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1. Let M be a connected, orientable, triangulated 3-manifold and
let ACw(M) be a sub-group which is invariant under the operators
in 7 (M). By a mi(M)-class in m(M) we mean the set of elements
+£a, for some aEw(M) and every £Em(M). The invariance under
m(M) means that, if aEA, then the entire mi(M)-class {:!:Ea} is
contained in A. A m(M)-class is represented by a map S?—M, with-
out reference to base-points or orientation. We shall describe such a
map, or singular sphere, as essential mod A if, and only if, the cor-
responding m1(M)-class is not contained in A. The terms polyhedral,
piecewise linear etc., when applied to M, will refer to the piecewise
affine structure which M derives from the given triangulation K.
Thus a polyhedron in M is the carrier of a subcomplex, L, of a (recti-
linear) subdivision of K. The polyhedron is compact if, and only if,
L is a finite complex.

The main purpose of this note is to show how the proof of the
(qualified) sphere theorem, due to C. D. Papakyriakopoulos [5], can
be modified so as to yield a proof of:

THEOREM (1.1). If A#=m(M), then M contains a non singular poly-
hedral 2-sphere which is essential mod A.

On taking A=0 in (1.1) we obtain the sphere theorem in full gen-
erality.

By attaching 3-cells to M we can imbed it in a space X such that
A is the kernel of the injection m(M)—m(X). Hence it follows that
(1.1) is equivalent to:

TraEOREM (1.2). If MCX, where X s a topological space, and if
there is a map S?*— M, which is essential in X, then M contains a non-
singular, polyhedral 2-sphere which is essential in X.

In particular if X is any orientable 3-manifold, which need not
be paracompact, and if f: S?—X is an essential map, then every
neighbourhood in X of fS? contains a nonsingular 2-sphere, which is
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essential in X and polyhedral in some paracompact, and hence tri-
angulable [3], neighbourhood of £52.

If M is compact and unbounded, then m3(M) is a free Abelian group
whose rank is 0, 1 or » according as m(M) has less than 2, 2 or «
ends [7]. Hence it follows that my(M)#0 if M is a free product with
two nontrivial lactors. On the other hand if M is orientable, w(M)
#0 and 7 (M) is not cyclic, then it is easily deduced from (1.1) that
M contains an essential, nonsingular (polyhedral) 2-sphere .S which
separates M. In this case, therefore m1(M) is a nontrivial free product
(see a forthcoming paper by J. W. Milnor). I hope to publish, in the
Colloquium Mathematicum, a proof that, if (M) is a nontrivial
free product, then M contains an essential, nonsingular 2-sphere, even
if M is nonorientable (cf. [1]).

The group Z-+Z; is neither cyclic nor, being Abelian, a nontrivial
free product. Therefore the example A =0, M =S*X P?, where P?is a
real projective plane, shows that (1.1) is false for nonorientable
manifolds.

I have been helped in the preparation of this paper by many dis-
cussions with J. W. Milnor.

2. Proof of (1.2). Let D, be a canonical singular 2-sphere in Int (i),
essential in X and having the smallest (¢, d)-index among all such
singular 2-spheres (cf. [5, no. 19]). We build a tower over D,, using
the method and notations of [5] with certain modifications. If
mi(D,) is finite the tower consists of M =MD Vo DD, If (D) is
infinite let Dy be a universal cover of D,. Let f;: G—D, be as in
§10 of [5], where G is a 2-sphere, and let f, be lifted to fo: G— D,.
We identify m1(D,) with the group of covering transformations of D,
in the usual way. Clearly f,G=D%*, say, is a fundamental region in
D, and since D* is compact, D, connected and noncompact, there is
a 7Emi(D,) such that 751, D*\rD*3£g. Let (7) be the sub-gtoup
of m1(Dy) =m1 (V) generated by 7.

We now build the tower as on p. 11 of [5] except that, if w1 (D,) is
infinite, then:

(2.1) M, is a cover of Vo associated with (v) and M; is a universal
cover of Viyif i>1,

(2.2) the construction lerminates with the first n such that wi(Vy,) is
finite.

Thus the tower is defined for #=0. If >0, then m(M)=(7),
m1(Va,) is finite and the groups m1(Vy), + « +, m1(Vy—1) are all infinite.
Moreover the projection Dy— M; carries D*M\rD* into a nonvacuous
set of double curves in D;. Therefore we have:

(2.3) if >0, then D, is singular.
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Let #=0 and suppose that D, is singular. Then the components of
V. are all spheres because m(V,) is finite [6, p. 223]. We refer to
No. 22 in [58] with the following modifications. The homotopies in
M,, appearing on pp. 16, 17 of [5], are to be replaced by homotopies
in X. Observe that P (see the bottom of p. 16 in [5]) is such that
m1(P) =m1(V.), which is finite. Therefore at the top of p. 17 in [5]
we have mK~0 in P for some m =1 whence the integral intersection
number sc(K, D,) =0 and (22.2) of [5] follows. Moreover P, the uni-
versal cover of P, has the same homotopy type as S% so m2(P) =~y (P)
=0. Therefore we reach the same contradiction as on p. 17 of [5] and
we conclude that D, is nonsingular.

Since D, is nonsingular it follows from (2.3) above that n>1 if
7>0. In this case m1(M,—1) = (1) or 0, according as =2 or n>2. In
either case m(M,—1) is Abelian.

Assume that #>0. If Hy(V,..) were infinite, then (23.1) in [5]
would follow from [5, (11.2), (12.6)]. The last paragraph in No. 23 of
[5] would then lead to a contradiction. Therefore H;i(V,—) is finite.
Hence all the components of V,_; are spheres and, by (6.1) in [5],
the injection m1(Vy—1) —m1(Mn—1) is a monomorphism. Since m1(M,—1)
is Abelian, so is 71( Va—1). Therefore m1( Va_1) = Hi(Va_1) which is finite.
This contradicts (2.2). Therefore =0, D, is nonsingular and the
proof is complete.

3. Consequences of (1.1). Let X be a Hausdorff space and M CX
a connected 3-manifold such that M —3f is an open subset of X.
Let M be orientable if X is not a 3-manifold (if X is a 3-manifold M
need not be orientable).

THEOREM (3.1). The kernel of the injection, ix: wi(M)—m(X), con-
tains no element of finite order>1.

Proor. The group m(M)=m(M, x,), may be identified with
Lim. {m(C, x0)} for every compact CC M which contains xo. Such
a C has a paracompact neighbourhood in M and it follows from the
triangulation theorem that it is contained in a compact (triangulable)
manifold in M. Therefore we may assume that M is compact and
triangulated. If M is unbounded it is open and closed in X, whence
tw: m(M) =7 (X) =m(X, x0). So we assume that M is bounded.

Let 1#a&m (M), am=1 for some m>1. We have to prove that
ixa 5~ 1. First let M be nonorientable, X being a manifold. Let X; be
an orientable cover of X, let p: X1;—X be the projection and let M,
be the component of p~1M which contains the base point (in p~x,)
for X;. Then M, is orientable. If ZaEpsmi(X1), then a1, If
1% E Py (X1), then a loop I—M, representing « and ixe, lifts into
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a loop I—M, Therefore a=pia;, where oanEm(M;) and p’
=p| My: M;—M. Moreover ixa= pxis 01, where 7': M1;CX;. Since
a#1 and px, p¥ are monomorphisms it follows that a1, of'=1 and
that 7 oy 1 implies #4a 7 1. Therefore the theorem will follow when
we have proved it for an orientable M and arbitrary X.

If G is any group let p(G) be the minimum number of generators
among all presentations of G. Thus 0=p(G)= » and p(G)=0 if,
and only if, G=1. If G=G,*G,, a free product, then p(G) =p(G1)
+0(Gs) [2; 4]. Let »(M) be the number of components of i/ and let
NM) =p(m(M))+v(M). Then N(M)< « since M is compact. If
N(M) =0 there is nothing to prove and we proceed by induction on
N(M). 1t will be enough to sketch the proof because of its similarity
to that of (31.2) in [5].

Let us describe the pair (X, M) as bad if, and only if, kernel (%)
contains an element of finite order >1. Assume that the theorem is
false and that, among all bad pairs, (X, M) is one with the smallest
M(M). Then M is not aspherical, by (31.1) of [5]. Hence, and since M
is bounded, it follows from (25.1) of [5] that (M) 0. Therefore
it follows from (1.1), with A=0, that M contains a nonsingular,
polyhedral 2-sphere .S, which is essential in /. We may assume that
SC M — 31 and, since m;(M) contains an element of finite order >1,
that .S separates M. Hence, by cutting! through S and filling in the
holes, as in [5], we construct a pair (X’, M’) such that N(M") <\(M)
and (X', M’) is bad (notice that »(M), unlike #(M) in [5], includes
the count of the 2-spheres in /). This contradiction completes the
proof.

CoroLLARY? (3.2). If X, M are as in (3.1) and if m(X) contains no
element of finite order >1, then mi(M) contains no element of finite
order >1.

Let A be a connected subset of M which is a compact ANR (for
the category of separable metric spaces). Then there is an open sub-
set UCM of which A is a retract. Therefore the injection m(4)
—71(U) is a monomorphism and from (3.1), applied to X, U, we have:

CoOROLLARY (3.3). Let X, M be as in (3.1) and let A be a connected,
compact ANR in M. Then the kernel of the injection m(4)—mi(X)
contains no element of finite order >1.

1 Since S is a closed subset of X, and because X is a Hausdorff space, and M — I
is open in X the cutting process can be carried out in the usual way. If X were not a
Hausdorff space this would not, in general, be so and (3.1) would be false.

2 Cf. (31.2) in [5].
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Let M, A be as in (3.3), let M be orientable and let m;(4) contain
an element, a, of finite order >1. Let f: S'—A4 be a map which repre-
sents o and let g: S'— M be a map such that f~g in M. I say that

(3.4) AN gSt g,

ProoOF. Assume that AMNgS'=¢ and let X =MUe? where e? is
an open 2-cell attached to M by the map g. Since fo~g in M it follows
that 7a=1, where 7: ACX. This contradicts (3.3), applied to X,
M—gSt, A, and (3.4) is proved.

On considering a cone, X, with a real projective plane, 4, as base
and M =“X minus vertex” we see that (3.1), - - -, (3.4) are not neces-
sarily true if M is nonorientable. But in (3.2), (3.3), as in (3.1), M
may be nonorientable provided X is a 3-manifold.

Let w be any group and G a w-module. By a set of w-generators
for G we mean a sub-set BCG such that every element of G is of the
form D sep £sb, where & is in the integral group ring of 7 and £&=0
for almost all b.

Let M =M,\JM,, where My, M, are connected 3-manifolds such
that MyN\My= MiN\M;=a 2-sphere.

LEMMA (3.5). Let By be a set of mi(M>)-generators for wo(M>) and let
u: w( M) > (M) be the injection N=1, 2). Then uyuB1\JiuB; is a set of
w1(M)-generators for wo(M).

This follows from the Mayer-Vietoris theorem, applied to a uni-
versal cover of M.

Let M be a connected, compact (possibly bounded) orientable
3-manifold.

THEOREM (3.6). mi(M) has a finite set of wi(M)-generators, whose
mi(M)-classes are represemted by disjoint, monsingular, polyhedral
2-spheres.

Proor. The assertion is trivial if m(M)=0 so we assume that
w2(M) 0. Then it follows from (1.1) with A=0, that M contains an
essential, nonsingular, polyhedral 2-sphere S. Let N(M) be as in the
proof of (3.1). Clearly m(M)=0 if N(M)=0 or if m(M)=1 and I
consists of a single 2-manifold, necessarily a 2-sphere. Therefore, if
N(M) =1, then M isclosed and m (M) is cyclic infinite. In this case the
manifold obtained from M by cutting through .S is 1-connected, and
the assertion follows without difficulty from the Hurewicz theorem,
applied to a universal cover of M.

If N(M) >1 we may assume that S separates M. Then M = M:\J Mo,
MN\My;=S, where M;, M, are orientable 3-manifolds. Let N;
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=M\JB; (i=1, 2), where B; is a 3-dimensional ball such that
S=B;=B,N\M,. Clearly \(NV,) <\(M). Moreover the kernel of the
injection wo(M;)—m(N;) is generated by the m(M.)-class repre-
sented by S. Also, if b&B;—.S there is a piecewise linear isotopy of
N;—b into M;—S. Therefore (3.6) follows from induction on XN(M)
and (3.5).
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