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We consider a ¯uid queue with on periods initiated by a Poisson process and having a long-tailed

distribution. This queue has long-range dependence, and we compute the asymptotic behaviour of the

steady-state distribution of the buffer content. The tail of this distribution is much heavier than the tail

of the buffer content distribution of a queue which does not possess long-range dependence and which

has light-tailed on periods and the same traf®c intensity.
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1. Introduction and preliminaries

We consider a model of a network server (multiplexer) de®ned as follows. Users initiate

sessions according to a Poisson process with rate ë. 0. Each session lasts a random length of

time with distribution F that has a ®nite mean ì. The lengths of different sessions are

independent of each other and of the Poisson arrival process. A session generates work or

traf®c or ¯uid at unit rate, commonly measured in some units of network traf®c, e.g. packets;

the work that cannot be processed immediately is collected in an in®nite buffer. The server is

capable of processing r . 0 units of traf®c per unit time. Denote by X (t) the buffer content at

time t > 0. The dynamics of the buffer content process fX (t), t > 0g can be expressed

through its connection with the process fN (t), t > 0g, where N (t) is the number of sessions

running at time t, as

dX (t) � N (t)dt ÿ r1(X (t) . 0)dt: (1:1)

Note that the process fN (t), t > 0g in (1.1) can be viewed as describing the number of

customers in the system in a M=G=1 queue where the session lengths describe the service

times. We refer to N (t) as the number of open sessions or the number of active connections

at time t.

The above model arises as a limit of models that superimpose a ®nite number of

independent on/off sources (see JelenkovicÂ and Lazar 1999), and it is attractive both

because the pace of technological progress makes it desirable to use models that do not

impose an a priori upper limit on the number of sources that are trying to transmit over a

communication network, and also because this model is, in certain respects, more tractable

than the models with a ®nite number of sources. We refer the reader to Boxma and Dumas
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(1998) for a survey of literature and results for models with both ®nite and in®nite numbers

of sources. See also Vamvakos and Anantharam (1998) for a related discrete-time model.

Assume that the session length distribution has a regularly varying tail. That is,

1ÿ F(x) � xÿáL(x), x!1, (1:2)

where L is a slowly varying function, and á. 1. We write 1ÿ F 2 RV(ÿá) (at in®nity).

This assumption is a common way to model heavy-tailed session lengths, and several

empirical studies have con®rmed the realism of the heavy-tailed assumption; see Paxson and

Floyd (1994), Cunha et al. (1995), Crovella and Bestavros (1996) or Mikosch and

Samorodnitsky (2000, Section 3). The assumption á. 1 assures a ®nite mean session length

and hence makes it possible for the system to be stable if the service rate r is high enough.

Recent studies have found empirical evidence of á-values less than 1 for the exponent of

regular variation (see, for example Arlitt and Williamson 1996) and in this case the expected

session length is in®nite. See Resnick and RootzeÂn (2000) for some indication of what may

happen when á, 1. In the present paper we concentrate on the case á. 1.

Heavy-tailed session length distributions cause both the buffer content process

fX (t), t > 0g and the number of running sessions process fN (t), t > 0g to possess a

form of long-range dependence; see Leland et al. (1994), Beran et al. (1995), Agrawal

et al. (1999) and Heath et al. (1998). It is well understood that long-range dependence

usually translates into deterioration of performance of the server. This is the case if one

studies the steady-state distribution of the amount of work in an in®nite buffer (see, for

example, Choudhury and Whitt 1997; Boxma 1997; JelenkovicÂ and Lazar 1999; Liu et al.

1999); it is also the case if one looks at over¯ow of a ®nite buffer and correspondingly lost

traf®c (Zwart 2000; Heath et al. 1997, 1999). See also the survey in Resnick and

Samorodnitsky (2000).

Under the assumption

r . ëì (1:3)

which ensures that, on average, the server is capable of coping with the traf®c, the buffer

content process fX (t), t > 0g (recall that we assume that the buffer is in®nite) reaches a

steady state. In the present paper we assume (1.2) and study the tail behaviour of the

marginal distribution of the steady-state buffer content process (1.1). We use the large-

deviation approach that proved to be fruitful in understanding the ®nite buffer behaviour of

the queues; see, for example, Heath et al. (1999) or Resnick and Samorodnitsky (1999).

In related work attention has been paid to certain `embedded' moments of time, such as

the ends of sessions and the ends of busy periods of the M=G=1 queue (the times when

N (t) hits zero); see Cohen (1997), Boxma and Dumas (1998) and JelenkovicÂ and Lazar

(1999). Most of these cited results used various Laplace transform techniques and Tauberian

theorems to invert the Laplace transforms.

We use the construction (2.4) of the stationary solution of (1.1) using the re¯ection map

(Asmussen 1987; Prabhu 1998; Whitt 1999). Once one has an integral representation of the

stationary buffer content process, it is possible to use large-deviation ideas to assess the

most likely way X (t) can exceed a high level. Apart from taste, there are several

advantages to using the large-deviation approach in comparison with Laplace transform
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techniques. The large-deviation approach is probabilistic and provides insights in the

behaviour of the system. Additionally, since no inversion of transforms is used, dif®culties

related to integer or even values of the exponent of regular variation disappear.

Furthermore, starting with a representation like (2.1) one can apply the large-deviation

approach to try to compute joint probability tails of the buffer content measurement at

several different points in time and thus understand the extreme values of the content

process over intervals. We leave this, however, to future research. In the present paper we

deal with the probability tail of the marginal distribution of the stationary buffer content

process, i.e. with evaluating the asymptotic behaviour of P(X (0) . ã) as ã grows large.

In Section 2 we discuss somewhat informally why the large-deviation approach can be

applied in this section. Section 3 gives the formal proof of our result.

2. Probability tail of the marginal distribution of the buffer
content

Our approach uses the classical representation of the steady-state buffer content process,

X (t) � sup
u>ÿ t

� t

ÿu

(N (s)ÿ r)ds � sup
u< t

� t

u

(N (s)ÿ r)ds, t > 0, (2:1)

where fN (t), ÿ1, t ,1g is the stationary process describing the number of customers in

the system in the M=G=1 queue. At any time s, N (s) is a Poisson random variable with

mean ëì and, conditionally on N (s) � k, the remainders of the session lengths of the k

sessions present in the sytem at time s are independent and identically distributed (i.i.d.), with

the common distribution given by

F�(t) � 1

ì

� t

0

(1ÿ F(u))du, t > 0: (2:2)

Observe that if (1.2) holds, then

F�(t) � tÿ(áÿ1) L(t)

ì(áÿ 1)
, (2:3)

as a consequence of Karamata's theorem (Resnick 1987).

Note that the processes fX (t), t > 0g and fN (t), t > 0g related by (2.1) satisfy equation

(1.1). Furthermore, since the stationary process fN (t), t > 0g is reversible, we conclude

that

X (0) �d sup
u>0

�u

0

(N (s)ÿ r)ds: (2:4)

For simplicity of notation we will take X (0) as de®ned by the right-hand side of (2.4). We

refer the reader, once again, to Asmussen (1987), Prabhu (1998) or Whitt (1999) for more

details on this construction of the stationary buffer content.

For t > 0 we will denote by N0(t) the number of sessions arriving in the interval (0, t]
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and still running at time t and by N1(t) the number of the N (0) initial sessions still present

in the system at time t. Clearly, N (t) � N0(t)� N1(t) for t > 0, and the stochastic

processes fN0(t)g and fN1(t)g are independent.

Under assumption (1.3) the stochastic process

Su �
�u

0

(N (s)ÿ r)ds �: A(u)ÿ ru, u > 0, (2:5)

behaves similarly to a negative-drift random walk, but with an important difference. The

increments of a random walk `appear instantaneously', and their effect is immediate, so that a

single large increment can lift the random walk to a high level. Contrary to this, a session

contributing to the process fN (t), t > 0g has only gradual effect. A single ongoing session

effectively reduces the service rate from r to r ÿ 1 and hence changes the relationship

between the arrival rate and the service rate as experienced by subsequently arriving sessions.

In the present study we assume that

ëì, r , ëì� 1: (2:6)

Since assumption (1.3) is in force, the additional restriction provided by (2.6) is only

r , ëì� 1. The meaning of this additional assumption is that, when a session is running, all

additional sessions experience an unstable queuing system, in which the server cannot cope

with the offered traf®c.

The event that the supremum of the negative-drift process fS(u), u > 0g in (2.5) exceeds

a high level ã is unlikely, and it is exactly here the logic of large deviations applies. It says

that unlikely events happen in the most likely way, and in the case of heavy tails the `most

likely way' is often that of `the least number of causes'. The applications of this approach

to a random walk type of processes go back to Embrechts and Veraverbeke (1982) and

earlier. Recent applications can be found, for example, in Mikosch and Samorodnitsky

(1999; 2000).

Under assumption (2.6) the `least number of causes' mentioned above turns out to be

equal to 1, and this realization drives the logic of our main result, Theorem 1. There are

certain technical dif®culties involved in the proof, so after stating the theorem we present

an outline of it, postponing the formal proof to the next section.

Theorem 1. Under the assumption of regular variation (1.2) and assumption (2.6), we have

P(X (0) . ã) � ë

áÿ 1

(ëì� 1ÿ r)áÿ1

r ÿ ëì
ãÿ(áÿ1) L(ã) (2:7)

as ã!1.

Remark 1. Observe that the result of this theorem can be rewritten as

P(X (0) . ã) � ëì

r ÿ ëì
F� ã

ëì� 1ÿ r

� �
(2:8)

as ã!1. This was stated under somewhat stronger conditions in Theorem 13 in JelenkovicÂ

and Lazar (1999), but the argument relied on a fact conjectured, but not proved, by the
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authors. The proof of the lower bound, however, in JelenkovicÂ and Lazar (1999) used neither

the unproved fact nor the stronger assumption and, hence, should be attributed to them.

Furthermore, Theorem 9 in JelenkovicÂ and Lazar (1999) establishes a similar result for a

queue with a single on/off input source.

Related work will be found in Likhanov and Mazumdar (1999). Note that the tail of the

distribution of X (0) is heavier than the tail of F.

We now proceed with the promised outline of the argument. Under assumption (2.6) one,

and only one, `cause' will force the stochastic process fSu, u > 0g in (2.5) to reach a high

positive level ã. We expect that either one of the N (0) sessions remaining in the system at

time 0 is long enough to cause the process fSu, u > 0g to reach level ã, or else the initial

sessions contribute practically nothing, and it is the newly arriving sessions that are counted

in fN0(t), t > 0g that cause the sytem to get to level ã. In addition, if it is the initial

sessions that make the process fSu, u > 0g reach level ã, the crossing is due to exactly one

extraordinarily long remaining length. Exactly how long does this remaining length have to

be? While one very long session is running, the process fSu, u > 0g experiences a

temporary positive drift of ëì� 1ÿ r, and so during this time the process fSu, u > 0g
grows almost linearly, at that rate. That is, the only very long remaining session has to have

remaining lifetime of at least ã=(ëì� 1ÿ r) and, therefore,

P(X (0) . ã) � P(sup
u>0

Su . ã) (2:9)

� P one of the N (0) initial sessions has remaining lifetime .
ã

ëì� 1ÿ r

� �

� P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
:

However,

P one of the N (0) initial sessions has remaining lifetime .
ã

ëì� 1ÿ r

� �

�
X1
j�1

P(N (0) � j)P one of the j initial sessions has remaining lifetime .
ã

ëì� 1ÿ r

� �

�
X1
j�1

P(N (0) � j) jP a generic session has remaining lifetime .
ã

ëì� 1ÿ r

� �
since, once again, one, and only one, initial session can have an extraordinarily long

remaining lifetime. Taking into account the common distribution (2.2) of the remaining

lifetimes of the initial sessions, we immediately see that

P one of the N (0) initial sessions has remaining lifetime .
ã

ëì� 1ÿ r

� �
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� 1ÿ F� ã

ëì� 1ÿ r

� �� �
E(N (0)) (2:10)

� ë

áÿ 1
(ëì� 1ÿ r)áÿ1ãÿ(áÿ1) L(ã)

as ë!1 by Karamata's theorem; see, for example, Resnick (1987).

On the other hand, the event

sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
,

if it occurs at all, has to be caused by a single session, during which the system drifts

upwards to the level ã. Let W be the length of this session and T be the time when this

session is initiated. Clearly, W has to be big, and so T has to be big as well since the

probability of an elephantine session occurring in a short time interval is negligible. By the

time T that the long session is initiated, the process is already at the (negative) level

ÿ(r ÿ ëì)T . Since during the life W of the long session the system experiences a temporary

positive drift of ëì� 1ÿ r, the length W of this session has to be suf®cient for the system to

gain ã� (r ÿ ëì)T units of work. Summarizing,

P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
� P(there is a session of length W arriving at time T and such that

W (ëì� 1ÿ r) . ã� (r ÿ ëì)T ):

Since the pairs f(T , W )g of the times the sessions are initiated and their lengths form a

Poisson random measure M on R2
� with mean measure

m(dt, dw) � ë dt F(dw), (2:11)

we immediately see that

P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
� P(M(A) . 0),

where the set A is de®ned by

A � f(t, w) 2 R2
�: w(ëì� 1ÿ r) . ã� (r ÿ ëì)tg:

A trivial computation of the asymptotic behaviour of m(A) then shows that

P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
� 1ÿ eÿm(A) � m(A) (2:12)

� ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
ãÿ(áÿ1) L(ã)

as ã!1.

Now one only has to substitute (2.10) and (2.12) into (2.9) to obtain (2.7).

196 S. Resnick and G. Samorodnitsky



Remark 2. The logic we have just used to justify informally the result of Theorem 1 is

equally well believable in the general subexponential case, that is, the case when the session

length distribution is assumed to be subexponential and not, necessarily, regularly varying.

See, for example, Embrechts et al. (1979) for more information on subexponential random

variables. We conjecture, therefore, that the above theorem holds (in the form of (2.8)) in the

general subexponential case. Our formal proof, however, does not carry over easily to such a

general case, even though it can be generalized to certain subclasses of subexponential

distributions.

We also note that a similar informal discussion is possible when the assumption r ,
ëì� 1 in (2.6) fails. However, even an informal discussion becomes quite involved without

the above assumption, and hence we prefer not to present it here.

We turn now to the formal proof.

3. Formal proof of Theorem 1

We will prove that

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P(X (0) . ã) <
ë

áÿ 1

(ëì� 1ÿ r)áÿ1

r ÿ ëì
: (3:1)

Since the corresponding lower bound was proved in Theorem 11 of JelenkovicÂ and Lazar

(1999), this will be suf®cient for the statement of our theorem. Nevertheless, the same

approach used to prove (3.1) can also be used to prove the lower bound. The reader is

welcome to observe what modi®cations in the argument below are necessary to this end.

Our presentation will be clearer with the introduction of additional notation. De®ne the

Poisson random measure M on [0, 1) 3 R� by

M �
XN (0)

i�1

å(0,Y�i ) �
X1
i�1

å(Ãi ,Yi), (3:2)

where

· N (0) is independent of fY�i g,
· N (0) is Poisson distributed with parameter ëì and fY�i g are i.i.d. with common

distribution F�,
· f(N (0), fY�i g)g is independent of f(Ãi, Yi)g,
· fÃig are the points of a homogeneous Poisson process with rate ë on (0, 1) and are

independent of the i.i.d. sequence fYig which has common distribution F.

The random measure
PN(0)

i�1 å(0,Y�i ) is a Poisson process on f0g3 R� and has mean measure

ä0(dt) 3 F�(dy), while
P1

i�1å(Ãi ,Yi) is Poisson on (0, 1) 3 R� with mean measure ëL 3 F,

where L stands for Lebesgue measure. With this notation, we have
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N1(t) �
XN (0)

i�1

å(0,Y�i )(f0g3 (t, 1))

�M(f0g3 (t, 1))

N0(t) �M(f(u, l): 0 , u , t , u� lg),

and

N (t) � N1(t)� N0(t):

We start with preliminary separation of the effect of the initial sessions and that of

subsequently arriving sessions as in the approximate equality in (2.9). We ®x an å 2 (0, 1)

and write

P(X (0) . ã) � P sup
u>0

Su . ã

� �
(3:3)

< P
_
u>0

Su . ã,
_N (0)

i�1

Y�i . åã

 !
� P

_
u>0

Su . ã,
_N(0)

i�1

Y�i < åã

 !

�: P(Aã,å)� P(Bã,å):

We evaluate the probability P(Aã,å), which should be viewed as describing the effect of the

N (0) initial sessions. Let Y�(i), i � 1, . . . , N (0), be the remaining lifetimes of the N (0) initial

sessions arranged in non-increasing order, and let

R �
XN (0)

i�2

Y�(i)

be the total amount of work remaining in all initial sessions but the longest. Recall that

Y�i , i > 1, are i.i.d. random variables with the common law (2.2) and independent of N (0).

The crucial observation here is that in the case of subexponential (and, in particular, regularly

varying) tails two subexpontential random variables in a Poisson sample are much less likely

to be large simulateneously than than just one. One implication of that is

P
XN (0)

i�1

Y�i . ã

 !
� E(N (0))P(Y�1 . ã) � ëF�(ã) (3:4)

(see Embrechts et al., 1979). Write

P(Y�(1) . åã, R . åã) < P(Y�(1) . åã, Y�(2) . å2ã)� P(Y�(1) . åã, N (0) . åÿ1):

Observe that, because
PN (0)

i�1 åY�i (å2ã, 1) is a Poisson random variable with mean ëìF�(å2ã),

we have

198 S. Resnick and G. Samorodnitsky



P(Y�(1) . åã, Y�(2) . å2ã) < P
XN(0)

i�1

åY�i (å2ã, 1) > 2

" #

� 1

2
(ëìF�(å2ã))2

� o(F� (ã)),

where we have used the regular variation of F�(ã), and thus we conclude

P(Y�(1) . åã, Y�(2) . å2ã) � o(P[Y�1 . ã]):

Furthermore,

P
_N (0)

i�1

Y�i . åã, N (0) . åÿ1

" #
� E1[N(0) . åÿ1] P

_N (0)

i�1

Y�i . åãjN (0)

" #

< EN (0)1[N(0) . åÿ1] F�(åã),

and thus we conclude

lim sup
ã!1

P(Y�(1) . åã, R . åã)

P(Y�(1) . ã)
< åÿ(áÿ1)E(N (0)1[N (0) . åÿ1]) (3:5)

< åÿ(áÿ1)å kEN (0)k�1 ! 0

as å! 0 if we pick k .áÿ 1. This motivates the decomposition

P(Aã,å) < P(Aã,å \ fR < åãg)� P(Y�(1) . åã, R . åã): (3:6)

Throughout the proof we will repeatedly be using the following simple majorization

argument. Suppose that for some T . 0 and ã. 0 the event�T

0

(N (s)ÿ r)ds . ã

� �
occurs. Then for any k > 1, and 0 � t0 , t1 , . . . , t k � T and 0 < n j < min t j , s , t j�1

N (s)

for j � 0, 1, . . . , k ÿ 1, the event�T

0

n(s)ds� sup
S<u<T

�u

0

(N (s)ÿ n(s)ÿ r)ds . ã

� �
(3:7)

occurs as well for any 0 < S < T. Here n(s) � n j for t j , s , t j�1. We refer to this as

argument M . Observe that this is a sample path argument that has nothing to do with

probability law governing the process fN (t), t > 0g. In words, argument M says that

bringing work in instantaneously in any number of presently running sessions can only make

it easier for the system to cross a level.

We now apply argument M to the ®rst probability in the right-hand side of (3.6) as

follows. Let P1 be a probability measure on the underlying space (Ù, F ) under which the
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process fN (t), t > 0g is initiated with a single remaining session that we will call for

obvious reasons Y�1 , whose law is given by (2.2) conditional on Y�1 . åã. Using argument

M to bring in instantaneously all R units of work remaining in all initial sessions but the

longest, we conclude that

P(Aã,å \ fR < åãg) (3:8)

<
X1
n�0

eÿëì
(ëì)n

n!
n P(Y�1 . åã)P1 sup

u>0

Su . (1ÿ å)ã

� �

< ëì P1 Y�1 .
ã(1ÿ 2å)

ëì� 1ÿ r

� �
� P1 sup

u>0

Su . (1ÿ å)ã, Y�1 <
ã(1ÿ 2å)

ëì� 1ÿ r

� �� �
P[Y�1 . åã]:

We claim that

lim
ã!1 P1 sup

u>0

Su . (1ÿ å)ã, Y�1 <
(1ÿ 2å)

ëì� 1ÿ r
ã

� �
� 0: (3:9)

Once (3.9) has been established, we may conclude by (3.5), (3.6), (3.8) and (3.9) that

lim sup
ã!1

P(Aã,å)

ãÿ(áÿ1) L(ã)
<

ë

áÿ 1

1ÿ 2å

ëì� 1ÿ r

� �ÿ(áÿ1)

� ë

áÿ 1
åÿ(áÿ1)E(N (0)1[N (0) . åÿ1]), (3:10)

which is what we estimated in (2.10) (modulo letting å!1, which will be done later).

To check (3.9) notice that, considering all possible lengths not exceeding (1 ÿ
2å)ã=(ëì� 1ÿ r) of the single remaining session, we can bound above the probability

in (3.9) by

P sup

0<u<
1ÿ2å

ëì�1ÿr

sup
t>u

�u

0

(N0(s)� 1ÿ r)ds�
� t

u

(N0(s)ÿ r)ds

� �
.(1ÿ å)ã

0B@
1CA

< P sup

0<u<
1ÿ2å

ëì�1ÿr
ã

sup
t>u

�u

0

N0(s)� 1ÿ r ÿ ëì� 1ÿ r

1ÿ å

� �
ds�

� t

u

(N0(s)ÿ r)ds

� �
.

å2

1ÿ å
ã

0B@
1CA

< P sup
t>0

� t

0

(N0(s)ÿ cs)ds .
å2

1ÿ å
ã

� �
! 0

with

c � min r, r ÿ 1� ëì� 1ÿ r

1ÿ å

� �
as ã!1 because by (2.6) we know that c . ëì.

We continue with the evaluation of the probability P(Bã,å) in (3.3), and it should be

viewed as describing the effect of the sessions initiated after time 0, as in (2.12). Our ®rst

step is to use argument M and bring in instantaneously at time 0 all the work Y�(1) � R
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remaining in the N (0) sessions running at time 0. Since in the subexponential case a large

value of a Poisson sum is due to a large value of the largest term in the sum, we have

lim
ã!1

P(Y�(1) � R . ã)

P(Y�(1) . ã)
� 1

by Embrechts et al. (1979). Therefore,

P(Y�(1) � R . ã, Y�(1) < ã) � o(P(Y�(1) . ã)) � o(F� (ã))

by (3.4), and hence

P(Bã,å) � P sup
u>0

Su . ã,
_N (0)

i�1

Y�i < åã

" #
(3:11)

< P Y�(1) � R� sup
u>0

�u

0

(N0(s)ÿ r)ds . ã,
_N (0)

i�1

Y�i < åã

" #

< P[Y�(1) � R . åã, Y�(1) < åã]� P sup
u>0

�u

0

(N0(s)ÿ r)ds . (1ÿ å)ã

� �

� P sup
u>0

�u

0

(N0(s)ÿ r)ds . (1ÿ å)ã

� �
� o(ãÿ(áÿ1) L(ã)),

as ã!1. We claim that

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã

� �
<

ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
: (3:12)

Assuming that (3.12) has been proved, we will have, by (3.11) and (3.12),

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P(Bã,å) < (1ÿ å)ÿ(áÿ1) ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
,

which, together with (3.3) and (3.10), shows that

lim sup
ã!1

P[X (0) . ã]

ãáÿ1 L(ã)ÿ1
< (1ÿ2å)ÿ(áÿ1) ë

áÿ1
(ëì�1ÿ r)áÿ1� ë

(áÿ1)
åÿ(áÿ1)E(N (0)1[N(0) . åÿ1])

� (1ÿ å)ÿ(áÿ1) ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
,

and so our claim (3.3) follows by letting å! 0.

Therefore, all that remains is to prove (3.12). We start with several lemmas with a clear

intuitive meaning. The proofs are fairly technical and hence postponed to the next section.

Our ®rst lemma says that if the event fsupu>0

� u

0
(N0(s)ÿ r)ds . ãg does occur, then it has

to occur by a time u not much bigger than ã. The intuitive reason, of course, is that the

stochastic process f� u

0
(N0(s)ÿ r)ds, u > 0g decays roughly linearly. Formally:
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Lemma 1. We have

lim
M!1

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P sup
u>Mã

�u

0

(N0(s)ÿ r)ds . ã

 !
� 0: (3:13)

The next lemma formally establishes that for the event fsupu>0

� u

0
(N0(s)ÿ r)ds . ãg to

occur, at least one very long session has to be initiated by the time of crossing of level ã. It

is in the same spirit as Lemma 2.7 in Mikosch and Samorodnitsky (2000). Recall the

random measure M de®ned in (3.2).

Lemma 2. For every M . 0 there is an å0 . 0 such that, for all 0 , å, å0

lim
ã!1

P sup
0<u<Mã

�u

0

(N0(s)ÿ r)ds . ã, M((0, Mã] 3 (åã, 1)) � 0

 !
ãÿ(áÿ1) L(ã)

� 0 (3:14)

and

lim
ã!1

P sup
0<u<Mã

(G(u)ÿ ru) . ã, M((0, Mã] 3 (åã, 1)) � 0

 !
ãÿ(áÿ1) L(ã)

� 0: (3:15)

For a constant M . 1 and å. 0, we consider the event

A(å, M ; ã) � sup
0<u<Mã

�u

0

(N0(s)ÿ r)ds . ã, M((0, Mã] 3 (åã, 1)) � 1

( )
:

So A(å, M ; ã) is the event of a crossing of level ã by time Mã while exactly one session

length exceeds åã. Since M((0, Mã] 3 (åã, 1)) has a Poisson distribution with mean

ëMãF(åã), we have

P M((0, Mã] 3 (åã, 1)) . 1� � � o(ãÿ(áÿ1) L(ã))

as ã!1 for all ®xed M and å, and so it follows from Lemmas 1 and 2 that (3.12) will

follow once we show that (for any ®xed M > 1)

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P(A(å, M ; ã)) < Kå
ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
(3:16)

for some Kå ! 1 as å! 0.

Let T� and T� be the times when the ®rst session of length exceeding åã is initiated and

is ®nished, respectively. Observe that T� and T� are well-de®ned random variables, and

that on the event A(å, M ; ã) they are also the times of initiation and completion of the only

session of length exceeding åã that is initiated in (0, Mã]. For a ä 2 (0, 1) we split the

event A(å, M ; ã) into two, depending on whether or not the level (1ÿ ä)ã was ®rst
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exceeded by time T� or not. If not, we use also argument M and bring in instantaneously

at time T� all work remaining in sessions running at that time. De®ne

A1(å, M ; ã) � sup
0<u<T�^Mã

�u

0

(N0(s)ÿ r)ds . ã

" #
[ G(T� ^ Mã)ÿ r(T� ^ Mã) . ã
� � !(

\ [M((0, Mã] 3 (åã, 1)) � 1]

)
,

and we obtain

P(A(å, M ; ã)) < P sup
<u<Mã

(G(u)ÿ ru) . äã, M((0, Mã] 3 (åã, 1)) � 0

 !
(3:17)

� P(A1(å, M=(1ÿ ä); (1ÿ ä)ã)):

Recall that G(T ) is the total amount of work in all the sessions that were initiated in the

interval (0, T ]. An immediate application of Lemma 2 shows that the ®rst term on the right-

hand side of (3.17) is of an order smaller than ãÿ(áÿ1) L(ã) if å is small enough relative to ä.

Therefore, (3.16) will follow once we show that for any ®xed M . 1,

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P(A1(å, M ; ã)) < Kå
ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
(3:18)

for some Kå ! 1 as å! 0 (we are abusing the notation a bit by using the same Kå in both

(3.16) and (3.18)).

We further split the event A1(å, M ; ã) depending on whether or not the level ã was ®rst

exceeded by time T� or not. If not, we once again use argument M and bring in

instantaneously at time T� all work remaining in sessions running at that time. Observe that

on the event A1(å, M ; ã) by the time T� ^ Mã only sessions of length not exceeding åã
are initiated, and, apart from the only long session, only sessions of length not exceeding åã
are initiated between T� ^ Mã and Mã. To make the accounting easier, we de®ne a new

process, say fN
(1)
0 (t), t > 0g, independent of T� and T�, and representing the number of

customers in an M=G=1 queue that starts empty at time 0, in which the customers arrive

at rate ëF(åã) and the distribution of the job lengths is given by

F (1)(A) � F(A \ [0, åã])

F([0, åã])
, A Borel:

We can always let this process live on some new probability space, but for simplicity of

notation we will assume that it lives on the same probability space (Ù, F , P). We have

P(A1(å, M ; ã)) < P(A2(å, M ; ã))� P(A3(å, M ; ã)), (3:19)

where
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A2(å, M ; ã) � sup
0<u<T�^Mã

�u

0

(N
(1)
0 (s)ÿ r)ds . ã

( )
and

A3(å, M ; ã) �

T� < Mã and either G(1)(T� ÿ rT�)� sup
0<u<T�^MãÿT�^Mã

�u

0

(N
(2)
0 (s)� 1ÿ r)ds . ã

8<:
or G(1)(T� ^ Mã)ÿ r(T� ^ Mã)� (T� ^ Mãÿ T�) . ã

9=;,

in which we are using the obvious notation that G(1)(T ) is the total amount of work in all

the sessions of the process fN
(1)
0 (t), t > 0g that were initiated in the interval (0, T ]. Further-

more, we denote for s > 0 by N
(2)
0 (s) the number of sessions of the process fN

(1)
0 , t > 0g

that arrive in the interval (T�, T� � s] and are still running at time T� � s. The process

fN
(2)
0 (t), t > 0g is a version of the process fN

(1)
0 (t), t > 0g.

Clearly, Lemma 2 implies that the ®rst term on the right-hand of (3.19) is of an order

smaller than ãÿ(áÿ1) L(ã) if å is small enough. Therefore, (3.18) will be proved if we show

that, for all M . 1,

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P(A3(å, M ; ã)) < Kå
ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
(3:20)

for some Kå ! 1 as å! 0 (with the same abuse of notation as before).

For a T . 0, we denote by

G(T ) �
X

0 ,Ãk <T

Yk

the total amount of work in all the sessions that were initiated in the interval (0, T ]. The two

basic observations are the obvious bound

G(T ) >

�T

0

N0(s)ds, (3:21)

since the right-hand side only accounts for work accomplished by time T . We have by (3.21),

for any ä. 0,

P(A3(å, M ; ã)) < 2P G(1)(t)ÿ ëì� ä

2M

� �
t .

ä

2
ã for some 0 < t < Mã

� �
(3:22)

� P T�< Mã, ((1�ä)ëì�1ÿ r)(T�ÿT�)�G(1)(T�)ÿ rT�. (1ÿä)ã
ÿ �

:

By Lemma 2 we have
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lim
ã!1 (ãáÿ1 L(ã)ÿ1)P G(1)(t)ÿ ëì� ä

2M

� �
t .

ä

2
ã for some 0 < t < Mã

� �
� 0 (3:23)

as long as å is small enough relative to ä, and so we only have to treat the second term on the

right-hand side of (3.22), which is exactly the term corresponding to the main probability

term which we estimated in (2.12).

What remains is a standard computation. Recall that T� and T� ÿ T� are independent

random variables, with T� being exponentially distributed with parameter ë(1ÿ F(åã)), and

T� ÿ T� having distribution given by

F (2)(A) � F(A \ (åã, 1))

F((åã, 1))
, A Borel:

Observe that

P(T� < Mã, ((1� ä)ëì� 1ÿ r)(T� ÿ T�)� G(1)(T�)ÿ rT�. (1ÿ ä)ã)

< P(((1� ä)ëì� 1ÿ r)(T� ÿ T�)� ((1� ä)ëìÿ r)T�. (1ÿ ä)ã, T� < Mã)

� P(G(1)(T�) . (1� ä)ëìT�):
By a straightforward application of Lemma 2 (with r � (1� ä=2)ëì), we see that, for every

ä. 0,

P(G(1)(T�) . (1� ä)ëìT�) � o(ãÿ(áÿ1) L(ã))

as ã!1 as long as å is small enough relative to ä. Observe, furthermore, that for all ä. 0

small enough, (1� ä)ëìÿ r , 0. We conclude that (3.20) will follow if, for every ®xed

M . 1,

lim sup
ã!1

P[(ëì� 1ÿ r)(T� ÿ T�)� (ëìÿ r)T�. ã, T� < Mã]

ãÿ(áÿ1) L(ã)
< Kå

ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
,

(3:24)

once again for some Kå ! 1 as å! 0.

Denote

a � 1

ëì� 1ÿ r
, b � r ÿ ëì

ë(ëì� 1ÿ r)
:

Using regular variation and Potter's bounds (see, for example, Proposition 0.8(ii) of Resnick

1987), we see that, given 1 ,á9 ,á, for all t . 0 and ã large enough,

1ÿ F(ã(a� bt))

1ÿ F(ã)
< C(a� bt)ÿá9

for some C . 0. Therefore, regular variation, together with the dominated convergence

theorem, implies that, for every 0 , å, 1,
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P((ëì� 1ÿ r)(T� ÿ T�)� (ëìÿ r)T�. ã, T� < Mã)

<
1

1ÿ F(åã)

�1
0

eÿ t 1ÿ F

ã� (r ÿ ëì)
t

ë(1ÿ F(åã))

ëì� 1ÿ r

0B@
1CA

0B@
1CAdt

� ã

�1
0

expfÿã(1ÿ F(åã))tg(1ÿ F(ã(a� bt)))dt

� ã(1ÿ F(ã))

�1
0

(a� bt)ÿá dt

� aÿ(áÿ1)

(áÿ 1)b
ã(1ÿ F(ã))

� ë

áÿ 1

(ëì� 1ÿ r)á

r ÿ ëì
ã(1ÿ F(ã)),

thus proving (3.24), and hence completing the proof of the theorem.

4. Proofs of Lemmas 1 and 2

The idea behind the argument in both cases is to compare the ¯uid queue to an appropriate

random walk with negative drift, which crosses a positive level before the ¯uid queue does

(see, for example, (3.21)).

Proof of Lemma 1. We have by (3.21), for all u > Mã,�u

0

(N0(s)ÿ r)ds �
�Mã

0

(N0(s)ÿ r)ds�
�u

Mã
(N0(s)ÿ r)ds

< G(Mã)ÿ rMã�
�u

Mã
( ~N0(s)ÿ r)ds,

where ~N0(s) is the number of sessions arriving in the interval (Mã, s) and still running at

time s. We conclude that

P sup
u>Mã

�u

0

(N0(s)ÿ r)ds . ã

 !

< P
XK

j�1

Y j ÿ rMã.ÿ r ÿ ëì

2
Mã

 !
� P sup

u>0

�u

0

(N0(s)ÿ r)ds . ã 1� r ÿ ëì

2
M

� �� �
,

where K is a Poisson random variable with mean ëMã independent of a sequence of i.i.d.

random variables Y1, Y2, . . . with common distribution F.
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Observe that by (3.21),

sup
u>0

�u

0

(N0(s)ÿ r)ds < sup
n>0

Sn,

where Sn � Z1 � . . . Z n, n > 0, is a random walk with Zi � Yi ÿ r(Ãi ÿ Ãiÿ1), i > 1. Here

Yi is the duration of the ith session, and Ãi ÿ Ãiÿ1 is the time gap between the instances the

(iÿ 1)th and the ith sessions are initiated. Therefore,

P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã 1� r ÿ ëì

2
M

� �� �
< P sup

n>0

Sn . ã 1� r ÿ ëì

2
M

� �� �

� 1

r=ëÿ ì
1� r ÿ ëì

2
M

� �ÿ(áÿ1)
1

áÿ 1
ãÿ(áÿ1) L(ã)

as ã!1, by Embrechts et al. (1979). We conclude that

lim
M!1

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1 P sup
u>0

�u

0

(N0(s)ÿ r)ds . ã 1� r ÿ ëì

2
M

� �� �
� 0: (4:2)

Furthermore,

P
XK

j�1

Y j ÿ rMã.ÿ r ÿ ëì

2
Mã

 !

< P K .
r=ì� ë

3
Mã

� �
� P

X[(r=ì�ë)Mã=3]

j�1

Y j .
r � ëì

2
Mã

 !
:

Since ë, r=ì, we immediately see that, for every M . 1,

P K .
r=ì� ë

3
Mã

� �
� o(eÿcã)

as ã!1 for some c . 0; this is a classical large-deviation bound, easily obtainable via an

exponential Markov inequality. On the other hand,

P
X[(r=ì�ë)Mã=3]

j�1

Y j .
r � ëì

2
Mã

 !
< P

X[(r=ì�ë)Mã=3]

j�1

(Y j ÿ ì) .
r ÿ ëì

6
Mã

 !

� r=ì� ë

3
Mã 1ÿ F

r ÿ ëì

6
Mã

� �� �
as ã!1 by, say, Nagaev (1969) or Cline and Hsing (1991). We therefore conclude that

lim
M!1

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1)P
XK

j�1

Y j ÿ rMã.ÿ r ÿ ëì

2
Mã

 !
� 0, (4:3)

and now (3.13) follows from (4.2) and (4.3). This completes the proof of Lemma 1. h
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Proof of Lemma 2. By (3.21), we have that (3.14) follows from (3.15), and so it is enough to

prove the latter. Clearly,

P sup
0<u<Mã

(G(u)ÿ ru) . ã, M((0, Mã] 3 (åã, 1)) � 0

 !
< P sup

n<k(åã)

Sn . ã

 !
,

where fSn, n > 0g is the random walk de®ned in the proof of Lemma 1 above, and

k(åã), inffn > 0: Z n . åãg:
For an M . 1, we decompose the last probability as

P sup
n>k(åã)

Sn . ã

 !
< P sup

0<n<ã=M

Sn . ã

 !
� P sup

ã=M<n<k(åã)

Sn . ã

 !

:� p1(M ; ã)� p2(å, M ; ã):

However, by Lemma 2.5 of Mikosch and Samorodnitsky (2000),

lim
M!1

lim sup
ã!1

(ãáÿ1 L(ã)ÿ1) p1(M ; ã) � 0,

while by Lemma 2.7 of Mikosch and Samorodnitsky (2000), for every ®xed M . 1 and for

all å small enough,

lim
ã!1 (ãáÿ1 L(ã)ÿ1 p2(å, M ; ã) � 0:

Therefore, (3.15) follows, and the proof is complete. h
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