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An introduction to nonharmonic Fourier series, by Robert M. Young, 
Academic Press, New York, 1980, x + 246 pp., $32.00. 

This is a book about a branch of a branch of analysis; a twig you might 
say. A useful twig I should add, and one bearing many fine blossoms. 

The subject is full of neat results and satisfactory resolutions of open 
problems, and we'll be taking a look at some of these. At first there were 
nonharmonic sines and cosines, sets of the form {sin \x) and {cos A„A:} in 
which {\} is a set of real numbers. Their study was initiated by J. L. Walsh 
[10] at the suggestion of G. D. Birkhoff. Only with the appearance of Paley 
and Wiener's colloquium publication [9] in 1934 did nonharmonic Fourier 
(NHF) analysis really get under way. After having improved on a result 
stemming from O. Szâsz's answer to a problem of G. Pólya's about non­
harmonic sines and cosines, they go on to " . . . discuss the closure of the set 
{elX»x, 1} . . . ", i.e., the property that only the null member of L2( —77, IT) is 
orthogonal to every member of the set (the word "closure" is not, thankfully, 
used any more for this property, having been superseded by "completeness"). 
Incidentally a little later we read " . . . the only discussion of a case where 
the sole restriction on \ , . . . is one of the form | \ , - n\ < L < 00 is due to 
Wiener". This is rather misleading since the paper referred to is about 
{cos A„x}, not about sets of complex exponentials {e,XnX}. 

Thus was our subject born, and it is astonishing how much later work has 
its origins in this seminal effort of Paley and Wiener (I tend to think of it as 
the "big bang" of NHF analysis). The problems center chiefly on complete­
ness and basis properties of sets {elX»x}, and connections with ordinary 
Fourier series are made via "equi-convergence" theorems; but more of this 
anon. 
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In order to give some idea of how the subject has developed we can hardly 
do better than trace some of the strands of thought emanating from [9]. 

One of these strands involves the idea of stability. Nowadays we have the 

PALEY-WIENER STABILITY THEOREM. Let B be a Banach space with norm \\\\ 
and basis (<pn). Then (\pn)9 another sequence in B, is also a basis if 

1 S an(<Pn - tn)\\< *| | 2 <*n<Pn\\ 

for some À, 0 < X < 1, and all finite sequences (an) of scalars. Here a basis is 
a sequence (<p„) in B such that each member of B is represented by a unique 
norm convergent expansion 2 bn<pn. In Paley and Wiener's original version B 
was L\— TT, m) and the conclusions were weaker; they used it to show that for 
real \n, {elXnX} is complete in L\ — 77, IT) if 

(*) \\ - n\ < D< c; n = 0, ± 1, . . . , 

with c = 7T~2. They then raised the question whether the constant TT ~2 could 
be improved. 

This kind of problem was soon to be studied intensively by N. Levinson [8]. 
One of his results was that the best possible value for c is \. In a more 
comprehensive result he showed that the completeness (suitably defined) 
holds in Lp( — ir9 77), 1 <p < 00, if 

|\,l<H+iA>, 
1/2/7 being best possible. Here A„ can be complex. 

It was not long before questions began being asked about whether {etX-x} 
could satisfy the stronger property of being a basis for Lp. To this end R. J. 
Duffin and J. J. Eachus gave a method of exploiting the Paley-Wiener 
stability theorem by expanding yn - \pn in a special way. By comparing elX"x 

with emx via a power series expansion they showed that {etX»x} is a Riesz 
basis for L\ — TT, 77) if (*) holds with c = TT-1 log 2. Here a Riesz basis (<p„) is 
one which satisfies 

^{EKI2}1/2<I|2:^|<B{2KI2}1/2 

for constants A, B such that 0 < A < B < 00, and for all finite sequences (an) 
of scalars. 

Now 77_1log 2 is approximately 0.2206, so one wonders whether this last 
result admits any improvement. M. I. Kadec, using the Duffin-Eachus 
method without apparently realising it, replaced their power series expansion 
with a special trigonometrical one, and was able to get the result under (*) 
with c = \, but only for real X„. His attempt to extend this to complex \ , ran 
into trouble as the author has pointed out (p. 223). Young has shown that the 
result does hold under Kadee's condition 

(**) |Re \ - n\ < D < c and |Im \ , | < M, 

with c = \. Even this result has by now yielded to further generalisation. 
Another strand of thought emanating from [9] concerns a method which 

uses properties of entire functions. Suppose g G L2(a9 b) for example, and 
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f(z) is entire of exponential type. Then so is F(z) — faf(zx)g(x) dx. Further, 
F(K) = 0 if faf(Kx)8(x) dx — 0. Because of this the completeness of 
{AKX)} is closely tied up with the nature of the zeros of F(z). For example 
^(\i) = 0 for some set {A„} may imply F(z) = 0, and if further this implies 
that g is null then the L2 completeness of {fQ^x)} is guaranteed. Paley and 
Wiener exploited this idea in many ways and several early results are due to 
them. A standard result here, get-at-able via Carleman's theorem, is the 
following. 

EXAMPLE. {eiKx, 0 < Xx < X2 < . . . } is complete in L ( - a, a) if lim n/\ 
> a/m, a <TT. 

Several important ideas are illustrated by this example. For instance 
completeness is asserted under a condition of density>; a sequence (\,) has 
density d if lim n/\\\ = d, where (A„) is arranged in nondecreasing order. 
There are many other versions of our example, featuring other types of 
density. A particularly strong one due to N. Levinson states that the com­
pleteness also holds if d is replaced with the Pólya maximum density. 

Another idea illustrated by our example is that of the completeness radius 
for {eiXnX}. This is defined to be the supremum of all numbers a such that 
{eiX»x} is complete in C[ — a9 a]; this quantity doesn't change if C is replaced 
with Lp. Our example asserts that the completeness radius of the given set is 
not less than md. A. Beurling and P. Malliavin have discovered a density that 
allows a very comprehensive result, which says that the completeness radius 
of {eiXnX}fXn complex, is always proportional to this special density. 

Here we must also mention the notion of excess and deficiency. Let's notice 
first that we certainly need the whole trigonometrical set {emx, n = 
0, ± 1, . . . } for completeness in L( — TT, TT); but {einx

9 n = 1, 2, . . . } is com­
plete in L ( - a, a), a < TT, by our example, so its completeness radius is m and 
it would exhibit a high degree of deficiency if viewed over { — IT, TT). A set 
{cpn} is said to have deficiency k in B if k is the smallest number of terms 
which must be adjoined to it to make it complete in B (and a similar 
definition for excess). For example the trigonometric set is complete in 
LP( — 7T, IT), 1 < p < oo, but has deficiency 1 in C[ — TT, TT]. The terminology 
and several early results are due, as you will have guessed, to Paley and 
Wiener. 

The last strand originating with Paley and Wiener that we shall discuss 
involves the idea of equiconvergent series. The idea seems to have been 
introduced, into the present theory at least, by Walsh (op. cit.), but the first 
results for NHF series are once again Paley and Wiener's. Two series 2 an 

and 2 bn are said to be equiconvergent at a point if 2(aM — bn) converges to 
zero there. Walsh pointed out several consequences of equiconvergence; for 
example if Gibb's phenomenon occurs for one series it occurs for the other. It 
is clear that the convergence at a point for one series implies it for an 
equiconvergent one, so that equiconvergence with ordinary Fourier series 
automatically establishes Carleson-Hunt type results for NHF series. Indeed 
when is a NHF series equiconvergent with an ordinary Fourier series? It turns 
out that the classical results are really part of more comprehensive theorems 
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about completeness, presence of unique biorthogonal sets, etc., the complete­
ness parts of some of which we have already mentioned. Thus the equiconver-
gence part of Paley and Wiener's contribution was that the ordinary Fourier 
and the NHF series for ƒ G L2(-7r, TT) are unformly equiconvergent on 
compact subsets of ( — TT, TT) if (*) holds with c = TT~2. Levinson generalised to 
Lp

9 1 <p < 2, under (*) with c = {p — l)/2p. An important 1971 result of 
A. M. Sedleckiï gives the result under (**) with c = (p — \)/2p. Sedleckiï has 
proved many other equiconvergence theorems during the past decade. 

Open questions are always with us and the book mentions several of them. 
Let me quote two closely related ones. The first has been raised by the 
author, your reviewer and everyone else who has given the matter any 
thought. 

Ql . Is every basis of complex exponentials for L2( — TT, TT) a Riesz basis? 
An affirmative answer would, for example, take much of the sting out of 

results of the kind which assert the preservation of the Reisz property of bases 
under perturbations of (A„). A related question is 

Q2. Is {**'<»-V^ „ = l, 2, . . . } a basis for L 2 ( -TT , TT)1 

It is known that the Riesz property fails for this set, hence an affirmative 
answer to Q2 would imply a negative answer to Ql. 

Now let's look at some applications of NHF series. Nonharmonic sine and 
cosine series, as well as NHF series have been used to solve various equations 
that arise in applied fields where ordinary Fourier series are inappropriate. 
For example there have been applications to diffusion processes (of growth 
stimulants through carrot roots), to control theory and to problems of the 
slowing down of neutrons. 

Another kind of application is to the sampling theory of signals in electrical 
engineering. By Fourier transformation one maps eiSX, x G ( —TT, 7r), to w(s9t) 
= [sin TT(S — 0]/TT(S — t), t G R; under such a mapping, to {emx, n = 
0, ± 1, . . . } there corresponds {w(«, t), n = 0, ± 1, . . . }, the functions of 
Whittaker's cardinal series which is used by electrical engineers (often under 
the name "Shannon sampling series") for the interpolation, or sampling, of 
signals. It was G. H. Hardy [5] (a reference missed by the author) who 
pointed out that the orthogonality and completeness properties of {w(n, t)} 
are consequences of the unitary character of the Fourier transform, and it 
was he who named their closed linear span the "Paley-Wiener space". Of 
course the Paley-Wiener theorem (in the form it took when it was young and 
still trailed clouds of glory) asserts that this space consists of the restrictions 
to R of entire functions of exponential type TT which are also in L2(R); and 
equivalently, it consists of those members of L2(R) whose inverse Fourier 
transforms have support on [ — TT, TT\ In the same way from {eiX"x} we get 
(w(\J, /)}, the functions of the "jittered" cardinal series (e.g., [6, 11]). Jitter 
refers to the way in which \ deviates from n and in engineering applications 
is usually stochastic in nature rather than deterministic. Although much work 
has been done on the stochastic nature of jittered sampling (e.g., [2, 3]), I have 
yet to see in print, and would very much like to, a direct study of {eiX»x} in 
which (\,) is regarded as a stochastic process. 

I was disappointed to find almost no mention of applications in the book. 
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Some references are given but only to the first group I mentioned (on p. 210). 
Surely this subject would benefit from what I hope is the current trend 
towards a more healthy interaction than has been the case in the recent past 
between mathematics and its applications. 

Perhaps applications will soon demand a multi-dimensional NHF theory. 
We know that this is a highly nontrivial matter for ordinary Fourier series 
(e.g., [1]). How would notions like equiconvergence, the completeness radius, 
etc., extend to higher dimensions? What should one make, for example, of the 
fact [4] that {Vnx, n = (nv n2% x = (xv x2)} fails to be a (spherical partial 
sum) basis for Lp,p ¥= 2? 

Only one more groan about the book. In the preface the author states that 
"much of the material appears in book form for the first time". This needs 
some qualification. Two introductory chapters, the first on bases in Banach 
spaces, the second on entire functions, account for half the book and the 
author couldn't have been referring to this material. Chapter three deals with 
completeness and Chapter four with moment problems and bases. A refer­
ence [7] missed by the author contains at least some material from each of the 
four chapters. And after all Paley and Wiener [9] and Levinson [8] are books 
too. 

Of course there is material here in a book for the first time and the author 
has done an excellent job on it; a case in point is his précis (Chapter 4, §7) of 
Duffin and A. C. Schaeffer's work on frames. 

This is an introductory book and the experienced analyst will find the pace 
slow. Even so, Young has managed to incorporate a great deal of information 
of which I have been able to survey only a small and largely classical 
selection. There is a useful bibliography of 260 items. The book is meticu­
lously carefully written and laid out in a very friendly manner by its 
publishers. It deserves, and not merely because it is the first and only book 
devoted entirely to this field, to be on the bookshelf (no, on the desk top, 
open) of everyone who wants to know about this interesting topic. 
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Polynomial identities in ring theory, by Louis Halle Rowen, Academic Press, 
New York, 1980, xx + 365 pp., $39.50. 

Rings satisfying a polynomial identity (PI) occupy an important place in 
modern noncommutative ring theory. Louis Rowen's book is an up to date, 
thorough presentation of Pi-theory and related topics. 

Pi-theory was launched by a paper of Kaplansky in 1948 and "born again" 
with the discovery, by Formanek in 1971, of central polynomials. For 
convenience in this review we shall assume that our rings are algebras over 
fields. Thus, if A is an algebra over the field F, we say that A is a Pi-ring if 
there exists a nonzero polynomial p(xx, . . . , xt) in noncommuting inde-
terminates with coefficients in F such that p(ax, . . . , at) = 0 for all possible 
substitutions of elements al9...9atmA. We say that/? is an identity for A 
and that A is a Pi-ring of degree d if d is the least degree of a polynomial 
which is an identity for A. 

Commutative rings, obviously, satisfy xxx2 - x2xv Nilpotent rings satisfy 
xN where N is the index of nilpotence of the ring. Subalgebras and factor 
algebras of Pi-rings are also Pi-rings. 

Before proceeding to the most important class of Pi-rings, we pause for a 
definition. The nth standard polynomial Sn is 2 o e § r t sgn(a)xa(1) • • • xa(w) 

where the sum runs over the symmetric group, Sw, on n letters and the x's are 
noncommuting variables. A celebrated theorem of Amitsur and Levitzki 
asserts that S2n is an identity for the n X n matrices over a commutative ring. 
It is not difficult to see that In is the least degree of a polynomial identity for 
n X n matrices. Therefore, factor algebras of subalgebras of matrices are 
PI-rings-though not all Pi-rings arise this way. 

An important theme in the theory of Pi-rings is the study of the "closeness" 
of classes of Pi-rings to matrices over commutative rings and finding "tight" 
connections between Pi-rings and their centers. Kaplansky proved that a 
primitive Pi-ring is simple and finite dimensional over its center which is a 
field. Amitsur later showed that Pi-rings with no nonzero nilpotent ideals are 
embeddable in matrices over commutative rings. To put this last result in 
perspective we note an observation of P. M. Cohn: the exterior algebra on an 


