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The maximum correlation coef®cient between partial sums of independent and identically distributed

random variables with ®nite second moment equals the classical (Pearson) correlation coef®cient

between the sums, and thus does not depend on the distribution of the random variables. This result is

proved, and relations between the linearity of regression of each of two random variables on the other

and the maximum correlation coef®cient are discussed.
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1. Introduction

Let X 1, X2 be random elements de®ned on a probability space (X , A, P) taking values

in (X 1, B 1), (X 2, B 2), respectively. The map X i: (X , A)) (X i, B i) generates the

subalgebra Ai � Xÿ1
i (B i) of A, i � 1, 2: Denote by Pi the restriction of the measure P on

Ai, i � 1, 2: Let L2 � L2(P) be the Hilbert space of A-measurable functions j with ®nite

Ejjj2 � � jj(x)j2dP and inner product (j1, j2) � E(j1j2), and let L2
i � L2(Pi) be the

Hilbert space of Ai-measurable functions with ®nite Ejjj2 and the same inner product.

Plainly, L2
i is a (closed) subspace of L2, i � 1, 2.

The maximum correlation coef®cient (or maximum correlation for short) between X 1 and

X 2, introduced in Gebelein (1941), is

R(X 1, X2) � sup r(j1(X 1), j2(X 2)), (1)

the supremum being taken over all (non-constant) j1 2 L2
1, j2 2 L2

2: As usual, r(î, ç)

denotes the classical (Pearson) correlation between random variables î and ç. The maximum

correlation R(X 1, X 2) vanishes if and only if X 1 and X 2 are independent or, equivalently, if

and only if the subspaces L2
1 and L2

2 are orthogonal. In general, R(X 1, X2) is the cosine of the

angle between L2
1 and L2

2,

R(X1, X 2) � cos(L2
1, L2

2):
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CzaÂki and Fisher (1963) studied the maximum correlation as a geometric characteristic.

The following observation is due to ReÂnyi (1959). If

R(X1, X 2) � r(j1, j2) � R, (2)

say, for some ji with E(ji) � 0, E(j2
i ) � 1, i � 1, 2, then necessarily

E(j1jX2) � Rj2, E(j2jX 1) � Rj1: (3)

ReÂnyi (1959) also gives suf®cient conditions on (X 1, X 2) for (2) to hold with j1, j2

satisfying (3) for some R . 0.

Based on (3), Breiman and Friedman (1985) suggested an alternating conditional

expectations algorithm for ®nding j1, j2 such that r(j1, j2) is maximized. They also

showed how the maximizing j1, j2 can be estimated from observations of (X1, X2). If

(X1, X 2) is a bivariate Gaussian random vector with r(X1, X 2) � r, then it has long been

known that

R(X 1, X2) � jrj: (4)

There are several proofs of (4); see, for example, Lancaster (1957).

Now let Y1, Y2 . . . be independent and identically distributed (non-degenerate, i.e. with

distribution not concentrated at a point) random variables with var(Yi) ,1. Set Sk �
Y1 � . . . � Yk . We prove in Section 2 that, for m < n,

R(Sm, Sn) � r(Sm, Sn) �
���������
m=n

p
, (5)

and thus R(Sm, Sn) does not depend on the distribution of Yi. To the best of the authors'

knowledge, this result is new. It is a little unexpected given that R(Sm, Sn) is a very nonlinear

characteristic of the sums. The special case of (5) with m � 1, n � 2 was known to Samuel

Karlin. His advice on approaching the general case was most apposite.

It is not known if (5) holds when var(Yi) � 1. Our arguments only tell us that it is

always true that

R(Sm, Sn) <
���������
m=n

p
, m < n:

The normalized sums

~Sm � Sm ÿ E(Sm)���������������
var(Sm)
p , ~Sn � Sn ÿ E(Sn)���������������

var(Sn)
p

satisfy condition (3) with R � ���������
m=n

p
. However, the suf®cient conditions in ReÂnyi (1959) for

(3) to imply (2) are not satis®ed for ~Sm, ~Sn constructed from arbitrary Y1, . . . , Yn with

var(Yi) ,1. Our proof is based on the Efron±Stein (Efron and Stein, 1981) decomposition.

In Section 3, random vectors (X1, X 2) with

E(X 1jX2) � aX 2, E(X 2jX 1) � bX1 (6)

are considered, for some constants a, b. Condition (6) is easily seen to be necessary for

R(X 1, X 2) � jr(X1, X 2)j (7)
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to hold. Indeed, assuming (without loss of generality) that E(X 1) � E(X 2) � 0, setting Ëi �
fcX i, c 2 Rg, i � 1, 2, and denoting by Ê(�jË) the projection operator into the subspace Ë,

(6) is equivalent to

Ê(X1jL2
2) � Ê(X 1jË2), Ê(X 2jL2

1) � Ê(X2jË1): (8)

If the ®rst relation in (8) does not hold then

cos(Ë1, L2
2) . cos(Ë1, Ë2)

and a fortiori

R(X1, X 2) � cos(L2
1, L2

2) . cos(Ë1, Ë2) � jr(X1, X 2)j:
Remarks in Sarmanov (1958a; 1958b) can be interpreted as saying that (6) is suf®cient for

(7) ± this is the interpretation of Szekely and Gupta (1998). We show in Section 3 that (6) is

only necessary for (7).

2. Maximum correlation between sums of independent and
identically distributed random variables

Our main tool is an expansion of the analysis of variance type due to Efron and Stein.

Lemma 1. Let Y1, . . . , Yk be independent and identically distributed random variables. For

any symmetric function h(Y1, . . . , Yk) with E(h) � 0, E(h2) ,1, the following expansion

holds:

h(Y1, . . . , Yk) �
X

1<i1<k

h1(Yi1 )�
X

1<i1 , i2<k

h2(Yi1 , Yi2 )

�
X

1<i1 , i2 , i3<k

h3(Yi1 , Yi2 , Yi3 ) � . . . � hk(X 1, X2, . . . , X k), (9)

where, for all j � 1, . . . , l and l � 1, . . . , k,

E(hl(Yi1 , . . . , Yil
)jfYi1 , . . . , Yil

gnYi j
) � 0: (10)

Proof. See Efron and Stein (1981). h

The orthogonality property (10) implies that the (symmetric zero-mean) function

ĥ(Y1, . . . , Yl) � Efh(Y1, . . . , Yk)jY1, . . . , Ylg
can be decomposed in the form of (9) and with the same functions h1, . . . , hl as in (9) but

with their arguments running over the set (Y1, . . . , Yl):
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ĥ(Y1, . . . , Yl) �
X

1<i1< l

h1(Yi1 )�
X

1<i1, i2< l

h2(Yi1 , Yi2 ) � . . . � hl(X 1, . . . , X l): (11)

For j . l,

Efh j(Yi1 , . . . , Yi j
)jY1, . . . , Ylg � 0

since among Yi1 , . . . , Yi j
there is at least one random variable different from all Y1, . . . , Yl.

In calculating Efh(Y1, . . . , Yk)g2 using (9), all the cross product terms vanish, since if r , q

then

Efhr(Yi1 , . . . , Yir
)hq(Y j1 , . . . , Y jq

)g � Efhr(Yi1 , . . . , Yi r
)E(hq(Y j1 , . . . , Y jq

)jYi1 , . . . , Yi r
)g � 0

(among Y j1 , . . . , Y jq
there is at least one random variable different from all Yi1 , . . . , Yi r

).

The same holds for Ef ĥ(Y1, . . . , Yl)g2.

Having made these remarks, we can state the next lemma.

Lemma 2. Let Y1, Y2, . . . be independent and identically distributed random variables,

Sk � Y1 � . . . � Yk . If Efh(Sk)g2 ,1 then, for l < k,

EfE(h(Sk)jSl)g2 < (l=k)Efh(Sk)g2 � (1ÿ l=k)fE(h(Sk))g2: (12)

Proof. Inequality (12) is a special case of the following inequality holding for any symmetric

function h(Y1, . . . , Yk) with E(h2) ,1:

EfE(h(Y1, . . . , Yk)jY1, . . . , Yl)g2 < (l=k)Efh(Y1, . . . , Yk)g2 � (1ÿ l=k)fE(h(Y1, . . . , Yk))g2:

(13)

Indeed, h(Sk) � h(Y1 � . . . � Yk) is symmetric in Y1, . . . , Yk . Furthermore, if î, ç are

independent random elements then, for any functions g(î), h(g(î), ç) with Ejhj,1,

Efh(g(î), ç)jîg � Efh(g(î), ç)jg(î)g,
whence, for l < k,

Efh(Sk)jY1, . . . , Ylg � Efh(Sl � Yl�1 � . . . � Yk)jY1, . . . , Ylg
� Efh(Sl � Yl�1 � . . . � Yk)jSlg � Efh(Sk)jSlg:

Thus, (12) follows from (13).

In proving (13), one may always assume Efh(X 1, . . . , X k)g � 0; then Efĥ(X 1, . . . ,

X l)g � 0: By virtue of Lemma 1,

Efh(Y1, . . . , Yk)g2 � k

1

� �
E(h2

1)� k

2

� �
E(h2

2) � . . . � k

k

� �
E(h2

k) (14)

and

Efĥ(Y1, . . . , Yl)g2 � l

1

� �
E(h2

1)� l

2

� �
E(h2

2) � . . . � l

l

� �
E(h2

l ): (15)
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Noting that, for 1 < r < l < k,

(l=k)
k

r

� �
� l

k

k(k ÿ 1) . . . (k ÿ r � 1)

r!
>

l(l ÿ 1) . . . (l ÿ r � 1)

r!
� l

r

� �
,

whence

Efĥ(Y1, . . . , Yl)g2 < (l=k)
k

1

� �
E(h2

1) � . . . � k

l

� �
E(h2

l )

( )

< (l=k)
k

1

� �
E(h2

1) � . . . � k

l

� �
E(h2

l )

(

� k

l � 1

� �
E(h2

l�1) � . . . � k

k

� �
E(h2

k)

)

� (l=k)Efh(Y1, . . . , Yk)g2,

which is exactly (13). h

We now state and prove our main result.

Theorem 1. Let Y1, Y2, . . . be independent and identically distributed non-degenerate

random variables with E(Y 2
i ) ,1, Sk � Y1 � . . . � Yk . The maximum correlation between

Sm and Sn equals the (Pearson) correlation, and thus does not depend on the distribution of

Yi:

R(Sm, Sn) � r(Sm, Sn) �
���������
m=n

p
, m < n: (16)

Proof. Take j1(Sm), j2(Sn) such that

Efj1(Sm)g � Efj2(Sn)g � 0, Efj1(Sm)g2 ,1, Efj2(Sn)g2 ,1: (17)

Then

Efj1(Sm)j2(Sn)g � Efj1(Sm)E(j2(Sn)jSm)g,
and, by the Cauchy±Schwarz inequality,

jEfj1(Sm)j2(Sn)gj2 < Efj1(Sm)g2EfE(j2(Sn)jSm)g2

< (m=n)Efj1(Sm)g2Efj2(Sn)g2,
(18)

the second inequality in (18) being due to (12).

Since (18) holds for any j1(Sm), j2(Sn) subject to (17),

R2(Sm, Sn) < m=n: (19)

On the other hand,
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r(Sm, Sn) � Ef(Sm ÿ E(Sm))(Sn ÿ E(Sn))g������������������������������
var(Sm)var(Sn)
p �

����
m

n

r
,

so that

R(Sm, Sn) >
���������
m=n

p
: (20)

The last two inequalities imply (16). h

The above arguments also prove that, when E(Y 2
i ) � 1, R(Sm, Sn) <

���������
m=n

p
.

3. Linear regression and maximum correlation

We start with a simple example of non-degenerate random variables X 1, X2 with

E(X 1jX 2) � E(X2jX1) � 0

and

R(X1, X 2) . jr(X 1, X2)j � 0:

Let U1, U2, W be independent random variables with

P(Ui � ÿ1) � P(Ui � 1) � 1
2
, i � 1, 2, 0 , var(W ) ,1:

Set X1 � U1W , X2 � U2W : Since

E(X1jU2, W ) � E(U1W jU2, W ) � W E(U1) � 0,

then E(X1jX 2) � 0 and, similarly, E(X2jX 1) � 0, whence

r(X 1, X2) � 0:

However, P(X 2
1 � X 2

2) � 1, and thus

R(X1, X 2) � 1:

This example was constructed in response to a question asked by Sid Browne of Columbia

University.

A random vector (U1, U2, . . . , U n) has spherically symmetric distribution if

f (t1, t2, . . . , tn) � Efexp i(t1U1 � t2U2 � . . . � tnU n)g � g(t 2
1 � t 2

2 � . . . � t 2
n),

for all t1, t2, . . . , tn 2 R: The analytical and statistical properties of spherically symmetric

(and, more generally, elliptically contoured) distributions have been studied by many authors

± see Fang et al. (1990), Gupta and Varga (1993) and references therein.

Assume that the covariance matrix B of U1, U2, . . . , Un exists. If

X1 � a1U1 � a2U2 � . . . � anUn, X2 � b1U1 � b2U2 � . . . � bnU n (21)

are linear forms in U1, U2, . . . , Un with non-random coef®cients, then

E(X 1jX 2) � ë1 X 2, E(X 2jX 1) � ë2 X1 (22)
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for some ë1, ë2 (see Eaton 1986). This means that for uncorrelated X 1, X2,

E(X 1jX 2) � E(X 2jX1) � 0:

If for all linear forms (21)

R(X 1, X2) � jr(X 1, X 2)j,
then for all uncorrelated forms X1, X 2

R(X 1, X2) � 0,

i.e.,

uncorrelatedness of X 1, X2 implies their independence. (23)

Vershik (1964) showed that if rank B > 2 then (23) is equivalent to the random vector

(U1, U2, . . . , Un) being Gaussian.

Thus, for any non-Gaussian vector (U1, U2, . . . , U n) with spherically symmetric

distribution and covariance matrix of rank > 2, there exists a pair of linear forms (21)

with (22) such that

R(X 1, X 2) . jr(X1, X2)j:
Note in passing that for bivariate vectors (U1, U2) Vershik's result can be slightly modi®ed.

According to this modi®cation, if (U1, U2) is an arbitrary non-degenerate random vector

(with no moment assumption a priori) such that, for any X 1 � a1U1 � a2U2, there exists a

non-trivial form X 2 � b1U1 � b2U2 (i.e., with b2
1 � b2

2 . 0) independent of X1, then (U1, U2)

is Gaussian.

To prove this, take a pair of independent forms X 1, X 2. Plainly they are linearly

independent, and thus any linear form in U1, U2 is a linear combination of X 1, X 2. Now

take X 91 � a91 X 1 � a92 X 2 with a91a92 6� 0 and ®nd X 92 � b91 X 1 � b92 X 2 independent of X 91.

Independence of (i) X 1 and X2 and of (ii) X 91 and X 92 results in b91b92 6� 0. By virtue of the

Bernstein±Kac theorem (a very special case of the Darmois±Skitovich theorem; see, for

example, Kagan et al., 1973, Chapter 3), X1 is Gaussian (as is X 2). Since X 1 is arbitrary,

the CrameÂr±Wold principle implies that (U1, U2) is a Gaussian vector.
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