
THE DYNAMICS OF GEODESIC FLOWS* 

GUSTAV A. HEDLUND 

1. Introduction. Geodesic systems, particularly those on two-
dimensional manifolds, have been a rich source in the determination 
and display of the possible types of macroscopic behavior of the 
motions of dynamical systems. In connection with the question of 
the existence of periodic motions, Poincaré [ l ] t investigated the 
geodesies on convex surfaces. Hadamard [ l ] has constructed open 
surfaces of negative curvature and proved the existence of interesting 
classes of geodesies on these surfaces. By an ingenious use of sym­
bolism to characterize these geodesies, Morse [ l ] proved the exist­
ence of nonperiodic recurrent geodesies of discontinuous type. 
Birkhoff [ l ] has constructed closed surfaces of nonpositive curvature 
and has shown that, among many other types, there exist transitive 
geodesies on these surfaces. 

There is another group of mathematicians who have made numer­
ous contributions in connection with geodesic systems on surfaces of 
constant negative curvature. As will be seen, these surfaces have a 
close relationship with Fuchsian groups, and in addition to their work 
having other connections with these groups, Artin [ l ] , Myrberg 
[l , 2, 3] , Nielsen [ l , 2] , Koebe [ l ] , and Löbell [ l , 2, 3, 4] have de­
rived many properties of the geodesies. 

With the recent developments in ergodic theory, interest has been 
centered on those properties of geodesic flows associated with transi­
tivity in some form, as for example, regional transitivity, metric 
transitivity, and mixture. The conditions under which regional 
transitivity holds have been greatly extended by Morse [3]. Geodesic 
systems have furnished some of the few known examples of metrically 
transitive dynamical systems (cf. Hedlund [l , 2] , E. Hopf [ l ] ) . As 
will be indicated, a number of new results concerning transitivity can 
be added, both in the case of constant curvature and in the case of 
variable curvature. 

An enormous body of results has been attained, and an hour is 
entirely inadequate to permit a description of all. For this reason I 
propose to restrict the discussion to transitivity properties of 
geodesic flows. It has been conjectured (Birkhoff [3], p. 370) that 
these are the important properties in that they are general in some 
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sense, but the evidence gathered to date is not at all conclusive. 
Outstanding problems remain unsolved, a notable one being the 
problem of metric transitivity of the geodesic flow on a closed 
analytic surface of variable negative curvature. 

I t is of interest to note the influence of Poincaré in many phases of 
our considerations. It was Poincaré who first emphasized macro-
analysis and probability considerations in the study of dynamical 
systems. We are indebted to him for the Poincaré fundamental group 
and much of our knowledge of Fuchsian groups which play an im­
portant role in the analysis of geodesic flows on two-dimensional 
manifolds of negative curvature. 

2. Flows and transitivity types. The geodesies on a Riemannian 
manifold are the solutions of the Euler equations, a system of second 
order differential equations derived by imposing the condition that 
the first variation of the arc length vanish. If the coefficients of the 
positive definite quadratic forms 

ga$duadyP 

which define the Riemannian manifold locally are of class C" (some­
what less than this is sufficient), a geodesic is uniquely determined by 
an element, tha t is, by a point and a direction at that point. Let us 
assume that the manifold is complete in the sense that each geodesic 
can be continued to infinite length (cf. H. Hopf and Rinow [ l ] ) . 
Then if g is the directed geodesic determined by the element e, and s 
is the sensed arc length on g measured from the point P at which e is 
situated, corresponding to s there is an element eSJ namely, the ele­
ment of g at distance s along g from P . Furthermore, es varies con­
tinuously with e and s. The transformation e—>es is a transformation 
T8 of the space Q, of elements on the manifold into itself, and the 
properties which we consider can be most simply stated in terms of 
such a one-parameter set of transformations Ts. 

The conditions which will be imposed on the space in which the 
transformations are defined and on the transformations themselves 
will be fulfilled by the element spaces and transformations in them 
which we subsequently consider. 

Let 0 be a metric, separable, complete space in which an /-measure 
in the sense of von Neumann (cf. von Neumann [ l ] , p. 575) is de­
fined. The measure defined by use of this /-measure, which is analo­
gous to a Lebesgue outer measure, will be denoted by m. Let Tt be, 
for each real /, a one-to-one transformation of 0 into itself satisfying 
the following conditions : 
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(a) TQ(P)=P;Tt[T8(P)] = Tt+8(P). 
(b) Tt(P) is a continuous function of t and P. 
(c) If 4̂ is a measurable subset of 12, then 2\(i4) is measurable 

and m[Tt(A)]=mA. 
Such a continuous one-parameter group of transformations will be 

called a flow in 12. 
I t will be convenient to denote the set Tt{A)1 {A c 12), simply 

by A t. The set A will be said to be invariant if 4̂ * coincides with A 
for all /. The set Ptl ( — <*> < / < + <*>), will be called a motion or 
trajectory. 

The properties of the flow JT* in 12 with which we shall be concerned 
are the following, where the set of points common to the sets A and B 
of 12 is denoted by A • B and the empty set is denoted by 0. 

REGIONAL TRANSITIVITY. Given D and D*, arbitrary open sets in 12, 
there exists a t such that Dt'D*^0. 

TOPOMETRIC TRANSITIVITY. Given M, any measurable set of positive 
measure in 12, and D, any open set in 12, there exists a t such that 

METRIC TRANSITIVITY. Given M and M*9 arbitrary measurable sets 
of positive measure in 12, there exists a t such that Mt- M*?^0. 

PERMANENT REGIONAL TRANSITIVITY. Given D and D*, arbitrary 
open sets in 12, there exists a t such that P f D V O , (\t\ ^t). 

PERMANENT TOPOMETRIC TRANSITIVITY. Given ikf, any measurable 
set of positive measure in 12, and D, any open set in 12, there exists a I 
such that Mt-D^O, (\t\ ^t). 

PERMANENT METRIC TRANSITIVITY. Given M and M*> arbitrary 
measurable sets of positive measure in 12, there exists a t such that 
MrM*5*0y (|*| ^i). 

M I X T U R E . Given M, M*, and If, arbitrary measurable sets of 12 of 
finite positive measure^ 

rn(Mt'M*) niM* 
l i m _ _ = — _ _ . 

*-»±oo tn(Mt'M) mM 
Regional transitivity is sometimes given a different but equiva­

lent definition. A motion will be called transitive if the points on it 
form a set which is everywhere dense in 12. Regional transitivity is 
equivalent to the property that there exist a transitive motion (cf., for 
example, Birkhoff [ l ] , chap. 7). 
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The points on the transitive motions in 12 form a set which is the 
product of a denumerable set of open sets and is thus measurable. 
If this set coincides with 12 except for a set of measure zero, it will be 
said that almost all motions are transitive. Topometric transitivity is a 
necessary and sufficient condition that almost all motions be transitive. 

Metric transitivity is a necessary and sufficient condition that in any 
division of 12 into two complementary, invariant, measurable sets, one 
of the sets is of measure zero. In this form the notion of metric transi­
tivity was introduced by Birkhoff and Smith (cf. Birkhofï [4], p. 
365). I t plays a fundamental role in connection with ergodic theory. 
According to the ergodic theorem of Birkhoff [2], if m 12 is finite and 
M is any measurable set in 12, the mean time of sojourn of a motion 
in M (that is, lim^-a^oo La,p{P, M)/(j8 — a) , where La,p(P, M) is the 
linear measure of the part of the set Pt, ( o ;g^ /3 ) , in M) exists except 
for a set of motions of measure zero. If metric transitivity holds, 
the mean time of sojourn in M is the same for almost all motions 
and is equal to raikf/ra 12. 

If ml2 is finite, by replacing Id by 12 the mixture property becomes 

mMmM* 
lim m(Mt-M*) = > 

t-+± « m 12 

and, conversely, this implies the mixture property. Thus, any measur­
able set M of positive measure tends, with increasing or decreasing 
time, to occupy a definite fractional part of any other measurable 
set M*, and the fraction is simply the fractional part of 12 which M 
occupies. Sets tend towards homogeneous distribution in 12. (In this 
connection cf. E. Hopf [2], where references to the work of Koopman 
and von Neumann will be found.) 

There are a number of evident relationships between the transi­
tivity properties which have been defined. Metric transitivity implies 
topometric transitivity, which, in turn, implies regional transitivity. 
Any one of the permanent types of transitivity implies the corre­
sponding non-permanent type. Permanent metric transitivity implies 
permanent topometric transitivity, which, in turn, implies regional 
transitivity. Mixture implies permanent metric transitivity and thus 
implies all the types of transitivity which have been defined here. 

The flow defined by a suitably chosen family of parallel straight 
lines on a torus (rectangle with opposite sides identified), shown to 
be metrically transitive by Birkhoff and Smith (cf. Birkhoff [4], 
p. 368) yields an example which is not permanently regionally transi­
tive and thus has none of the permanent transitivity properties. I t 
seems to be difficult to give examples of flows which have one of the 
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non-permanent types of transitivity without having the other non-
permanent types, or which have one of the permanent types of 
transitivity without possessing the other permanent types. How­
ever, it will be possible to give an example of a geodesic flow which is 
regionally transitive (and even permanently regionally transitive) 
but not metrically transitive. 

3. Two-dimensional manifolds of constant negative curvature. 
The simplest manifolds on which the geodesies display transitivity 
properties of the kind we are considering are two-dimensional mani­
folds of constant negative curvature. To define such manifolds, let ^ 
be the interior of the unit circle U: x2+y2 = l. To ^ we assign the 
metric 

4(dx2 + dy2) 4 I dz I 
(3.1) ds2 = — = ! — , c>0. 

c{\ - x2 - y2)2 c{\ - zz)2 

The curvature of this simply connected Riemannian manifold is —c. 
The metric (3.1) assigns a length to curves in ^ , and this length will 
be called hyperbolic length. Angle is euclidean angle, and the element 
of (hyperbolic) area is 

4dxdy 
(3.2) 

c{\ - x2 - y2)2 

The geodesies defined by (3.1) are arcs of circles orthogonal to U 
and will be called hyperbolic lines. Given two points P and Q of ^ , 
there is a unique hyperbolic line segment joining P and Q, and the 
hyperbolic length of this hyperbolic line segment is the hyperbolic dis­
tance between P and Q. 

The metric (3.1) is invariant under linear fractional transforma-
rions which take \F into ^ , so that under such transformations, hyper­
bolic distance, angle, and area are invariant. Such a transformation 
is either an elliptic transformation with fixed points inverse with re­
spect to Uj a parabolic transformation with fixed point on U, or a 
hyperbolic transformation with fixed points on U. These transforma­
tions are rigid motions of the well known hyperbolic geometry under 
consideration. 

Now let F be a Fuchsian group with U as principal circle. That is, 
F is a group of linear fractional transformations, each of which trans­
forms U into U and ^ into ^ , such that F is properly discontinuous 
in ^ (cf. Ford [ l ] , p. 35, chap. 3). Two sets of points in ^ are con­
gruent if there is a transformation of F taking one of these sets into 
the other. Either set will be said to be a copy of the other. 
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It can be shown that corresponding to any such group F there 
exists a normal fundamental region R (cf. Ford [ l ] , pp. 44, 69-70). 
This is a simply connected region bounded by arcs of hyperbolic lines 
which are congruent in pairs, such that no two interior points of R 
are congruent and any point of ^ is congruent to some point within 
or on the boundary of R. If suitable conventions are made as to the 
inclusion of boundary points of R, no two copies of R have a common 
point and the totality of these copies fills ^ . 

If points which are congruent under F are considered identical, 
there is defined a two-dimensional manifold Mfc of constant nega­
tive curvature — c. These manifolds are non-euclidean space forms of 
hyperbolic type, and an extensive analysis of them can be found in 
the papers of Koebe [ l ] and Löbell [ l ] . By including in the group F 
transformations of the form 

az + c 
w — _ , aâ — cc = 1, 

cz + â 

these authors consider non-orientable as well as orientable manifolds. 
For simplicity, the discussion will be restricted to manifolds defined 
by Fuchsian groups, though the results derived apply to the non-
orientable cases. 

The presence of elliptic transformations in F, such a transforma­
tion necessarily having one of its fixed points in ^ , implies the exist­
ence of singular points on the manifold Mfc. The total angle at such 
a point is not 27T. 

In the nonsingular case there are restrictions on the topological in­
variants of the manifolds. If the manifold is closed and orientable, 
its genus must be greater than one. (In the non-orientable case, the 
genus of a closed manifold must be greater than two.) Among the 
open manifolds are included manifolds of finite or infinite connectiv­
ity. 

As a first classification of the manifolds Mf~e, they are divided into 
first and second kind. The group F is of the first kind if it is not 
properly discontinuous on U. The corresponding manifold Mfc will 
be said to be of the first kind and denoted by Mre. If F is not of the 
first kind, it is of the second kind, and the corresponding manifolds 
of the second kind will be denoted by Mifc. An essential difference be­
tween Fuchsian groups of the first and second kind lies in the be­
havior of the fundamental region. In the case of a group of the second 
kind, the fundamental region abuts on the circle U in an interval 
(cf. Ford [ l ] , pp. 74-75). Thus manifolds of the second kind are nec­
essarily open. In the case of groups of the first kind the boundary of 
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the fundamental region cannot contain an interval of U and may or 
may not have points on U. Manifolds of the first kind include all 
closed orientable two-dimensional Riemannian manifolds of constant 
negative curvature. In addition there are included manifolds which 
are not closed and which may be of finite or infinite connectivity. 

An element e in SP" is a point of ^ together with a direction at that 
point and can be specified by three coordinates (x, y, $) , where x and 
y are the coordinates of the point and $, (0^</><27r), is an angular 
coordinate at the point measured positively in the counterclockwise 
sense from a direction parallel to the positive x-axis. The point 
P(x, y) is the point bearing the element (x, y, <j>). A neighborhood of 
the element ei(xi, yi, 4>i) is the set (x, y, </>) such that 

tf(P, Pi) < 8 , | | « - * i | | < « , 

where P is the point (x, y), Pi is the point (xi, yi), H(P, Pi) denotes 
the hyperbolic distance between P and Pi when c = 1, \\(j> — <£i|| denotes 
the least value of the set |</> — 4>i+2nw\, (n = 0, ± 1 , ± 2 , • • • ), and 
S>0 . Let E denote the space of elements in St" with neighborhoods 
thus defined. 

A transformation of F carries an element into a congruent element. 
The space Q,F of elements on Mfc is the space obtained by identifying 
congruent elements of E. Neighborhoods are defined in tip as the cor­
respondents of the neighborhoods in E, and 12/? is a Hausdorff space. 
By suitably defining a metric in QF, tiF is made a metric, separable, 
complete space.* The points of &F are in 1-1 correspondence with a 
subset ER of E obtained by restricting the points bearing the ele­
ments to the fundamental region R (a properly chosen subset of the 
elements at boundary points of R included). Measurability is defined 
in ER by considering this as a subset of the three-dimensional euclid-
ean space (x, y, <£), and measure in ER is defined by the integral 

r r Ç Adxdyd(j> 

J J J c{\ - x2 - y2)2 ' 

Measurability and measure in &F are defined by the correspondence 
with ER. 

The geodesies on Mp~c are represented in ^ by sets of hyperbolic 
lines, congruent hyperbolic lines representing the same geodesic. 
The geodesies on Mp~c define a flow in QF which can be described 
simply as follows. Let p be any point of Q,F, and let e be one of the 

* The space 0 ^ is metrizable. It may be necessary however to modify the metric 
thus obtained in order to assure completeness. 
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congruent elements in \^ determining p. The element e determines a 
directed hyperbolic line h. Let s be the sensed hyperbolic length on h 
measured from the point Q bearing e. Let e8 be the element of h at 
the point with coordinate s, and let p8 be the point of 0/? determined 
by e8. The transformation p-*p8 is a 1-1 continuous, measure pre­
serving transformation T8 of QF into itself. The flow thus defined is 
the flow in £lF which we consider and will be called the geodesic flow 
on Mfc. 

A fundamental result and one which is useful in the derivation of 
transitivity properties is the following : 

THEOREM 3.1. There exist denumerably many periodic geodesies on 
any Mrc, and the elements on these geodesies form a set which is every­
where dense in £lF. 

A periodic geodesic on M\e is represented in ^ by an axis (the 
hyperbolic line joining the fixed points) of a hyperbolic transforma­
tion of F, and the statement of the theorem is equivalent to the state­
ment that given arbitrary intervals Ii and h of U, there exists a 
hyperbolic transformation of F with one fixed point in I\ and with the 
other fixed point in h. 

This result was first proved in various special cases by Artin [ l ] 
and Herglotz, J. Nielsen [ l ] , and Morse [2]. The general result is 
due to Koebe [ l ] and Löbell [2]. The proof of it is attained by simple 
geometrical arguments. 

With the aid of the preceding theorem it is easily shown that there 
exists a transitive geodesic, and the following theorem can be stated : 

THEOREM 3.2. The geodesic flow on any Mrc is regionally transitive. 

As in the case of the preceding theorem, this theorem was proved 
in various special cases by Artin [l ] and Herglotz, by Myrberg [l , 2] , 
and by J. Nielsen [l , 2] , while the proof in the general case is due to 
Koebe [ l ] and Löbell [2]. 

The problem of permanent regional transitivity on any Mfc can 
be solved by an analysis of the transitivity properties of the horo­
cycles. Since the method of solving this problem is characteristic of 
the methods of solving a number of other transitivity problems, it 
will be described briefly. 

A horocycle is an ordinary euclidean circle which is internally tan­
gent to U. Its importance here lies in the fact that it is a limiting 
curve of hyperbolic circles. A hyperbolic circle is the locus of points 
at constant hyperbolic distance from a fixed point (the center) in ^ 
and is also a euclidean circle. If a sequence of hyperbolic circles which 
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pass through a fixed point Q of >F and whose centers approach a point 
A of U is given, the limiting curve of this sequence is the horocycle 
which passes through Q and is internally tangent to U at A. This 
horocycle will be denoted by C(Q, A), the point A being the point at 
infinity of C(Q> A). 

Permanent regional transitivity means that under the geodesic flow 
any open set D in Q,F eventually (interpreting s as time) intersects 
any other open set D* and after a sufficiently great length of time, 
positive or negative, the intersection is never empty. Assuming that 
F is of the first kind, let Qp be denoted by 12i. Since, according to 
Theorem 3.1, the elements on periodic geodesies are everywhere dense 
in Qi, D contains such a periodic element. This element is repre­

sented in SF by an element e0 of a directed axis AB of a hyperbolic 
transformation T of the group F. Since D is an open set, it contains 
the set No of Qi determined by a sector of elements E0 at the point P 0 

bearing e0 and with eQ as central element. The set Ds, ( s>0) , then 
contains the set Ns of Oi determined by the elements E8 perpendicular 
to an arc cs of a hyperbolic circle with center P 0 and hyperbolic radius 
s. The arc cs is that determined by the hyperbolic rays with initial 
elements in E0, and the elements E8 are directed outward. 

Let Q be any point of the axis AB. The points Tn(Q), 
(w = 0, ± 1 , • • • ), have A and B as limit points and the sequence 
0<Si<s2< - - - , limn^005n= + oo, can be so chosen that the point 
PSn where cSn cuts across AB is congruent to Q under a power Tmn 

of T. As a matter of fact, this sequence can be taken in the form 
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Si+nœ, where co is the hyperbolic distance through which T moves a 
point of the axis AB. The transformed arc cr

Sn = Tmn{c8^) passes 
through Qf and as n becomes infinite, c'Sn approaches the horocycle 
C(<2, A). The transformed sets E'Sn = Tmn(ESn) have as limit elements 
the elements perpendicular to C(Q, A) and directed outward. Con­
gruent elements in ^ determine the same points in Qi, so the set Ef

Sn 

determines points in N8n, which is a subset of DSn. If the set of ele­
ments outwardly perpendicular to the horocycle C(Q, A) determines 
an everywhere dense set in Oi, the set iVSn will tend with increasing n 
towards a dense distribution in Oi and for sufficiently large n will 
contain points in D*. If these properties hold for any choice of Q on 
the axis AB, it can be shown that the flow is permanently regionally 
transitive in the positive sense. Similar reasoning can be applied to 
the case s < 0 , where, however, outwardly directed normals must be 
replaced by inwardly directed normals. 

The density properties of the sets of elements perpendicular to a 
horocycle can be determined by the density properties of the elements 
on the directed horocycle itself. The directed horocycles are called 
right or left according as the orientation is clockwise or counterclock­
wise. A right (left) horocycle is transitive if its elements determine an 
everywhere dense set in Q,F. 

The analysis of the transitivity properties of the horocycles has 
been carried through by the author (cf. Hedlund [4]). The methods 
are geometrically simple and depend on Theorem 3.1. With the aid of 
these results it is possible to establish the following theorem (essen­
tially Theorem 3.1 of Hedlund [4]) : 

THEOREM 3.3. The geodesic flow on any Mrc is permanently region­
ally transitive. 

I t is of interest to note that if the fundamental region lies, together 
with its boundary, interior to £/, all the right (left) horocycles are 
transitive and they define a flow in the three-dimensional space fli in 
which all the motions are transitive. 

As to metrical results with respect to manifolds Mf~c> with an ex­
ception to be noted these have been derived only under the hypothe­
sis that F has a finite set of generators. The corresponding manifolds 
will be denoted by M\fc. In the case of an M\fc, the (hyperbolic) area 
of the fundamental region is finite, which implies that the correspond­
ing element space fii/ is of finite measure. This fact seems to play an 
important role in the derivation of the results to be stated. 

Topometric transitivity was first proved by Artin [ l ] and Her-
glotz, and by Myrberg [ l ] for a special group. Later Myrberg [2, 3] 
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showed that topometric transitivity held for a large class of mani­
folds Mjfc. But these results are all included in the following theorem 
which is due to E. Hopf: 

THEOREM 3.4. The geodesic flow on any Mifc is metrically transitive. 

This important result was attained by ingenious methods involving 
harmonic functions, and Professor Hopf described this work in an ad­
dress to this society in February, 1936 (cf. E. Hopf [ l ] ) . Previous to 
this the author had succeeded in establishing metric transitivity for 
a certain denumerable subclass of the manifolds M\fe. The methods 
used involved symbolic characterizations of the geodesies due in one 
case to Artin [ l ] and Herglotz and in the remaining cases to J. Niel­
sen [3]. 

It is now possible to add a theorem which completes the solution 
of our transitivity problems with respect to manifolds M\fc (cf. Hed-
lund [7]). 

THEOREM 3.5. The geodesic flow on any Mifc is a mixture. 

The method of proof is an extension of that used to prove perma­
nent regional transitivity on any Mrc- Since, in the case of an Mi/~c, 
mtiif is finite, the geodesic flow is a mixture if measurable sets tend 
with increasing or decreasing time towards homogeneous distribution 
in Qi/ (cf. §2). As indicated in connection with permanent regional 
transitivity, sets in Qi/ tend towards a distribution in sets determined 
by elements perpendicular to right horocycles. I t would seem likely 
then that the mixture property holds if these sets of perpendicular 
elements are in some sense equidistributed in Qi/, or, if the same is 
true of the elements on the right horocycles. The elements on a right 
horocycle determine a path in Oi/. How is it possible to determine 
anything about the distribution of such paths in Qi/? An obvious way 
is to show that these paths are the motions of a measure preserving 
flow in Oi/ which is metrically transitive. 

Similar to the way in which the directed hyperbolic lines define the 
geodesic flow Ts, the right horocycles define a flow RHS which bears 
a simple relationship to the flow Ts. Due to this relationship it is 
possible to show that the flow RH8 is metrically transitive if the same 
is true of the geodesic flow. But, from Theorem 3.4, metrical transi­
tivity of the geodesic flow holds on manifolds M\fc\ thus on such 
manifolds the right horocycle flow is metrically transitive. I t follows 
from the ergodic theorem of Birkhoff that almost all the right horo­
cycles determine paths which are equidistributed in the sense that 
the mean time of sojourn of a path in a measurable set N c £2i/ exists 
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and is equal to mN/mQif, except for a set of paths of measure zero. 
With the aid of this, Theorem 3.5 can be proved directly. 

An example due to Seidel [ l ] shows that in the case of manifolds 
Mrci permanent regional transitivity is not necessarily accompanied 
by metric transitivity when the number of generators of F is not 
finite. Seidel gives an example of a Fuchsian group F which is region­
ally transitive on U but not metrically transitive on Ï7. It follows 
that F must be of the first kind and the geodesic flow on the manifold 
Mrc defined by Fis permanently regionally transitive (Theorem 3.3). 
This flow cannot be metrically transitive, for this would imply the 
metric transitivity of F on U. The following theorem can be stated : 

THEOREM 3.6. There exist manifolds Mrc on which the geodesic flow 
is permanently regionally transitive but not metrically transitive. 

As to manifolds Mif~c, the fundamental region has an interval of U 
on its boundary and mSln is therefore infinite. I t is easily shown that 
regional transitivity cannot hold. I t can be shown that on these 
manifolds almost all the geodesies are unstable in the sense that for 
both increasing and decreasing s, they eventually leave and remain 
outside of any finite domain of the manifold. This was first proved for 
manifolds M\fc by E. Hopf [ l ] . The general result is a corollary of 
Theorem 4.6 of the following section. 

THEOREM 3.7. Almost all the geodesies on any M\\c are unstable. 

4. Two-dimensional manifolds of variable negative curvature. 
A number of the transitivity properties of the geodesic flows on mani­
folds of constant negative curvature can be shown to hold on mani­
folds which are not of constant curvature. The most general case in 
which transitivity properties have been derived is under some in­
stability condition such as that of Morse (cf. Morse [3], Hedlund 
[3]). 

To define the manifolds which we consider we again start with the 
unit circle [/, but now assign to its interior the metric 

\2(x, y)(dx2 + dy2) 
(4.1) ds2 = V ' y — — , 

(1 - x2 - y2)2 

where X(x, y) is a function of class C7 in ty and is such that 
0 < a ^ X ( x , y)Sb. The geodesies to be considered are those defined 
by (4.1). 

Now let us assume that \(x, y) is invariant under a Fuchsian group 
if7 with principal circle U. Then the metric (4.1) is invariant under the 
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transformations of the group, and if points in S£ which are congruent 
under F are considered identical, there is defined a two-dimensional 
Riemannian manifold MF(K). These manifolds form an extensive 
class. They include, in particular, all closed orientable surfaces of 
genus greater than one and defined by functions of at least class C8. 

The space of elements on MF(K) can be taken as the space tiF de­
fined in the case of constant negative curvature. The definition of 
measure in £lF is like that of the case of constant curvature except 
that the volume element now used is 

\2(#, y)dxdyd4> 

(1 - x2 - y2)2 ' 

The flow to be considered in QF is that defined by the geodesic deter­
mined by (4.1), and it is a continuous measure preserving flow. 

In the terminology of Morse [3], two curves in ^ are of the same 
type if there exists a constant d such that any point of either one of 
these curves is at a hyperbolic distance less than d from some point 
of the other curve. I t can be shown that given an arbitrary hyperbolic 
line h in SF, there exists a geodesic g defined by (4.1) such that g and h 
are of the same type. The geodesies defined by (4.1) in ^f satisfy the 
condition of unicity if there is just one of the type of a given hyper­
bolic line. The condition of unicity is satisfied if the curvature is nega­
tive, but, more generally, as shown by Morse [3], unicity is implied 
by a condition of uniform instability which is defined in terms of the 
equations of variation of the geodesies. 

Let MF
U denote a manifold MF(K) for which the condition of unicity 

is satisfied. A one-to-one correspondence between the geodesies on 
Mfc and those on MF

U can be defined by means of the correspondence 
between the hyperbolic lines and geodesies of (4.1) in SK This corre­
spondence preserves many properties of the geodesies. To a periodic 
geodesic on Mfc corresponds a periodic geodesic on MF

U\ to a transi­
tive geodesic on Mfc corresponds a transitive geodesic on MF

U. Thus 
if MF

U is denoted by Miu when F is of the first kind, the following theo­
rem is implied by Theorem 3.2 : 

THEOREM 4.1. The geodesic flow on any M\u is regionally transitive. 

This theorem is essentially due to Morse [3]. It includes a result 
due to Birkhoff ( [ l ] , pp. 238-248), who had previously shown the 
existence of transitive geodesies on certain surfaces of nonpositive 
variable curvature. I t is possible to establish regional transitivity un-
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der a condition of ray instability which differs from the instability 
condition of Morse (cf. Hedlund [3]). 

Until recently, the preceding theorem was the only transitivity 
property known to hold without the restriction that the curvature be 
constant. I t is now possible to add a number of results. These have 
been obtained only under the assumption that the curvature of the 
manifold lies between two negative constants, but it seems likely that 
they can be extended to hold under a condition approximating that 
of uniform instability. The manifolds will be denoted by Mf, Mnn or 
Mi/1 according to the properties of the Fuchsian group under which 
(4.1) is invariant. The following theorem was proved by Grant [ l ] : 

THEOREM 4.2. The geodesic flow on any manifold Mf1 is perma­
nently regionally transitive. 

This was derived by extending the notion of horocycles to the case 
under consideration. The hyperbolic circles are replaced by geodesic 
circles. If we consider a sequence of geodesic circles, all passing 
through a fixed point P of ^ and with centers approaching a point 
A of Uy the geodesic circles approach a limiting curve which can be 
shown to have many of the properties of the horocycles. These gen-
eralized horocycles will be referred to simply as horocycles. 

By arguments similar to those given in the case of constant nega­
tive curvature, sectors of elements tend, under the geodesic flow on 
Min> towards a distribution along elements perpendicular to horo­
cycles. An analysis of the transitivity properties of the horocycles 
then yields the stated theorem. 

These methods yield more than this, however, in the case of mani­
folds Mif

n. The following metrical result can be stated (cf. Hedlund 
[6]): 

THEOREM 4.3. The geodesic flow on any manifold Mi/1 is topometri-
cally transitive. 

Topometric transitivity is the property that any set N of positive 
measure in Qïf eventually intersects any given open set D in a non­
empty set. Such a set N does not necessarily contain all the points of 
Qi/ determined by a sector of elements in SF, but this condition can 
be approximated. Some one of the sets of elements Ep0 at a point P0 

of SF must contain a linearly measurable subset EPQ(N) determining 
points of N and of positive linear measure (that is, linear measure in 
terms of the angular coordinate <£ at P 0 ) . There must be an element e0 

belonging to EpQ(N) at which the linear metric density of the set 
EpQ(N) is unity. A sector with e0 as central element can be so chosen 
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that the ratio of the linear measure of the subset of EpQ(N) in the 
sector to the measure of the whole sector is nearly 1. 

Furthermore, since tn&if is finite, almost all points of Qi/ are on 
motions which are stable in the sense of Poisson for both positive 
and negative time (cf. Birkhofï [ l ] , p. 190). This follows essentially 
from a well known recurrence theorem of Poincaré. Thus the element 
e0 can be chosen as an element of a motion which is stable in the sense 
of Poisson. Let AB be the directed geodesic in ^ determined by e0. 
Let s be the sensed arc length (as measured by 4.1) on AB measured 
from P 0 , and let e8 be the element of AB at the point with coordi­
nate s. The Poisson stability implies the existence of a sequence 
s i<^2< • • • , limw^005n= + co, such that eSn — en has a congruent ele­
ment el with lim^oo^' = e0. 

The arguments are now somewhat similar to those used in proving 
permanent regional transitivity on manifolds of constant negative 
curvature. Here the arc c8 is an arc of a geodesic circle, and the set N8n 

does not contain all the points determined by the elements outwardly 
perpendicular to cSn, but only those determined by elements EPo(N)Sn 

on geodesic rays with initial elements in Ep0(N). However, if Tn de­
notes the transformation of F such that Tn(en) = e7[, it can be shown 
that the elements Tn[Ep0(N)8n] have as limit elements all the ele­
ments perpendicular to the (generalized) horocycle which passes 
through P 0 and has A as point at infinity. I t can be shown that these 
perpendicular elements determine a dense set in Oi/, and the stated 
theorem follows. 

There is a difficulty in the present case which is not encountered in 
the case of constant curvature. This lies in the relationship between 
the sets of elements EPQ(N) and EPo(N)Sn ; more exactly, in the relation­
ship between the linear measure of the set EPo(N) and the measure 
(linear on c8n measured in terms of hyperbolic length) of the set bear­
ing EpQ(N)8n. The proof of the desired relationship is not simple and 
involves an analysis of the dependence of the function G(r, 6) on 0, 
where G(rt 6) is defined by the quadratic form 

ds* = dr2 + G2(r, B)dB2 

obtained by setting up geodesic polar coordinates with P 0 as center. 
The following theorem is essentially a corollary of the preceding 

theorem, the statement with regard to non-orientable surfaces being 
derivable by the same methods. 

THEOREM 4.4. Almost all the geodesies on any closed surface of class 
C8 and of negative curvature are transitive. 
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We state without proof the following theorem which can be derived 
by these methods : 

THEOREM 4.5. The geodesic flow on any closed surface of class C8 

and of negative curvature is permanently regionally transitive. 

These theorems complete the known results concerning transitivity 
properties of the geodesic flows on two-dimensional manifolds. Many 
problems remain unsolved. The manifolds Miu

y on which, according 
to Theorem 4.1, there exist transitive geodesies, form a class which 
is restricted in a topological as well as in a dynamical sense. For ex­
ample, there is no known analytic two-dimensional manifold which 
is homeomorphic to a sphere or to a torus and has on it a transitive 
geodesic. The interrelation of the transitivity problem with the diffi­
cult problem of stability has been pointed out by Birkhoff [3]. 

By considering Fuchsian groups of the second kind we define mani­
folds Mnn. As in the case of constant curvature, these are all open and 
the geodesic flow on any such manifold is not regionally transitive. 
Let a geodesic on Mun be unstable if, given any finite (compact) re­
gion on Mif, the points of the geodesic which lie in this region lie on 
a finite segment of the geodesic. Then the following theorem can be 
stated (cf. Hedlund [ó]): 

THEOREM 4.6. Almost all the geodesies on any Mun are unstable. 

The method of proof is again based on horocycles. 
Manifolds Mn have properties similar to the surfaces of negative 

curvature which Hadamard constructed (Hadamard [ l ]) . A prelimi­
nary survey indicates that the methods used here can be applied to 
these Hadamard surfaces and that the perfect sets of geodesies con­
structed by Hadamard form sets of measure zero. 

5. Three-dimensional manifolds of constant negative curvature. 
By assigning the metric 

4(dx2 + dy2 + dz2) 
ds2 = 

c(l - x2 - y2 - z2)2 

to the interior of the unit sphere x2+y2+z2 = 1, and by identifying 
points which are congruent under the transformations of a properly 
discontinuous group which leaves this metric invariant, it is possible 
to define three-dimensional manifolds of constant negative curvature 
(cf. Tuller [ l ] , where other references will be found). In contrast to 
the two-dimensional case, little seems to be known about the possible 
topological types of such manifolds. I t is only recently that Löbell 
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[ó] has constructed examples of this kind such that the manifolds 
are closed. 

However, several of the methods which have been used in solving 
transitivity problems in connection with two-dimensional manifolds 
can be applied successfully to the case of three dimensions. Löbell [4] 
has derived theorems analogous to Theorems 3.1 and 3.2. Tuller [ l ] 
has shown that if almost all the geodesies are stable (where the defini­
tion of stable is analogous to that given in §4) almost all of them are 
transitive. Thus topometric transitivity holds on such manifolds 
which, in particular, include all those which are closed. Moreover, 
the work of Tuller indicates that under conditions similar to those 
in which the results hold in two dimensions, permanent regional and 
permanent topometric transitivity hold. E. Hopf (Zentralblatt für 
Mathematik, vol. 18, p. 273) states that his methods can be extended 
so as to prove metric transitivity in a large number of cases. The 
problem of mixture remains unsolved. 

There appear to be no results concerning transitivity properties of 
the geodesies on three-dimensional manifolds which are not of con­
stant curvature. 

6. Symbolic dynamics. Symbolic methods have been used fre­
quently in the derivation of transitivity properties of geodesies. These 
involve a characterization of the geodesic by an unending sequence of 
symbols called a symbolic trajectory. To a transitive geodesic corre­
sponds a transitive symbolic trajectory; that is, one which contains 
every possible finite block, subject to certain rules of admissibility 
determined by the manifold under consideration. Conversely, to a 
transitive symbolic trajectory corresponds a transitive geodesic. With 
such a characterization available it is often a simple matter to con­
struct a transitive symbolic trajectory, and thus prove the existence 
of a transitive geodesic. 

In the case of the modular group (the interior of the unit circle be­
ing replaced by the upper half-plane with the Poincaré metric 
(dx2+dy2)/y2) Artin [ l ] and Herglotz devised a symbolic charac­
terization of the geodesies and with the aid of this characterization 
proved not only regional but topometric transitivity. Myrberg [ l ] 
independently derived similar results. Further analysis of this sym­
bolic characterization enabled the author [2] to prove that metric 
transitivity holds in this case. 

In the case of certain Fuchsian groups with symmetric fundamen­
tal region, Nielsen [2] employed symbolic methods to prove regional 
transitivity. The symbolic characterization of Nielsen (as given in 
[3]) was used by the author [ l ] in proving metric transitivity. 
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Koebe ( [ l ] , IV) has developed symbolisms in connection with gen­
eral two-dimensional manifolds of constant negative curvature and 
used them to prove regional transitivity. 

A symbolic analysis of the geodesies on certain surfaces of non-
positive variable curvature and a proof of regional transitivity by 
means of this symbolism has been given by Birkhoff ( [ l ] , pp. 238-
248). As shown by Birkhoff, much more than the existence of transi­
tive geodesies can be inferred from the symbolic characterization. 
The symbolism enables one to dominate the problems concerning 
the qualitative behavior in the large of the geodesies. 

The development of a symbolic theory apart from its dynamical 
significance has recently been begun by Morse and the author (cf. 
Morse [4]). This initial work includes an extensive analysis of transi­
tive symbolic trajectories. The full scope of these symbolic methods 
in dynamics is yet to be determined. 
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