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1. Our purpose is to characterize those lattice ordered algebras 
which may be represented as algebras of Carathéodory functions. 
This work is, accordingly, a sequel to [l] where the same problem 
was considered for lattice ordered groups. The rings considered here 
are more restrictive than those of Birkhoff and Pierce in [2], where 
an "Turing" is shown to be isomorphic to a subring of the direct union 
of totally ordered rings (but the multiplication in [2] is not neces­
sarily that which may be expected for functions; indeed, all products 
may be zero. In our case, the axioms compel the algebra multiplica­
tion to conform to that of the Carathéodory functions). Brainerd 
[3 ] has considered a class of algebras which have function space repre­
sentations, but his emphasis is different from ours. 

2. In this section, we define a Carathéodory algebra. Let B be a 
relatively complemented distributive lattice. Let E be the set of 
forms ƒ = # i a i + • • • -\-anan, where a^B, a* real, i = l, • • • , n. 
With ƒ ̂ 0 if a ; ^ 0 for all i, and addition and multiplication defined 
by ƒ + g = Z £ I E T - I ( * < + W(«*n]8y) + :D-ia<(«<-UJLift) 
+ Zr-i&iGSy-U?..!*,) and fg = Z t i E f = i ^ ^ ( ^ n f t ) where 

ƒ = 53?-1 a*ai a n d g~ X X I b$j> E is a lattice ordered algebra, which 
we call the algebra of elementary Carathéodory functions. Let E be 
the conditional completion of E. E is the set of bounded Carathéodory 
functions. In order to define the general Carathéodory function, we 
need the notion of carrier. In a lattice ordered group, for every x*z0, 
y^O, we say x^y if xP\3 = 0 when and only when yr\z = 0. The 
equivalence classes obtained in this way are called carriers (filets by 
Jaffard [4]) and form a relatively complemented distributive lattice. 
The equivalence class to which x belongs is called the carrier of x. 
In Ey consider pairwise disjoint sequences {fn} whose carriers have 
an upper bound, and consider the formal sums ]T) ƒ»»• With order, 
addition, and multiplication defined appropriately, these formal sums 
constitute a lattice ordered algebra—the Carathéodory algebra C 
generated by B. (For details on related matters see [5; 6] and [l].) 

3. Let R be an archimedean lattice ordered algebra. Then R is a 
lattice with positive cone P such that x, yÇ.P, a^O real, implies 

1 Supported by National Science Foundation grant no. NSF G-2267 on ordered 
systems. 
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x+y, xy, # x £ P , and if x, yÇîP, y>0, implies there is a real a ^ O 
with x—ay&P. We say that R is totally complete if 

(a) R is conditionally complete. 
(b) every sequence of pair-wise disjoint elements in P , whose 

sequence of carriers has an upper bound, itself has an upper bound; 
hence, a least upper bound. 

In addition to the archimedean hypothesis, the following condition 
is important for us. 

A. If x, y y z are in P(i.e., x^O, y*zO, s^O) then (xy)r\z = 0 if and 
only if xC\yr\z — 0. 

I t is not hard to see that the Carathéodory algebra C is totally 
complete and satisfies A. 

4. Before considering the main problem, we point out that for 
every totally complete vector lattice R} multiplication may be defined 
so that R is an algebra satisfying A. We outline the procedure. 

Let [ua] be a generalized weak unit [ l ] in R. Then, for every 
carrier a, there is a unique ua with carrier ce, and for every a, /? we have 
uar\u0 = Uan0 and UcSJup = ua\j$. For every x>0 there is, by the total 
completeness of R, a pairwise disjoint sequence {uan} and a sequence 
\an] of positive reals, such that sup anuan^x. For every # > 0 , y>0 
let Uan1 an be as above relative to x and v$n, bn as above relative to y. 
Let £ = sup (anUan)(bmvpm). Then define xy = inf £ for all £ obtained 
in this way. For any #, yÇzR, define xy—x+y++x~~y~ — x+y~~-"X~~y+. 
I t can then be shown that R is an algebra satisfying A, Moreover, 
if R has a weak unit, the resulting algebra has an identity. 

5. We now let R be a totally complete lattice ordered algebra, 
satisfying A. 

LEMMA 1. If xè^O, y^O then xy = 0 if and only if xP\;y = 0. 

LEMMA 2. If x^O then x and x2 have the same carrier. 

PROOF. xC\y = 0 implies xr\xC\y==0 implies x2C\y = 0. Conversely, 
x2C\y~Q implies xr\xr\y = 0 implies xfYy = 0. More generally, 

LEMMA 2'. If x, y^O have the same carrier, then xy also has this 
carrier. 

COROLLARY 1. Every carrier is a semi-ring. 

Since R is conditionally complete, for every #, yÇzR, the projection 
yx of x on y is defined. 

LEMMA 3. xy = xyx. 
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The next lemma is important for us. 

LEMMA 4. If x>0 there is y>0 with yx^x and s > 0 with zx^x. 

We outline the proof. From Lemma 2, the supremum of the car­
riers an of wn = (nx2 —x)+ is the carrier of x. Let j8w = cew—cen-i and let 
zn have carrier /3n. If yn = (nx)Zn} the yn are pair-wise disjoint. By the 
total completeness of R, sup yn~y exists. Then yx*zx. The proof of 
the second part is similar. 

DEFINITION. For every x^O, u(x)—ini \y\yx*zx\ and ü(x) 
=sup [;y|;yx^x]. 

LEMMA 5. For every x^O, x — u(x)x — ü(x)x. 

PROOF. U(X)X}£X. If u(x)x>x there is z>0 with zx<u(x)x—x, 
whereby (u(x)— z)x>x, which is impossible. 

LEMMA 6. [u(x)]2 = u(x) and [ü(x)]2 = ü(x). 

PROOF. [u(x)]2x = u(x)[u(x)x]=u(x)x~x SO that [u(x)]2^u(x). 
Similarly, [ü(x)]2^ü(x). But û(x)x = x implies ü(x) ^u(x). However, 
ü(x) ^u(x). 

COROLLARY 2. u(x)=ü(x). 

LEMMA 7. The carriers of x and u{x) are the same. 

PROOF. By condition A. 

LEMMA 8. If x and y have the same carrier then u(x) =u(y). 

PROOF. If 0<x<z<y and x2 = x> y2=y then z2 = z. Let a be the 
carrier of x and y. If u(x)?*u(y), there is (3<a and k<l such that, 
say, k(u(x))w < (u(y))W} where w has /3 as carrier. But then [k(u(x))w]2 

= k(u(x))w and k(u(x))w = (u(x))w. This is impossible. 
Thus there is a one-one correspondence a—^Ua between the carriers 

and idempotents. There is a unique left identity for every carrier 
relative to the carrier; there is also a unique right identity. 

LEMMA 9. For every a, the associated right and left identities are equal. 

PROOF. Both are idempotents. The proof is then as for Lemma 8. 
We summarize: 

THEOREM 1. A totally complete lattice ordered algebra R satisfying A 
has a unique idempotent ua with carrier a, for every a. The idempotent 
ua is an identity {left and right) for all x^R whose carrier is ^a. 

COROLLARY 3. The family [ua] is a generalized weak unit in R. 
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Proceeding as in [ l ] , the algebra R can be reconstructed from the 
Uct and a one-one correspondence obtained between the elements of R 
and those of the space C of Carathéodory functions generated by the 
relatively complemented distributive lattice B of carriers in R. In 
this correspondence, each element aiuai+ • • • +anuanÇzR is mated 
with the element aiocx + • • • ~\-ananÇzC. I t is then a routine matter to 
check that this correspondence preserves order, addition, and multi­
plication. We thus have: 

THEOREM 2. A lattice ordered algebra is isomorphic with the algebra 
C of Carathéodory functions generated by a relatively complemented 
distributive lattice if and only if it is totally complete and satisfies A ; 
i.e., for x, y} z^O, (xy)r\z~0 if and only if #rYyf\s = 0. 

The following conditions are closely related to A. 
A'. If x, y ^ O , then #y = 0 if and only if #fYy = 0. 
A". R is an F-ring with no nonzero nilpotents. 
Indeed, M. Henriksen has shown (oral communication) that condi­

tions A, A', A" are equivalent. Using this fact, and a completion 
theorem of Nakano [7] we obtain: 

COROLLARY 4. An archimedean lattice ordered algebra which satisfies 
A, and is such that inf 5 = 0 and x^O implies inf #5 = 0, is isomorphic 
with a subalgebra of a Carathéodory algebra. 

We also obtain the following fact, which was proved in a different 
way for F-rings by Birkhoff and Pierce. 

COROLLARY 5. An archimedean lattice ordered algebra which satisfies 
A has commutative multiplication. 

REFERENCES 

1. C. Goffman, Remarks on lattice ordered groups and vector lattices, I. The Cara" 
théodory functions, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 107-120. 

2. G. Birkhoff and R. S. Pierce, Lattice ordered rings, An. Acad. Brasil Ci. vol. 28 
(1956) pp. 41-69. 

3. B. Brainerd, On a class of lattice ordered rings, Proc. Amer. Math. Soc. vol. 8 
(1957) pp. 673-683. 

4. P. Jaffard, Contribution a Vétude des groupes ordonnés, J. Math. Pures Appl. 
vol. 32 (1953) pp. 203-280. 

5. C. Carathéodory, Entwurf filr eine algebraisierung des Integralbegriffs, Bayer 
Akad. Wiss. Math.-Nat. Kl. Abh. (1938) pp. 28-67. 

6. D. A. Kappos, Ein Beitrag zur Carathêodoryschen Definition der Ortsfunktionen, 
in Booleschen Algebren, Math. Z. vol. 51 (1949) pp. 616-634. 

7. H. Nakano, Modern spectral theory, Tokyo, 1950, pp. 148-154. 
PURDUE UNIVERSITY AND 

UNIVERSITY OF OKLAHOMA 


