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the forcing P actually used, combines a condition s from S with an analogue of 
the set x from the Solovay conditions. 

Obviously Solovay's trick can be iterated to code subsets of S n by subsets of 
co for any fixed n in co. It is less obvious that this trick can be iterated infinitely 
many times in order to code, for example, a subset A of S w as a subset of co. In 
order to do this we must add, for each « in co, a subset bn of N„ which codes 
not only A D K„+1 but also the new subset bn+l of N„+1 which we are 
simultaneously adding to code the segment of A above Nw+1. This apparent 
infinite regress is avoided by the simple idea of allowing conditions for adding 
bn to code up only that part oibn+x which has already been forced. 

If all cardinals were regular then this would essentially finish the argument: 
an Easton style class extension could be used to code a class A of ordinals. 
Unfortunately the basic Solovay forcing breaks down at singular cardinals: if K 
is singular then trying to code a subset of K+ by a subset of K will simply 
collapse K. The reason for this is that the Solovay trick to code a subset of K 
adds its subset of K via conditions with domain of size less than K. If K is 
regular this is enough to give the conditions the K chain condition and hence 
keep K from being collapsed; with K singular this fails. Jensen solves this 
difficulty in the coding problem by a use of the fine structure of L, and it is 
this use of fine structure which accounts for almost all the difficulty of the 
proof. 

Since adding a subset bu of Sw to code A Pi S w + 1 would collapse Nw, Jensen 
makes the sequence (bn: n E co) code this up at the same time as each bn is 
individually coding up A Pi ttn+l. This alone seems difficult enough, but it 
must be recalled that we do not only have Nw to deal with; we must deal with 
all singular cardinals at once. Thus in constructing the new subset bK of K we 
must keep track in some coherent way of all the singular cardinals X larger 
than K such that bK might be helping to code subsets of X+ . This sort of 
organization is precisely what Jensen's principal D was designed for, and it is 
this use of the fine structure of L which leads to the complications of the proof. 

This book gives a detailed proof which is relatively readable to anyone with 
the necessary prerequisites. Needless to say, these prerequisites include a firm 
grounding in the basic theory of fine structure as well as familiarity with set 
theory in general. There are numerous misprints, mainly in the most technical 
parts of the exposition, but these should not be too much of a barrier to the 
qualified reader. The exposition could also be improved by more explanation 
of where the proof is and where it is going, but the real difficulty of reading 
this book comes simply and directly from the difficulty of the mathematics. 
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This little book is similar in spirit, as well as size and title, to Kahane's 
well-known monograph [5]. They both trace their origins back to a series of 
papers of Paley and Zygmund [8] which are now more than fifty years old. 
They both demonstrate that probabilistic methods can be of real value in 
studying problems in harmonic analysis which do not appear to be random 
and that harmonic analysis is a rich source of examples and questions for 
probabilists. One more similarity with Kahane's book is that the size is 
deceiving. It contains a great deal and requires, for those unfamiliar with the 
work of Dudley, Fernique and the authors, much additional reading. 

Marcus and Pisier are concerned primarily with the question, raised initially 
by Paley and Zygmund, of the almost sure uniform convergence of the random 
Fourier series 
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2 < oo and {en} is the Rademacher sequence of random variables 

taking the values plus and minus one with equal probability. Here they give 
complete proofs of their necessary and sufficient condition which appear in 
[6 and 7]. 

In his monograph, Kahane states that he doesn't need much probability 
theory, that everything needed was well known by 1930. That is not the case 
here where recent work on the sample path properties of Gaussian processes is 
crucial. If the Rademacher functions in (1) are replaced by independent 
complex valued normal random variables then the series becomes a stationary 
complex valued Gaussian process. Dudley [1] studied the properties of the 
metric entropy of a natural norm associated with Gaussian processes and 
discovered a sufficient condition for such a process to have continuous sample 
paths almost surely. Fernique [2] showed that for stationary Gaussian processes 
the condition was necessary as well. The Dudley-Fernique theorem can be 
stated fairly simply for Fourier series. If 
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then there is a pseudo-metric d given by d(s9t) = \\fs — ft\\2 where ft(x) = 
f(t + x). Let N(e) be the smallest number of e balls which can be used to cover 
[0, 27T]. The entropy condition 

r[logN(e)]l/2de<oo 
Jo 

is necessary and sufficient for the almost sure continuity of the series 2cngne
inx 

where the gn are independent Gaussian random variables. 
The highlight of the book for many people will be the inclusion of Pisier's 

applications of random Fourier series to lacunary sets in harmonic analysis 
[9, 10]. Here, moreover, they are presented in the non-Abelian case as well. 
Lacunary sets, such as Hadamard sets, Sidon sets and A^ sets, have long been 
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of interest. A Sidon set of integers is a set E such that if 

nŒE 

is continuous then 2 | c n | < o o ; i.e., every continuous E function has an 
absolutely convergent Fourier series. There are many analytic characterizations 
of such sets going back to 1960 [12]. Since then the notions have been 
generalized and extended in every possible way. At the same time many simple 
but beautiful questions long remained unanswered. A good example is the 
question of whether the union of two Sidon sets is again a Sidon set, proved by 
Drury in 1970. In [9, 10] Pisier answered another such question. If E is Sidon 
and ƒ is an E function then it was shown [12] that || ƒ || < Byfp II ƒ II 2 for some 
B and all/7 < oo. Pisier showed the converse. 

For a group G, the space Ca.s.(G) is the collection of L2 functions ƒ such 
that the randomized Fourier series/w of ƒ almost surely represents a continuous 
function. It turns out that || / J l ^ has finite expectation which is a norm that 
makes Ca.s.(G) into a Banach space. Now A(G), the space of functions with 
absolutely convergent Fourier series, is the collection of functions such that 

(2) f=lh„*kn 

where hn and kn are in L2 and 

2HM2llM2<«>. 
In [9] Pisier characterized Ca.s.(G) as the space of functions as in (2) where 
hn G L2 and kn is in the Orlicz space of class Zyiog L. In addition there is a 
characterization of the dual space of Ca.s. in terms of multipliers. Combining 
this with the result of Rider [11] that C and Ca.s. have the same meaning for 
Sidon sets gives Pisier's results. 

One nice feature of the book is the inclusion of random Fourier series on 
non-Abelian groups. Here the series are 

2^Trace[G, .^ / ( / ) ] 

where the Ut form a complete set of irreducible unitary representations of the 
group and ƒ is the (matrix valued) Fourier transform. The random variables are 
matrix valued Gt. This section, while being quite similar to the commutative 
parts, is done in more detail. The lack of commutativity causes relatively few 
problems. The main one is the question of what are the differences between 
non-Abelian (p. 3, p. 74), non-commutative (p. 12) and noncommutative 
(p. 74). 

The book should appeal greatly to probabilists who, as the authors hope, 
will be able to see random Fourier series as useful examples of Gaussian 
processes. It will naturally appeal to harmonic analysts who, however, will 
need to know some recent probability theory. From their point of view the 
book is not self-contained. It takes a lot of outside reading. (One good source 
is the paper of Jain and Marcus [4] for a survey of Gaussian processes 
including the Dudley-Fernique Theorem.) They might be disappointed that the 
book does not contain a proof of Pisier's result starting from scratch. 
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Many analysts would prefer using Rademacher functions to Gaussian ran­
dom variables. They are so clear and simple, and one doesn't need to know a 
lot of probability to handle them. In the work of Hunt [3] and Kahane [5] it 
became clear that in many settings Rademacher functions are not the most 
convenient random variables to use. In this book the authors use Fernique's 
necessary condition for the continuity of stationary Gaussian processes. This 
depends on Slepian's lemma for which there is no version for non-Gaussian 
processes. This does not turn out to be a problem in the end since a 
Rademacher series is almost surely convergent if and only if the corresponding 
Gaussian series is. It does mean that it is necessary to use random variables 
other than Rademacher functions. 

There might be some criticism that the book was written too early. The field 
is an active one and maybe the authors should have waited until more results 
were in and more applications to harmonic analysis could appear. (Pisier has 
recently obtained more characterizations of Sidon sets including arithmetic 
ones.) Maybe they should have taken more time and included a self-contained 
treatment of the probability. However, the book succeeds admirably in what it 
intends to do. It presents complete proofs of the authors' work announced in 
[7]. It includes non-Abelian groups with many simplifications of the original 
work. It brings a body of recent work in harmonic analysis and probability to 
a larger audience than the original papers. It will encourage probabilists to get 
involved in harmonic analysis and harmonic analysts to learn a great deal of 
interesting and important probability. That is, perhaps, the real value of such a 
book. 
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