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RESEARCH ANNOUNCEMENTS 

SPECTRAL PROPERTIES OF 
SOME NONSELFADJOINT OPERATORS1 

BY A. G. RAMM 

ABSTRACT. Let i b e a compact linear operator on a Hubert space Ht sn(A) = 
{\n(A*A)}'2, Q be a compact linear operator, I + Q be invertible, B — A(I + Q). 
We prove that sn(0)s~l(Â) -* 1 as n -> °°. If \Qf\ < c\Af\a\f\l~a

t a > 0, c > 0, 
ƒ e H and sn(A) = ^ « " ' { l + tf (» -*)> , ? > 0, then sn(B) = J„(^){l + OC"-7)}, 
where 7 = minfe, ra(X + ra)—1}. This estimate is close to sharp. We also give 
conditions sufficient for the root system of B to form a Riesz basis with brackets 
of H. Applications to elliptic boundary value problems are given. 

1. Notations, definitions. Let H be a separable Hubert space, A and Q be 
compact linear operators on H, B = Ail + Q), Xn(A) be the eigenvalues of A, 
sn(A) = Xn{ (A*A)V2} = {XM(/1*<4)}1/2 be the s-values of A (singular values of A), 
c be various positive constants, Rd be the Euclidean d-dimensional space, D C 
Rd be a bounded domain with a smooth boundary, L be a positive definite in 
L2(D) elliptic operator of order / and M be a nonselfadjoint differential operator 
of order m < I We define sn(L) = {«„(L"1)}"1. Let A<t> = X0, 0 ^ 0. With 
the pair (X, 0) one associates the Jordan chain defined as follows: consider 
(*) A<t>^ - X0*1* = 0. If this equation is not solvable then one says that there 
are no root vectors associated with the pair (X, 0). If (*) is solvable then con­
sider the equations (**) A(p(f) - X00') = 0 ( /" 1 ) , ƒ = 1, 2, . . . , 0 ( o ) = 0. It is 
known [1], that if A is compact then there exists an integer N such that (**) 
will not be solvable for ƒ > N. In this case vectors 0 ^ \ . . . , 0 ^ are called 
the root vectors associated with the pair (X, 0), (0, 0 ^ \ . . . , 0 ^ ) is called the 
Jordan chain associated with the pair (X, 0). Consider the eigenvectors 0X , . . . , 
<t>q corresponding to the eigenvalue X and all the root vectors associated with the 
pairs (X, 0 ), p = 1, . . . , q. The linear span of the eigen and root vectors cor­
responding to X is called the root space corresponding to X. The collection of 
all eigen and root vectors of A is called its root system. Let us define Riesz's 
basis of H with brackets. Let {fj\ be a linearly independent system of elements 
of H, {hj} be an orthonormal basis of//, and m1 < m2 < • • • < rrij —>°°bea 
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sequence of integers. Let HfiFj) be the linear span of vectors 

"m/> " m / + l 9 • • • 9 nm — l > l /m/> • • • > Jm — l)9 

71 be a linear bounded invertible operator from / / onto H, TFj = Hj, j = 1,29 . . . . 
Then the system {fj\ is called a Riesz basis of / / with brackets. If rrij = ƒ then 
{fj} is called a Riesz basis of//. If a root system of A forms a Riesz basis of// 
with brackets then we write A E Rb(H). If it forms a Riesz basis then we write 
A EL R(H). The range of A is denoted by R(A) lim means lim as n —• °°, N(A) 
= Ker A = {0: A<t> = 0}, {0} denotes the set consisting of the zero element of//. 

2. Introduction. Two questions will be discussed: (1) When is sn(B) ~ 
sn(A) and what is the order of the remainder? (2) When does B £ Rb(H)l 
There are few known results connected with question (1). The results are due to 
H. Weyl, Ky Fan and M. G. Krein (see [2]), and the author [3]. It seems that 
there were no abstract results on the perturbations preserving asymptotics of 
spectrum with estimates of the remainder. In Theorem 1 (§3 below) such a re­
sult is given. In [2] there are some results about completeness of the root sys­
tems of certain operators. In Theorem 2 an abstract result which gives an answer 
to question (2) is given. In Theorem 3 some spectral properties of nonself adjoint 
elliptic operators are presented. F. Browder [1, Chapter 14, Theorem 28] proved 
completeness of the root system of L + M in H = L2(D). We prove that L + 

M G Rb(M) by applying Theorem 2. In order to do this note that (L + M)~l = 
A(I+ 0 , where i = r 1 , Ö = "</ + ML~x )~ lML~l. During the last decade 
there was a great interest among physicists and engineers in question (2) and some 
results due to Markus, Kacnelson, Agranovich and others were used [4] (see also 
Appendix 10 in [3], [5], [6]). 

3. Results. We will not repeat in this section the notations and assump­
tions of § 1 but they are assumed to be valid. 

THEOREM 1. If N(I + Q) = {0}, dim R(A) = <*>, then lim sn{B)s~l{A) 
= 1. If \Qf\<c\Af\a\f\1~a, a > OJorallfeHand sn(A) = cn~r {\ + 0(n~q)}, 
r, q > 0, then sn(B) = sn(A){\ + 0(n~y)}, where y = irrinfa, ra{\ + ra)~1}. 

REMARK 1. The estimate of the remainder is close to sharp: for the ellip­
tic operators in L2(D) the remainder is of order given in Theorem 1. 

THEOREM 2. If A > 0, Xn(A) - cn~r as n —> <*>, r > 0, \Qf\ < c\Aaf |, 
0 < a, N(I + Q) = {0}, and ra>l, then B G Rb(H). 

THEOREM 3. Ifl-m>d then L + M e Rb{H), H = L2(D). Furthermore 
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if N(L +M)= {0}, then sn(L + M) = sn(L){l + 0{n~^)}, where 

y = rmn{d-\(l-m)(l-m +C/)"1}. 

REMARK 2. If d = 1 then m < / implies / - m > 1, and L + MeRb(H). 

4. Problems. (1) Let Bf~f1_l exp{z(x - ^)2}/d> be an operator on 
H = L2([-l9 1]). It is not known if BE Rb(H). (2) If <2> 1 it seems to be an 
open problem if L + ME/?(//) under the assumption of Theorem 2. Is the 
bracketing necessary? Some other problems can be found in [3,5], where some 
questions of interest in applications are also discussed. 

5. Comments. Minimax representation for sn(B) is the key point in the 
proof of Theorem 1. A proof of Theorem 2 can be based on a result from Ap­
pendix 11 in [3]. Theorem 3 can be derived from Theorem 2 and some known 
estimates for elliptic operators. 
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