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1. Let M be a connected, orientable, triangulated 3-manifold and 
let A(Zw2(M) be a sub-group which is invariant under the operators 
in 7Ti(il/f). By a Ti(M)-class in 7r2(.M) we mean the set of elements 
±£a, for some a£7r2( if) and every %ÇÎTI(M). The invariance under 
7Ti(M) means that, if a £ A , then the entire 7Ti(Af)-class {+£#} is 
contained in À. A wi(M)-class is represented by a map 52—»M", with­
out reference to base-points or orientation. We shall describe such a 
map, or singular sphere, as essential mod A if, and only if, the cor­
responding 7Ti(AT)-class is not contained in A. The terms polyhedral, 
piecewise linear etc., when applied to My will refer to the piecewise 
affine structure which M derives from the given triangulation K. 
Thus a polyhedron in M is the carrier of a subcomplex, L, of a (recti­
linear) subdivision of K. The polyhedron is compact if, and only if, 
L is a finite complex. 

The main purpose of this note is to show how the proof of the 
(qualified) sphere theorem, due to C. D. Papakyriakopoulos [5], can 
be modified so as to yield a proof of: 

THEOREM (1.1). If A=^7r2(If), then M contains a non singular poly­
hedral 2-sphere which is essential mod A. 

On taking A = 0 in (1.1) we obtain the sphere theorem in full gen­
erality. 

By attaching 3-cells to M we can imbed it in a space X such that 
A is the kernel of the injection 7r2(.M)—>T2(X). Hence it follows that 
(1.1) is equivalent to: 

THEOREM (1.2). If MQX, where X is a topological space, and if 
there is a map S2—>M, which is essential in X, then M contains a non-
singular, polyhedral 2-sphere which is essential in X. 

In particular if X is any orientable 3-manifold, which need not 
be paracompact, and if ƒ: S2—*X is an essential map, then every 
neighbourhood in X of fS2 contains a nonsingular 2-sphere, which is 

161 



162 J. H. C. WHITEHEAD [July 

essential in X and polyhedral in some paracompact, and hence tri-
angulable [3], neighbourhood of ƒ52. 

If ikf is compact and unbounded, then 7r2(Af) is a free Abelian group 
whose rank is 0, 1 or <*> according as wi(M) has less than 2, 2 or oo 
ends [7]. Hence it follows that 7r2(ikf) 7*0 if M is a free product with 
two nontrivial lactors. On the other hand if M is orientable, T2(M) 
?*0 and Ti(M) is not cyclic, then it is easily deduced from (1.1) that 
M contains an essential, nonsingular (polyhedral) 2-sphere S which 
separates M. In this case, therefore wi(M) is a nontrivial free product 
(see a forthcoming paper by J. W. Milnor). I hope to publish, in the 
Colloquium Mathematicum, a proof that, if wi(M) is a nontrivial 
free product, then i f contains an essential, nonsingular 2-sphere, even 
if M is nonorientable (cf. [ l]) . 

The group Z+Z2 is neither cyclic nor, being Abelian, a nontrivial 
free product. Therefore the example A = 0, M — S1 XP2, where P2 is a 
real projective plane, shows that (1.1) is false for nonorientable 
manifolds. 

I have been helped in the preparation of this paper by many dis­
cussions with J. W. Milnor. 

2. Proof of (1.2). Let D0 be a canonical singular 2-sphere in Int (AT), 
essential in X and having the smallest (t, d)-index among all such 
singular 2-spheres (cf. [5, no. 19]). We build a tower over D0} using 
the method and notations of [5] with certain modifications. If 
7Ti(Do) is finite the tower consists of M==M0Z) VoDD0. If TI(DQ) is 
infinite let D0 be a universal cover of D0. Let ƒ<>: G—>D0 be as in 
§10 of [5], where G is a 2-sphere, and let / 0 be lifted to Jo: G—>D0. 
We identify wi(D0) with the group of covering transformations of D0 

in the usual way. Clearly J0G = D*, say, is a fundamental region in 
So and since £>* is compact, D0 connected and noncompact, there is 
aTG'Tri(-Do) such that r ^ l , D*P\TJD*T^^ . Let (r) be the sub-group 
of 7Ti(£>o) =TTI(FO) generated by r. 

We now build the tower as on p. 11 of [5] except that, if wi(Do) is 
infinite, then: 

(2.1) Mi is a cover of Vo associated with (r) and Mi is a universal 
cover of Vi-i if i > 1, 

(2.2) the construction terminates with the first n such that wi(Vn) is 
finite. 

Thus the tower is defined for n^O. If n>0y then 7 T I ( M I ) « ( T ) , 

iri(Vn) is finite and the groups 7Ti(F0), • • • , 7Ti(F»-i) are all infinite. 
Moreover the projection D0-+Mi carries Z)*P\rZ>* into a nonvacuous 
set of double curves in Di. Therefore we have: 

(2.3) if n>0, then Di is singular. 
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Let n ^ 0 and suppose that Dn is singular. Then the components of 
Vn are all spheres because TTi(Vn) is finite [6, p. 223], We refer to 
No. 22 in [5] with the following modifications. The homotopies in 
Mo, appearing on pp. 16, 17 of [5], are to be replaced by homotopies 
in X. Observe that P (see the bottom of p. 16 in [5]) is such that 
7Ti(P) «7Ti(Fn), which is finite. Therefore at the top of p. 17 in [5] 
we have fnK^O in P for some w ^ l whence the integral intersection 
number sc(K, Dn) = 0 and (22.2) of [5] follows. Moreover P, the uni­
versal cover of P , has the same homotopy type as Sz so ir^P) «^(-P) 
= 0. Therefore we reach the same contradiction as on p. 17 of [5] and 
we conclude that Dn is nonsingular. 

Since Dn is nonsingular it follows from (2.3) above that n>\ if 
n>0. In this case iri(Mn-i) ~ ( T ) or 0, according as n = 2 or n>2. In 
either case wi(Mn-i) is Abelian. 

Assume that n>0. If Hi(Vn-i) were infinite, then (23.1) in [5] 
would follow from [5, (11.2), (12.6)]. The last paragraph in No. 23 of 
[5] would then lead to a contradiction. Therefore Hi(Vn-i) is finite. 
Hence all the components of Vn-i are spheres and, by (6.1) in [5], 
the injection 7ri(Fn-i)-^7ri(ikfn_i) is a monomorphism. Since iri(Mn-i) 
is Abelian, sois 7Ti(Fw_i). Therefore 7Ti(Fw-i) ^Hi(Vn-i) which is finite. 
This contradicts (2.2). Therefore n — 0, D0 is nonsingular and the 
proof is complete. 

3. Consequences of (1.1). Let X be a Hausdorff space and MQX 
a connected 3-manifold such that M—M is an open subset of X. 
Let M be orientable if X is not a 3-manifold (if X is a 3-manifold M 
need not be orientable). 

THEOREM (3.1). The kernel of the injection, i*: TI(M)—>TI(X), con-
tains no element of finite order > 1 . 

PROOF. The group TI(M) =7TI (M, X0), may be identified with 
Linu {TTICC, XO)} for every compact CC.M which contains x0. Such 
a C has a paracompact neighbourhood in M and it follows from the 
triangulation theorem that it is contained in a compact (triangulable) 
manifold in M. Therefore we may assume that M is compact and 
triangulated. If M is unbounded it is open and closed in X, whence 
i*: TI(M) «TTI(-X') =7Ti(X, Xo). So we assume that M is bounded. 

Let l?*aÇzWi(M), am—\ for some w > l . We have to prove that 
ilea3^1. First let M be nonorientable, X being a manifold. Let X ibe 
an orientable cover of X, let p: Xi—>X be the projection and let Mi 
be the component of p~lM which contains the base point (in p^Xo) 
for Xi. Then Mi is orientable. If Ha^p^Ti(Xi), then i^a^l. If 
i*oc(E.p*'n'i(Xi)y then a loop J—»ikf, representing a and i*a, lifts into 
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a loop I—>M\. Therefore a = p*ai, where ai^wi(Mi) and p' 
= P\MI: MI—>M. Moreover Ha = p*i*au where i'\ M\QX\. Since 
a 5*1 and £*, p* are monomorphisms it follows that ÖJIT^I, a#* = l and 
that i£«17^1 implies i*o&£\* Therefore the theorem will follow when 
we have proved it for an orientable M and arbitrary X. 

If G is any group let p{G) be the minimum number of generators 
among all presentations of G. Thus 0^p(G)^oo and p(G)=0 if, 
and only if, G = l. If G = Gi*G2, a free product, then p(G) =p(Gi) 
+p(G2) [2; 4 ] . Let v(M) be the number of components of M and let 
\(M)=p(ir1(M))+v(M). Then X(ikf) < oo since M is compact. If 
X(ikf) = 0 there is nothing to prove and we proceed by induction on 
X(M). I t will be enough to sketch the proof because of its similarity 
to that of (31.2) in [5]. 

Let us describe the pair (X, M) as bad if, and only if, kernel (i*) 
contains an element of finite order > 1 . Assume that the theorem is 
false and that, among all bad pairs, (X, M) is one with the smallest 
\(M). Then M is not aspherical, by (31.1) of [5]. Hence, and since M 
is bounded, it follows from (25.1) of [5] that 7r2(ikT)^0. Therefore 
it follows from (1.1), with A = 0, that M contains a nonsingular, 
polyhedral 2-sphere 5, which is essential in M. We may assume that 
SC.M—M and, since TCI{M) contains an element of finite order > 1 , 
that S separates M. Hence, by cutting1 through 5 and filling in the 
holes, as in [5], we construct a pair (X', M') such that X(ikf) <\{M) 
and (X', M') is bad (notice that v{M), unlike n(M) in [S], includes 
the count of the 2-spheres in M). This contradiction completes the 
proof. 

COROLLARY2 (3.2). If X, M are as in (3.1) and ifin(X) contains no 
element of finite order > 1 , then TT\{M) contains no element of finite 
order > 1 . 

Let A be a connected subset of M which is a compact ANR (for 
the category of separable metric spaces). Then there is an open sub­
set UC.M of which A is a retract. Therefore the injection wi(A) 
—*wi(U) is a monomorphism and from (3.1), applied to X, U, we have: 

COROLLARY (3.3). Let X, M be as in (3.1) and let A be a connected, 
compact ANR in M. Then the kernel of the injection TI(A)-*ITI(X) 
contains no element of finite order > 1 . 

1 Since 5 is a closed subset of X, and because X is a Hausdorff space, and M—M 
is open in X the cutting process can be carried out in the usual way. If X were not a 
Hausdorff space this would not, in general, be so and (3.1) would be false. 

» Cf. (31.2) in [5]. 



1958] ON 2-SPHERES IN 3-MANIFOLDS 165 

Let M, A be as in (3.3), let M be orientable and let Ti(A) contain 
an element, a, of finite order > 1. L e t / : 51—>A be a map which repre­
sents a and let g: Sl—>M be a map such that fo^g in M. I say that 

(3.4) AC\gS1^^. 

PROOF. Assume that ArsgS1^^ and let X = M\Je2, where e2 is 
an open 2-cell attached to M by the map g. Since / ~ g in M" it follows 
that i*a = l, where i: AQX. This contradicts (3.3), applied to X, 
M—gS1, A, and (3.4) is proved. 

On considering a cone, X, with a real projective plane, ^4, as base 
and M = UX minus vertex" we see that (3.1), • • • , (3.4) are not neces­
sarily true if M is nonorientable. But in (3.2), (3.3), as in (3.1), M 
may be nonorientable provided X is a 3-manifold. 

Let T be any group and G a 7r-module. By a set of it-generators 
for G we mean a sub-set BQG such that every element of G is of the 
form ]C&e# £&&, where £& is in the integral group ring of w and £& = 0 
for almost all b. 

Let ilf = Mi\JM2, where Mi, M2 are connected 3-manifolds such 
that Mir\M2 = Mir\M2 = 2i 2-sphere. 

LEMMA (3.5). Let B\ be a set of iri(M\)-generators for T2(M\) and let 
i\: 7T2(.Mx)—>7r2(M) be the injection (X = 1, 2). Then ti^iUt2-S2 is a set of 
TTi(M)-generators for w2(M). 

This follows from the Mayer-Vietoris theorem, applied to a uni­
versal cover of M. 

Let M be a connected, compact (possibly bounded) orientable 
3-manifold. 

THEOREM (3.6). wi(M) has a finite set of iri(M)-generators, whose 
iri(M)-classes are represented by disjoint, nonsingular, polyhedral 
2-spheres. 

PROOF. The assertion is trivial if 7r2(ikf)=0 so we assume that 
T2(M)9£0. Then it follows from (1.1) with A = 0, that M contains an 
essential, nonsingular, polyhedral 2-sphere S. Let X(ikf) be as in the 
proof of (3.1). Clearly T T 2 ( M ) = 0 if X(M)=0 or if TTI(M) = 1 and M 
consists of a single 2-manifold, necessarily a 2-sphere. Therefore, if 
X(ikf) = 1, then M is closed and wi(M) is cyclic infinite. In this case the 
manifold obtained from M by cutting through 5 is 1-connected, and 
the assertion follows without difficulty from the Hurewicz theorem, 
applied to a universal cover of M. 

If \(M) > 1 we may assume that 5 separates M. Then M = MiUM2, 
MiC\M2~S, where Mi, Af2 are orientable 3-manifolds. Let Ni 
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= Mi\JBi (i = l, 2), where Bi is a 3-dimensional ball such that 
S = Bi = Bir\Mi. Clearly \(Ni)<\(M). Moreover the kernel of the 
injection ^(i^T*)—^(iV^) is generated by the iri{Mi)-class repre­
sented by S. Also, if bÇE.Bi — S there is a piecewise linear isotopy of 
Ni — b into Mi — S. Therefore (3.6) follows from induction on \{M) 
and (3.5). 
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