5.2) that in both cases the asymptotically

optimal primary resolution level is given by

popt � B1 n1=(2r�1), (5:3)

where B1 � (2rA2=A1)1=(2r�1).

Importantly, (5.1) fails if f or one of its ®rst r ÿ 1 derivatives has a jump discontinuity

in R. To appreciate this point, suppose f has t � 1 < r piecewise continuous derivatives on

an open interval R9 containing R, with left- and right-hand derivatives existing at each
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point, and equal to one another at all but a ®nite number of points; R contains a point of

non-degenerate jump discontinuity in f ( t); and f has t ÿ 1 continuous derivatives in R.

Call this condition (C4).

Theorem 5.2. If (C1) and (C4) hold, and p!1 and n=p!1, then�
R
f f̂ lin(xjp)ÿ f (x)g2 dx � A1 nÿ1 p� A3 pÿ(2 t�1) � op(nÿ1 p� pÿ(2 t�1)), (5:4)

where A3 . 0 depends on the locations, sizes and number of jump discontinuities of f ( t) in

R.

To derive (5.4), note that there is a term of size pÿ t in the bias expansion of f̂ lin(�j p) in

a neighbourhood of radius O( pÿ1) of each jump discontinuity of f ( t) in R. This gives rise

to a term that is asymptotic to a constant multiple of ( pÿ t)2 pÿ1 � pÿ(2 t�1) in the bias

contribution to ISE. The total of these contributions, over all jump discontinuities of f ( t) in

R, equals the contribution A3 pÿ(2 t�1) � o( pÿ(2 t�1)) to the right-hand side of (5.4). It should

be added to the right-hand side of (5.1), giving (5.4).

Result (5.4) shows that instead of (5.3), the asymptotically optimal primary resolution

level is now given by

popt � B2 n1=f2( t�1)g, (5:5)

where B2 � f(2t � 1)A3=A1g1=f2( t�1)g.
By way of contrast, the nonlinear estimator f̂ (�jp) is able to adapt well to aberrations in

the target function, and in consequence condition (C2), under which (5.2) holds, permits

jump discontinuities in any of the ®rst r derivatives of f . These issues of comparative

performance are addressed in more detail in Remark 2.6 of Hall and Patil (1995b), albeit in

the context of a comparison of standard kernel estimators and f̂ (�j p). The case of

generalized kernel estimators, such as f̂ lin(�j p), is similar to that of standard kernel esti-

mators.

Each of the key properties (A)±(D) stated in Section 2 is given theoretical support by the

results noted above. In particular, property (A) is re¯ected in the fact that the expansions of

f̂ (�jp) and f̂ lin(�j p) are identical when f has r continuous derivatives; see (5.1) and (5.2).

Result (5.5), and a comparison of (5.3) and (5.5), show that as the roughness of f decreases

(i.e. as the value of t increases), the order of the optimal resolution level decreases, as

asserted by property (B).

Such a comparison also shows that if f is rougher than the order of the chosen wavelet

would suggest (i.e. if the order r of the wavelet is strictly larger than the number of

continuous derivatives that f possesses on R), and if, when constructing the nonlinear

estimator f̂ (�jp), we use a resolution level that is dictated by optimal performance of the

linear estimator f̂ lin(�j p), then we can obtain a value of p that is too large by an order of

magnitude ± speci®cally, it will be of size n1=f2( t�1)g, for t < r ÿ 1, whereas it should be of

size only n1=(2r�1). This is a theoretical interpretation of property (D).

The fact that the ISE expansion at (5.2) does not depend on jump discontinuities of the

®rst r derivatives of f (should those discontinuities exist), regardless of choice the
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resolution level p, re¯ects the fact that choice of resolution level is relatively unimportant

to the ability of the nonlinear wavelet estimator in capturing relatively rough features of the

true curve. This provides theoretical justi®cation for property (C). See also Section 5.4.

5.2. Theoretical performance of cross-validation

Let R � S 1<l <m S l denote a subdivision of R into subregions S l , representing the

subdivision arising in step 2 of the algorithm in Section 2, and assume S l is a non-

degenerate interval, that no points of discontinuity of f , f (1), . . . , f (rÿ1) lie on the boundary

of S l , and that f (r) does not vanish identically on S l , for 1 < l < m. Call this condition

(C5). Let tl denote the smallest integer t 2 [0, r ÿ 1] such that f ( t) has a jump discontinuity

at a point in S l , and put tl � r if no such integer exists. If tl < r ÿ 1, de®ne

popt,l � B2l n1=f2( tl �1)g,

where B2l � f(2tl � 1)A3l =A1l g1=f2( tl �1)g and A1l , A3l are the versions of A1, A3 in (5.4)

that arise when R on the left-hand side of (5.4) is replaced by S l . (Thus, popt,l is the ver-

sion of popt, at (5.5), when S l replaces R.) If tl � r, put

popt,l � B1l n1=(2r�1),

where B1l � (2rA2l =A1l )1=(2r�1) and A1l , A2l are the versions of A1, A2 in (5.1) that arise

when R on the left-hand side of (5.1) is replaced by S l . (Thus, popt,l is the version of popt at

(5.3), when S l replaces R.) Let p̂l denote the empirical resolution level that minimizes the

cross-validation criterion CVl de®ned in (3.4).

Theorem 5.3. If (C1), (C2) and (C5) hold then�
S l

f f̂ lin(xj p̂l )ÿ f (x)g2 dx

infp . 0

�
S l

f f̂ lin(xj p)ÿ f (x)g2 dx

! 1, (5:6)

p̂l � f1� op(1)g popt,l (5:7)

for 1 < l < m.

Results (5.6) and (5.7) may be derived by modifying, in relatively minor ways, arguments

of Stone (1984) and Hall (1983), respectively. In particular, note that, except for the fact

that the linear estimator f̂ lin(�j p) is of the generalized kernel type, rather than a standard

kernel estimator, and R is properly contained in the support of f , the results of Stone are

directly applicable to it.

Properties (5.6) and (5.7) together con®rm that p̂l provides asymptotic minimization of

ISE on S l , and that it is asymptotic to the optimal primary resolution level there.
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5.3. Comparison of our method with those of Tribouley (1995)

Assume that the decomposition R � S l S l produces at least one subregion S l where there

are no points of discontinuity of f (rÿ1), and that f (r) does not vanish identically on any of

the regions S l . (These are the sorts of subregion that are suggested by the discussion

following the algorithm in Section 2.) Then it follows from the versions of (5.1) or (5.4)

(depending on whether tl � r or tl , r, respectively) with R replaced by S l , for

1 < l < m, and from (5.6) and (5.7), that our empirical estimator p̂ � min p̂l of the primary

resolution level (see step 3 of the algorithm) is asymptotic to min popt,l , where popt,l was

de®ned in Section 5.2; that popt,l � B3 n1=(2r�1), where 0 , B3 ,1; and that this is the

optimal order for the primary resolution level to take.

On the other hand, if we use cross-validation for the full region R, instead of dividing

the region into subregions S l , and if f ( t) has a ®nite number of non-degenerate jump

discontinuities in R, then it follows from (5.4) and from the version of (5.6) with S l

replaced by R that the empirical estimator of primary resolution level will be asymptotic to

n1=f2( t0�1)g, where t0 (assumed to satisfy 0 < t0 < r ÿ 1) denotes the minimum of values of

t such that f ( t) has a jump discontinuity in the interior of R. This is the main approach

suggested by Tribouley (1995), although it should be stressed that her techniques were

developed for linear, rather than nonlinear, wavelet estimators. The method is identical to

Tribouley's second approach in the case of estimating unimodal densities, such as the

double exponential, where (when applied to nonlinear wavelet estimators of non-smooth

functions) it suffers from problems similar to those noted immediately below.

A resolution level of size n1=f2( t0�1)g is an order of magnitude larger than the `optimal'

order n1=(2r�1), and as a result the corresponding wavelet estimator will show more stoch-

astic variability than is optimal. Indeed, using the analogy that the effective bandwidth of a

wavelet estimator is the inverse of its primary resolution level, a `global' cross-validation

approach which addresses the whole region R simultaneously, rather than treating its

decomposition into subregions, produces a curve estimate that in many respects is like that

obtained using too small a bandwidth for a standard kernel estimator. We provided

numerical evidence for this property in section 4.

5.4. Robustness of nonlinear estimator against over-smoothing

The nonlinear wavelet estimator f̂ (�jp) is more resistant against choice of too small a value

of p than result (5.2) might indicate. Indeed, the regularity condition p2r�1ä2 !1 imposed

there does not allow p to be of smaller order than (nÿ1 log n)1=(2r�1), if (5.2) is to hold. In the

contrary case, where p � Of(n log n)1=(2r�1)g, the mean squared error (and mean ISE) is

generally of order (nÿ1 log n)2r=(2r�1); see Remark 2.3 of Hall and Patil (1995b). This rob-

ustness against over-smoothing is not available to the linear estimator f̂ lin(�jp), for example.

That it exists for nonlinear estimators provides further support for property (C) in Section 2,

which underpins our method.

However, the problems suffered by choosing too large a value of p are of quite a
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different nature, and the nonlinear estimator is no more resistant against them than is the

linear estimator f̂ lin(�j p).

5.5. Other measures of `roughness'

In the discussion above we have quanti®ed roughness in terms of discontinuities: a density is

rougher if jump discontinuities occur in derivatives of lower order. This leads to a particularly

simple and transparent theoretical description of performance, but of course it is not the only

approach that could be taken. An alternative is to allow the density f to depend on n and

equal f � çn, where çn denotes a function that integrates to 0 and is supported on a

decreasingly small interval, as n!1. For example, we might take çn(x) � ø(ënx), where ø
denotes a ®xed, smooth, compactly supported function satisfying

�
ø � 0, and fëng is a

sequence of positive numbers diverging to 1. In this model for roughness, rougher densities

correspond to those for which ën is larger. It is possible to construct a theoretical account of

this model that parallels that given above, and so provides further support for the properties

(A)±(D) in Section 2 that motivate our algorithm for empirically choosing the primary

resolution level.

5.6. Failure of direct nonlinear cross-validation

The cross-validation criterion CVl , de®ned in (3.4), is a special case of the general criterion,

CV(s) �
�

f̂ (�js)2 ÿ 2nÿ1
Xn

j�1

f̂ÿ j(X jjs), (5:8)

where f̂ (�js) is a density estimator computed from a sample X � fX 1, . . . , X ng; f̂ÿ j(�js) is

the version of f̂ (�js) calculated from X nfX jg; CV, f̂ and f̂ÿ j depend on the smoothing

parameter, s (e.g. bandwidth for a kernel estimator, resolution level for a wavelet estimator);

and, for notational simplicity, we have taken the region of interest to be the whole real line.

Of course, the type of thresholding (hard or soft) and the smoothness of the wavelet

function both affect performance, along with choice of primary resolution level. The

distinction between hard and soft thresholding is present only in second-order terms in an

expansion of ISE, however, and smoothness of ø affects ISE in more nebulous ways. It is

sometimes suggested that any known fractal properties of the target function could be

re¯ected in the estimator by choosing a wavelet whose graph had a similar fractal

dimension. This is beyond the scope of our work, not least because it is not really possible

to choose the threshold or the smoothness of ø by focusing on ISE properties. On the other

hand, the results in Section 5.1 make it clear that there is a connection between optimal

choice of primary resolution level, p, and wavelet order, r. Cross-validation allows us to

assess empirically the effect that this linkage has on L2 performance, and to minimize (at

least asymptotically) its impact on estimator error.

The rationale behind cross-validation is that CV(s) is an almost unbiased approxima-

tion to Q(s) � � f̂ (�js)2 ÿ 2
�

f̂ (�js) f ; and Q differs from ISE, I(s) � �f f̂ (�js)ÿ f g2, only
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through the quantity
�

f 2, which does not depend on s. Therefore, minimizing CV with

respect to s should produce at least asymptotic minimization of ISE.

The dif®culty with this argument is that most density estimators of practical interest

converge to the true f at a faster rate than nÿ1=4, and so ISE converges to zero a faster rate

than nÿ1=2. However, standard information-theoretic arguments show that we cannot

approximate the `diagonal' term in the ISE expansion, D(s) � � f̂ (�js) f , at a rate better than

nÿ1=2. Nevertheless, this does not often present a serious problem, since the error of size

nÿ1=2 in the approximation to D(s) by the second term,

D̂(s) � nÿ1
Xn

j�1

f̂ÿ j(X jjs), (5:9)

in the formula for CV(s) in (5.8) does not depend on the smoothing parameter. Indeed, in

many cases

D̂(s) � D(s)ÿ 2nÿ1
Xn

j�1

f (X j)ÿ
�

f 2

� �
� terms of smaller order than I(s): (5:10)

The series on the right-hand side is of order nÿ1=2, but does not depend on s. In the context

of kernel methods this property is made explicit by Hall (1983), and is implicit in work of

Stone (1984).

Unfortunately, however, the property often fails to hold when f̂ is a nonlinear wavelet

estimator. If the underlying density is smooth then the nonlinear term in a wavelet estimator

vanishes with high probability, and so the estimator is virtually identical to its linear

component, in which case the wavelet form of (5.10) holds true. But if the nonlinear

component is not negligible then (5.10) fails, and with it fails the validity of the cross-

validation algorithm.

To make this explicitly clear, let us assume conditions (C1), that R � [a, b], that

a , 0 , b, and that f has r bounded, continuous derivatives on [a, 0) and on (0, b], with

left- and right-hand limits at 0, but f (0ÿ) 6� f (0�). Assume that ö and ø are continuous,

with support contained in the interval [ÿv, v]. Take the threshold äi to equal

C(nÿ1 log n)1=2, for arbitrary C . 0, put í � n1=(2r�1) and let p equal the integer part of

ãí, where ã. 0 is ®xed. Take s � p in CV(s) and D̂(s), as in (5.8) and (5.9).

Theorem 5.4. Under the above conditions, there exists a sequence of random variables Un,

not depending on ã, and a Gaussian process V (ã), with zero mean and marginal distribution

depending non-degenerately on ã, such that

(ní)1=2fD̂( p)ÿ Ung ! V (ã)

in distribution.

Note that (ní)ÿ1=2 � nÿ(r�1)=(2r�1) is of strictly larger order than nÿ2r=(2r�1), which is the

order of the ISE of f̂ (�j p); see (5.2). Therefore, CV( p) does not accurately approximate

even the order of f̂ (�j p), up to terms that do not depend on p. Therefore, minimizing the

cross-validation criterion for a nonlinear wavelet estimator does not asymptotically minimize
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ISE. The same argument, with the same conclusion, may be used in the context of re-

gression.

Proof of Theorem 5.4. Let K denote the set of integers lying in [ÿv, v]. Note that

#K < 2v� 1. Write ~K for the complement of K in the set Z of all integers, and let b̂k,ÿ j

and b̂ik,ÿ j denote the versions of b̂k and b̂ik computed from X nfX jg rather than X . Given

subsets J , J 0, J 1, . . . of Z, put

S j(J , J 0, J 1, . . .) �
X
k2J

b̂k,ÿ jök(X j)�
Xqÿ1

i�0

X
k2J i

b̂ik,ÿ j I(jb̂ik,ÿ jj. äi)øik(X j):

Observe that

D̂(s) � nÿ1
Xn

j�1

S j( ~K , ~K , . . .)� nÿ1
Xn

j�1

Sj(K , K , . . .): (5:11)

The term S j( ~K , ~K , . . .) is not in¯uenced at all by the discontinuity in f at 0; all the

in¯uence has been incorporated into S j(K , K , . . .). In fact, the ®rst series on the right-hand

side of (5.11) may be treated as in the case of linear estimators, and thereby shown to equal

opf(ní)ÿ1=2g plus terms that do not depend on ã. The second series is quite different,

however.

To appreciate the differences, note that 0 2K and that the contribution of the pair

(i, k) � (i, 0) to the second series in (5.11) equals

nÿ1
Xn

j�1

b̂i0,ÿ jøi0(X j): (5:12)

(We have dropped the indicator function since, for the present choice of (i, k) and our choice

of äi, the indicator equals 1 for all suf®ciently large n, with probability 1.) The quantity in

(5.12) equals

nÿ1
Xn

j�1

b̂i0øi0(X j)� Op(nÿ1) � b̂2
i0 � Op(nÿ1)

� b2
i0 � 2(b̂i0 ÿ bi0) bi0 � Op(nÿ1): (5:13)

Modulo the deleted indicator function, the term b2
i0 on the right-hand side of (5.13) represents

that part of D(s) that this component of D̂(s) is estimating. Furthermore,

bi0 � p
1=2
i

�
ø( piu) f (u)du � p

ÿ1=2
i

�
ø(u) f ( pÿ1

i u)du

� p
ÿ1=2
i

�
ø(u)f f (0ÿ)I(u , 0)� f (0�)I(u . 0)gdu� o( p

ÿ1=2
i )

� p
ÿ1=2
i b� o( p

ÿ1=2
i ),
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where b � f (0ÿ)
�

u , 0ø(u)du� f (0�)
�

u . 0ø(u)du.

Given t . 0, de®ne

T1(t) � (tí=n)1=2
Xn

j�1

fø(tíX j)ÿ ì(t)g,

where ì(t) � Efø(tíX 1)g. Put T2(t) � tÿ1=2 T (t). Let Z be a Gaussian process de®ned on

the real line, with zero mean and covariance function

ó (t1, t2) �
�
ø(t1u)ø(t2u)J (u)du,

where J (u) � f (0�) if u . 0 and J (u) � f (0ÿ) if u < 0. Using standard methods for

deriving invariance principles, it may be proved that T2 ! Z weakly in the space C[t1, t2] of

continuous functions on [t1, t2], for any 0 , t1 , t2 ,1.

Hence, for any ®xed i0 > 0,

(ní)1=2
Xi0

i�0

(b̂i0 ÿ bi0)bi0 ! b
Xi0

i�0

2ÿi=2 Z(2iã)

as n!1, where the convergence is in distribution. Moreover, it may be proved by Markov's

inequality that, for each å. 0,

lim
i0!1

lim sup
n!1

P

����(ní)1=2
Xqÿ1

i�i0

(b̂i0 ÿ bi0)bi0

����. å

( )
� 0,

lim
i0!1

P

����X1
i�i0

2ÿi=2 Z(2iã)

����. å

( )
� 0:

Therefore,

(ní)1=2
Xqÿ1

i�0

(b̂i0 ÿ bi0)bi0 ! b
X1
i�0

2ÿi=2 Z(2iã)

as n!1, where again the convergence is in distribution. We may deduce from this result,

the fact that q � O(log n), and the discussion between (5.12) and (5.13) about indicator

functions, that

(ní)1=2 nÿ1
Xn

j�1

Xqÿ1

i�0

b̂i0,ÿ j I(jb̂i0,ÿ jj. äi)øi0(X j)ÿ
Xqÿ1

i�0

b2
i0

( )
! 2b

X1
i�0

2ÿi=2 Z(2iã)

in distribution. The fact that the asymptotic distribution depends non-degenerately on ã
means that the effect of p on the value of the term in (5.13) is not negligible at the level

(ní)ÿ1=2, which is of strictly larger order than that of ISE.

Similar arguments apply to the other terms (i.e. k 6� 0) that contribute to the second

series at (5.11), and lead to the theorem.
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