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Abstract. The maximum of the conditional hazard function is a parameter of great impor-
tance in statistics, in particular in seismicity studies, because it constitutes the maximum
risk of occurrence of an earthquake in a given interval of time. Using the kernel nonparamet-
ric estimates based on convolution kernel techniques of the first derivative of the conditional
hazard function, we establish the asymptotic behavior of a hazard rate in the presence of a
functional explanatory variable and asymptotic normality of the maximum value in the case
of a strong mixing process.

Résumé. Le maximum ou encore le point à haut risque d’une fonction de risque condi-
tionnel est un paramètre d’un grand intérêt en statistique, notamment dans l’analyse de
risque séismique, car il constitue le risque maximal de survenance d’un tremblement de terre
dans un intervalle de temps donné. Au moyen d’estimations non paramétriques basés sur les
techniques de noyau de convolution de la première dérivée de la fonction de hasard condi-
tionnel, nous établissons le comportement asymptotique d’un taux de hasard d’une variable
explicative fonctionnelle ainsi que la normalité asymptotique de la valeur maximale pour un
processus mélangeant.
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1. Introduction

The statistical analysis of functional data studies the experiments whose results are gener-
ally the curves. Under this supposition, the statistical analysis focuses on a framework of
infinite dimension for the data under study. This field of modern statistics has received much
attention in the last 20 years, and it has been popularised in the book of Ramsay and Sil-
verman (2005). This type of data appears in many fields of applied statistics: environmetrics
(Damon and Guillas, 2002), chemometrics (Benhenni et al., 2007), meteorological sciences
(Besse et al., 2000), etc.

From a theoretical point of view, a sample of functional data can be involved in many dif-
ferent statistical problems, such as: classification and principal components analysis (PCA)
(1986,1991) or longitudinal studies, regression and prediction (Benhenni et al., 2007; Cardot
et al., 1999). The recent monograph by Ferraty et al. (2007) summarizes many of their con-
tributions to the non-parametric estimation with functional data; among other properties,
consistency of the conditional density, conditional distribution and regression estimates are
established in the i.i.d. case under dependence conditions (strong mixing). Almost complete
rates of convergence are also obtained, and different techniques are applied to several exam-
ples of functional data samples. Related work can be seen in the paper of Masry (2005), where
the asymptotic normality of the functional nonparametric regression estimate is proven, con-
sidering strong mixing dependence conditions for the sample data. For automatic smoothing
parameter selection in the regression setting, see Rachdi and Vieu (2007).

1.1. Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest, especially to
inventory theorists, medical researchers, logistics planners, reliability engineers and seismol-
ogists. The non-parametric estimation of the hazard function has been extensively discussed
in the literature. Beginning with Watson. and Leadbetter (1964a), there are many papers
on these topics: Ahmad (1976), Singpurwalla and Wong (1983), etc.We can cite Quintela-
del-Rio, A. (2007) for a survey.

The literature on the estimation of the hazard function is very abundant, when observations
are vectorial. Cite, for instance, Watson. and Leadbetter (1964b), Roussas (1989), Lecoutre
and Ould-Säıd (1992), Estévez-Pérez et al. (2002) and Quintela-del-Rio (2006) for recent
references. In all these works the authors consider independent observations or dependent
data from time series. The first results on the nonparametric estimation of this model, in
functional statistics were obtained by Ferraty et al. (2008). They studied the almost complete
convergence of a kernel estimator for hazard function of a real random variable dependent
on a functional predictor and Laksaci and Mechab (2010) in the case of spatial variables.
Asymptotic normality of the latter estimator was obtained, in the case of α- mixing, by
Quintela-del-Rio, A. (2008). We refer to Ferraty et al. (2010) and Mahiddine et al. (2014)
for uniform almost complete convergence of the functional component of this nonparametric
model.

When hazard rate estimation is performed with multiple variables, the result is an estimate
of the conditional hazard rate for the first variable, given the levels of the remaining variables.
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Many references, practical examples and simulations in the case of non-parametric estimation
using local linear approximations can be found in Spierdijk (2008).

Our paper presents some asymptotic properties related with the non-parametric estima-
tion of the maximum of the conditional hazard function. In a functional data setting, the
conditioning variable is allowed to take its values in some abstract semi-metric space. In
this case, Ferraty et al. (2007) define non-parametric estimators of the conditional density
and the conditional distribution. They give the rates of convergence (in an almost complete
sense) to the corresponding functions, in a dependence (α-mixing) context. We extend their
results by calculating the maximum of the conditional hazard function of these estimates,
and establishing their asymptotic normality, considering a particular type of kernel for the
functional part of the estimates. Because the hazard function estimator is naturally con-
structed using these two last estimators, the same type of properties is easily derived for it.
Our results are valid in a real (one- and multi-dimensional) context.

If X is a random variable associated to a lifetime (ie, a random variable with values in R+,
the hazard rate of X (sometimes called hazard function, failure or survival rate ) is defined
at point x as the instantaneous probability that life ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy to see that the
hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1− F the survival function of X.

In many practical situations, we may have an explanatory variable Z = z and the main issue
is to estimate the conditional random rate defined as

hz(x) = lim
dx→0

P (X ≤ x+ dx|X > x, Z = z)

dx
, for x > 0,

which can be written naturally as follows:

hz(x) =
fz(x)

Sz(x)
=

fz(x)

1− F z(x)
, once F z(x) < 1. (1)

Study of functions h(·) and hz(·) is of obvious interest in many fields of science ( biology,
medicine, reliability , seismology, econometrics, ... ) and many authors are interested in
construction of nonparametric estimators of h.

In this paper we propose an estimate of the maximum risk, through the nonparametric
estimation of the conditional hazard function.

The layout of the paper is as follows. Section 2 describes the non-parametric functional
setting: the structure of the functional data and the mixing conditions, the conditional
density, distribution and hazard operators, and the corresponding non-parametric kernel
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estimators. Section 3 states the almost complete convergence1 (with rates of convergence2)
for nonparametric estimates of the derivative of the conditional hazard and the maximum
risk. In Section 4, we calculate the variance of the conditional density, distribution and
hazard estimates, the asymptotic normality of the three estimators considered is developed
in this Section. Finally, Section 5 includes some proofs of technical Lemmas.

2. Nonparametric estimation with dependent functional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed as (Z,X),
where the variable Z is of functional nature and X is scalar. Formally, we will consider that
Z is a random variable valued in some semi-metric functional space F , and we will denote by
d(·, ·) the associated semi-metric. The conditional cumulative distribution of X given Z = z
is defined for any x ∈ R and any z ∈ F by

F z(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fz(x) is defined as the density of this distribution
with respect to the Lebesgue measure on R. The conditional hazard is defined as in the
non-infinite case (1).

In a general functional setting, f , F and h are not standard mathematical objects. Because
they are defined on infinite dimensional spaces, the term operators may be a more adjusted
in terminology.

2.1. Dependance structure

We assume the sample data (Xi, Zi)1≤i≤n to be dependent and to satisfy the strong mixing
condition (α-mixing), introduced by Rosenblatt (1956), defined as:

let N∗ denotes the set of positive integers, and for any i and j in N∗ ∪∞, (i ≤ j), define F ji
to be σ algebra spanned by the variables (zi, xi) · · · (zj , xj). The sequence (Zi, Xi) is said to
be α mixing if there exist mixing coefficients α(k) such that |P(A∩B)−P(A)P(B)| ≤ α(k),
for any sets A and B, that are, respectively, Fmi measurable F∞m+k measurable (k,m positive
integers), and α(k) ↓ 0.

This is the weakest condition used in studies of dependent samples (for example, the ARMA
process, generated by a continuous white noise verifies it). The reader can see Doukhan
(1994) for a more complete discussion of the strong mixing condition.

1 Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely to
some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of convergence

implies both almost sure and in probability convergence (see for instance Bosq and Lecoutre, 1987).
2 Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete convergence

un, if there exists some ε > 0 for which
∑

n P(|Tn| > εun) <∞. This is denoted by Tn = O(un), a.co.
(or equivalently by Tn = Oa.co.(un)).
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2.2. The functional kernel estimates

Following in Ferraty et al. (2008), the conditional density operator fz(·) is defined by using
kernel smoothing methods

f̂z(x) =

∑n
i=1 h

−1
n K

(
h−1
n d(z, Zi)

)
H
(
h−1
n (x−Xi)

)∑n
i=1K

(
h−1
n d(z, Zi)

) ,

where K and H are kernel functions and hn is sequence of smoothing parameter. The
conditional distribution operator F z(·) can be estimated by

F̂ z(x) =

n∑
i=1

Wni(z)1{Xi≤x}, ∀x ∈ R

with 1{·} being the indicator function and where Wni(z) =
h−1
n K(h−1

n d(z,Zi))∑n
j=1K(h−1

n d(z,Zj))
, K is a kernel

function and hn is a sequence of positive real numbers which goes to zero as n goes to
infinity.

Consequently, the conditional hazard operator is defined in a natural way by

ĥz(x) =
f̂z(x)

1− F̂ z(x)
.

For z ∈ F , we denote by hz(·) the conditional hazard function of X1 given Z1 = z. We
assume that hz(·) is unique maximum and its high risk point is denoted by θ(z) := θ, which
is defined by

hz(θ(z)) := hz(θ) = max
x∈S

hz(x). (2)

A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which maximizes a kernel

estimator ĥz(·), that is,

ĥz(θ̂(z)) := ĥz(θ̂) = max
x∈S

ĥz(x) (3)

where hz and ĥz are defined above.

Note that the estimate θ̂ is note necessarily unique and our results are valid for any choice
satisfying (3). We point out that we can specify our choice by taking

θ̂(z) = inf

{
t ∈ S ; ĥz(t) = max

x∈S
ĥz(x)

}
.

As in any non-parametric functional data problem, the behavior of the estimates is controlled
by the concentration properties of the functional variable Z = z.

φz(h) = P(Z ∈ B(z, h)),

whereB(z, h) being the ball of center z and radius h, namelyB(z, h) = P (f ∈ F , d(z, f) < h)
(for more details, see Ferraty and Vieu, 2006, Chapter 6).

In the following, z will be a fixed point in F , Nz will denote a fixed neighborhood of z, S
will be a fixed compact subset of R+. We will led to the hypothesis below concerning the
function of concentration φz
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(H0) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and limh→0 φz(h) = 0
(H1) (Zi, Xi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H2) 0 < maxi 6=j ψi,j(h) = supi 6=j P ((Zi, Zj) ∈ B(z, h)×B(z, h)) = O
(

(φx(h))(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the distribution
of the f.r.v. of Z, whereas (H2) concerns the behavior of the joint distribution of the pairs
(Zi, Zj). In fact, this hypothesis is equivalent to assume that, for n large enough

sup
i6=j

P ((Zi, Zj) ∈ B(z, h)×B(z, h))

P (Z ∈ B(z, h))
≤ C

(
φx(h)

n

)1/a

.

This is one way to control the local asymptotic ratio between the joint distribution and its
margin. Remark that the upper bound increases with a. In other words, more the dependence
is strong, more restrictive is (H2). The hypothesis (H1) specifies the asymptotic behavior of
the α-mixing coefficients.

Our nonparametric models will be quite general in the sense that we will just need the
following simple assumption for the marginal distribution of Z, and let us introduce the
technical hypothesis necessary for the results to be presented. The non-parametric model is
defined by assuming that

(H3)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0
|F z1(x1)− F z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|b2),

(H4)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0
|fz1 (j)(x1)− fz2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|β),

(H5) ∃γ <∞, f ′z(x) ≤ γ, ∀(z, x) ∈ F × S,
(H6) ∃τ > 0, F z(x) ≤ 1− τ, ∀(z, x) ∈ F × S.
(H7) H is differentiable such that

(H7a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1
and H(j)are bounded for j = 0, 1
(H7 b)

∫
R t

2H2(t)dt <∞,
(H7c)

∫
R |t|

β(H ′2dt <∞

(H8) The kernel K is positive bounded function supported on [0, 1] and it is of class C1 on
(0, 1) such that ∃C1, C2, −∞ < C1 < K ′(t) < C2 < 0 for 0 < t < 1

(H9) There exists a function ζz0 (·) such that for all t ∈ [0, 1] limh→0
φz(th)
φz(h) = ζz0 (t).

(H10) The bandwidth hn, small ball probability φz(hn) and arithmetical α mixing coefficient
with order a > 3 satisfying

(H10a)∃C > 0, h2j+1
n φz(hn) ≥ C

n2/(a+1) , for j = 0, 1

(H1 0b)
(
φz(hn)
n

)1/a

+ φz(hn) = o
(

1
n2/(a+1)

)
, for j = 0, 1

(H10c) limn→∞ hn = 0, and limn→∞
logn

nh2j+1
n φx(hn)

= 0, j = 0, 1;
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Remark 1. Assumption (H0) plays an important role in our methodology. It is known as
(for small h) the ”concentration hypothesis acting on the distribution of X” in infi- nite-
dimensional spaces. This assumption is not at all restrictive and overcomes the problem of
the non-existence of the probability density function. In many examples, around zero the
small ball probabilityφz(h) can be written approximately as the product of two independent
functions ψ(z) and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry
(2005) who reformulated the Gasser et al. (1998) one. The increasing proprety of φz(·)
implies that ζzh(·) is bounded and then integrable (all the more so ζz0 (·) is integrable).

Without the differentiability of φz(·), this assumption has been used by many authors where
ψ(·) is interpreted as a probability density, while ϕ(·) may be interpreted as a volume
parameter. In the case of finite-dimensional spaces, that is S = Rd, it can be seen that
φz(h) = C(d)hdψ(z) + ohd), where C(d) is the volume of the unit ball in Rd. Furthermore,
in infinite dimensions, there exist many examples fulfilling the decomposition mentioned
above. We quote the following (which can be found in Ferraty et al., 2007):

1. φz(h) ≈ ψ(h)hγ for som γ > 0.
2. φz(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.
3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for all fixed h. Its
pointwise limit ζz0 (·) also plays a determinant role. It intervenes in all asymptotic properties,
in particular in the asymptotic variance term. With simple algebra, it is possible to specify
this function (with ζ0(u) := ζz0 (u) in the above examples by:

1. ζ0(u) = uγ ,
2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,
3. ζ0(u) = 1]0,1](u).

Remark 2. Assumptions (H3) and (H4) are the only conditions involving the conditional
probability and the conditional probability density of Z given X. It means that F (·|·) and
f(·|·) and its derivatives satisfy the Hölder condition with respect to each variable. There-
fore, the concentration condition (H0) plays an important role. Here we point out that our
assumptions are very usual in the estimation problem for functional regressors (see, e.g.,
Ferraty et al. (2007)).

Remark 3. Assumptions (H7), (H8) and (H10) are classical in functional estimation for
finite or infinite dimension spaces.

3. Nonparametric estimate of the maximum of the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hz on S. We will
suppose that hz is sufficiently smooth ( at least of class C2) and verifies that h′z(θ) = 0 and
h
′′ z(θ) < 0.

We can write an estimator of the first derivative of the conditional hazard function through
the first derivative of the estimator (1). Our maximum estimate is defined by assuming that

there is some unique θ̂ on S such that 0 = ĥ′(θ̂) < |ĥ′
z
(x)| for all x ∈ S and x 6= θ̂.
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Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and that θ satisfies
the uniqueness condition, that is; for any ε > 0 and µ(z), there exists ξ > 0 such that
|θ(z)− µ(z)| ≥ ε implies that |hz(θ(z))− hz(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function through the first
derivative of the estimator. Our maximum estimate is defined by assuming that there is
some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative of the function hz on
the basis of these ideas. To estimate the conditional distribution function and the conditional
density function in the presence of functional conditional random variable Z = z.

The kernel estimator of the derivative of the function conditional random functional hz can
therefore be constructed as follows:

ĥ′
z
(x) =

f̂ ′
z
(x)

1− F̂ z(x)
+ (ĥz(x))2, (4)

the estimator of the derivative of the conditional density is given in the following formula:

f̂ ′
z
(x) =

∑n
i=1 h

−2
n K(h−1

n d(z, Zi))H
′(h−1

n (x−Xi))∑n
i=1K(h−1

n d(z, Zi))
. (5)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′ and hn are
little restrictive. Indeed, on one hand, they are not specific to the problem estimate of hz

(but inherent problems of F z, fz and f ′z estimation), and secondly they consist with the
assumptions usually made under functional variables.

Remark 4. Generally, the hazard function has a global maximum in the time intervals with
values closest to zero, corresponding to the earthquakes with bigger intensity (Vere-Jones
(1970)).

Also, the hazard function can have several local maxima, indicating the times with the
highest risk in a certain period (see the examples in Estévez-Pérez et al. (2002)).

The hypothesis of uniqueness is only established for the sake of clarity. Following our
proofs, if several local estimated maxima exist, the asymptotic results remain valid for each
of them.

We state the almost complete convergence (withe rates of convergence) of the maximum
estimate by the following results:

Theorem 1. Under assumption (H0)-(H8) we have

θ̂ − θ → 0 a.co. (6)

Remark 5. The hypothesis of uniqueness is only established for the sake of clarity. Follow-
ing our proofs, if several local estimated maxima exist, the asymptotic results remain valid
for each of them.
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Proof. Because h′z(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such that

|t− θ| > ε⇒ |h′z(t)− h′z(θ)| > η(ε).

Therefore,

P{|θ̂ − θ| ≥ ε} ≤ P{|h′z(θ̂)− h′z(θ)| ≥ η(ε)}.

We also have

|h′z(θ̂)− h′z(θ)| ≤ |h′z(θ̂)− ĥ′z(θ̂)|+ |ĥ′z(θ̂)− h′z(θ)| ≤ sup
x∈S
|ĥ′z(x)− h′z(x)|, (7)

because ĥ′z(θ̂) = h′z(θ) = 0.

Then, uniform convergence of h′z will imply the uniform convergence of θ̂. That is why, we
have the following lemma.

Lemma 1. Under assumptions of Theorem 1, we have

sup
x∈S
|ĥ′z(x)− h′z(x)| → 0 a.co. (8)

The proof of this lemma will be given in Appendix.

Theorem 2. Under assumption (H1)-(H8) and (H10c) we have

sup
x∈S
|θ̂ − θ| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφz(hn)

)
(9)

Proof. By using Taylor expansion of the function h′z at the point θ̂, we obtain

h′z(θ̂) = h′z(θ) + (θ̂ − θ)h′′z(θ∗n), (10)

with θ∗ a point between θ and θ̂.

Now, because h′z(θ) = ĥ′z(θ̂)

|θ̂ − θ| ≤ 1

h′′z(θ∗n)
sup
x∈S
|ĥ′z(x)− h′z(x)| (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 2. Under the assumptions of Theorem 2, we have

sup
x∈S
|ĥ′z(x)− h′z(x)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφz(hn)

)
(12)

The proof of lemma will be given in the Appendix.
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4. Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to add the following
assumptions:

(H7d)
∫
R(H ′2dt <∞.

(H11) 0 = ĥ′
z
(θ̂) < |ĥ′

z
(x)|),∀x ∈ S, x 6= θ̂.

The following result gives the asymptotic normality of the maximum of the conditional
hazard function. Let

A = {(z, x) : (z, x) ∈ S × R, ax2F z(x) (1− F z(x)) 6= 0}

Theorem 3. Under conditions (H0)-(H11) we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)(
nh3

nφz(hn)
)1/2 (

ĥ
′z(θ)− h

′z(θ)
)
D→N

(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

axl = Kl(1)−
∫ 1

0

(
Kl(u)

)′
ζx0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ax2h
z(θ)

(ax1)
2

(1− F z(θ))

∫
(H ′2dt.

Proof. Using again (17), and the fact that

(1− F z(x))

(1− F̂ z(x)) (1− F z(x))
−→ 1

1− F z(x)

and
f̂ ′z(x)(

1− F̂ z(x)
)

(1− F z(x))
−→ f ′z(x)

(1− F z(x))
2 .

The asymptotic normality of
(
nh3

nφz(hn)
)1/2 (

ĥ′
z
(θ)− h′z(θ)

)
can be deduced from both

following lemmas,

Lemma 3. Under Assumptions (H0)-(H3) and (H7)-(H9), we have

(nφz(hn))
1/2
(
F̂ z(x)− F z(x)

)
D→N

(
0, σ2

F z (x)
)

(13)

where

σ2
F z (x) =

ax2F
z(x) (1− F z(x))

(ax1)
2
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Lemma 4. Under Assumptions (H0)-(H4) and (H6)-(H10), we have

(nhnφz(hn))
1/2
(
ĥz(x)− hz(x)

)
D→N

(
0, σ2

hz (x)
)

(14)

where

σ2
hz (x) =

ax2h
z(x)

(ax1)
2

(1− F z(x))

∫
R
H2(t)dt

Lemma 5. Under Assumptions of Theorem 3, we have(
nh3

nφz(hn)
)1/2 (

f̂ ′
z
(x)− f ′z(x)

)
D→N

(
0, σ2

f ′z (x)
)

(15)

where

σ2
f ′z(x) =

ax2f
z(x)

(ax1)
2

∫
R

(H ′2dt

The proofs of Lemma (3) can be seen in Laksaci et al. (2011).

Finally, by this last result and (10), the following theorem follows:

Theorem 4. Under conditions (H1)-(H11) we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)

(
nh3

nφz(hn)
)1/2 (

θ̂ − θ
)
D→N

(
0,

σ2
h′(θ)

(h′′z(θ))2

)
with σ2

h′(θ) = hz(θ) (1− F z(θ))
∫
H ′2dt.

5. Proofs of technical lemmas

Proof (Lemma 1 and Lemma 2). Let

ĥ′z(x) =
f̂ ′z(x)

1− F̂ z(x)
+ (ĥz(x))2, (16)

with

ĥ′z(x)− h′z(x) =

{(
ĥz(x)

)2

− (hz(x))
2

}
︸ ︷︷ ︸

Γ1

+

{
f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

}
︸ ︷︷ ︸

Γ2

(17)

for the first term of (17) we can write∣∣∣ (ĥz(x)
)2

− (hz(x))
2
∣∣∣ ≤ ∣∣∣ĥz(x)− hz(x)

∣∣∣.∣∣∣ĥz(x) + hz(x)
∣∣∣ (18)

because the estimator ĥz(·) converge a.co. to hz(·) we have

sup
x∈S

∣∣∣ (ĥz(x)
)2

− (hz(x))
2
∣∣∣ ≤ 2

∣∣∣hz(θ)∣∣∣ sup
x∈S

∣∣∣ĥz(x)− hz(x)
∣∣∣ (19)
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for the second term of (17) we have

f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)
=

1

(1− F̂ z(x))(1− F z(x))

{
f̂ ′z(x)− f ′z(x)

}
+

1

(1− F̂ z(x))(1− F z(x))

{
f ′z(x)

(
F̂ z(x)− F z(x)

)}
− 1

(1− F̂ z(x))(1− F z(x))

{
F z(x)

(
f̂ ′z(x)− f ′z(x)

)}
.

Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

∣∣∣ ≤
C

{
supx∈S

∣∣∣f̂ ′z(x)− f ′z(x)
∣∣∣+ supx∈S

∣∣∣F̂ z(x)− F z(x)
∣∣∣}

infx∈S

∣∣∣1− F̂ z(x)
∣∣∣ . (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S
|F̂ z(x)− F z(x)| = O

(
hb1n
)

+Oa.co.

(√
log n

nφz(hn)

)
(21)

sup
x∈S
|f̂ ′z(x)− f ′z(x)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφz(hn)

)
(22)

sup
x∈S
|ĥz(x)− hz(x)| = O

(
hb1n
)

+Oa.co.

(√
log n

nhnφz(hn)

)
(23)

∃δ > 0 such that

∞∑
1

P
{

inf
y∈S
|1− F̂ z(x)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2007) and (23) is proven in Ferraty et
al. (2008).

• Concerning (24) by equation (21), we have the almost complete convergence of F̂ z(x) to
F z(x). Moreover,

∀ε > 0

∞∑
n=1

P
{
|F̂ z(x)− F z(x)| > ε

}
<∞.

On the other hand, by hypothesis we have F z < 1, i.e.

1− F̂ z ≥ F z − F̂ z,
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thus,

inf
y∈S
|1− F̂ z(x)| ≤ (1− sup

x∈S
F z(x))/2⇒

sup
x∈S
|F̂ z(x)− F z(x)| ≥ (1− sup

x∈S
F z(x))/2.

In terms of probability is obtained

P
{

inf
x∈S
|1− F̂ z(x)| < (1− sup

x∈S
F z(x))/2

}
≤ P

{
sup
x∈S
|F̂ z(x)− F z(x)| ≥ (1− sup

x∈S
F z(x))/2

}
<∞.

Finally, it suffices to take δ = (1− supx∈S F
z(x))/2 and apply the results (21) to finish

the proof of the lemma.

Proof (Lemma 4). We can write for all x ∈ S

ĥz(x)− hz(x) =
f̂z(x)

1− F̂ z(x)
− fz(x)

1− F z(x)

=
1

D̂z(x)

{(
f̂z(x)− fz(x)

)
+ fz(x)

(
F̂ z(x)− F z(x)

)
− F z(x)

(
f̂z(x)− fz(x)

)}
,

=
1

D̂z(x)

{
(1− F z(x))

(
f̂z(x)− fz(x)

)
− fz(x)

(
F̂ z(x)− F z(x)

)}
(25)

with D̂z(x) = (1− F z(x))
(

1− F̂ z(x)
)

.

As a direct consequence of the Lemma 3, the result (26) (see Ezzahrioui and Ould-Säıd, 2010)
and the expression (25), permit us to obtain the asymptotic normality for the conditional
hazard estimator.

(nhnφz(hn))
1/2
(
f̂z(x)− fz(x)

)
D→N

(
0, σ2

fz (x)
)

(26)

where

σ2
fz(x) =

ax2f
z(x)

(ax1)
2

∫
R
(H(t))2dt

Proof (Lemma 5). For i = 1, . . . , n, we consider the quantities Ki = K
(
h−1
n d(z, Zi)

)
,

H ′i(x) = H ′
(
h−1
n (x−Xi)

)
and let f̂ ′

Z

N (x) (resp. F̂ZD ) be defined as

f̂ ′
z

N (x) =
h−2
n

nEK1

n∑
i=1

KiH
′
i(x) (resp. F̂ zD =

1

nEK1

n∑
i=1

Ki).
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This proof is based on the following decomposition

f̂ ′
z
(x)− f ′z(x) =

1

F̂ zD

{(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
)
−
(
f ′z(x)− Ef̂ ′

z

N (x)
)}

+

f ′z(x)

F̂ zD

{
EF̂ zD − F̂ zD

}
(27)

and on the following intermediate results.√
nh3

nφz(hn)
(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
)
D→N

(
0, σ2

f ′z (x)
)

(28)

where σ2
f ′z (x) is defined as in Lemma 5.

lim
n→∞

√
nh3

nφz(hn)
(
Ef̂ ′

z

N (x)− f ′z(x)
)

= 0 (29)

√
nh3

nφz(hn)
(
F̂ zD(x)− 1

)
P→ 0, as n→∞. (30)

• Concerning (28). By the definition of f̂ ′
z

N (x), it follows that

√
nh3

nφz(hn)
(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
)

=

n∑
i=1

√
φz(hn)√
nhnEK1

(KiH
′
i − EKiH

′
i) =

n∑
i=1

∆i,

which leads

n∑
i=1

E∆2
i =

φz(hn)

hnE2K1
EK2

1 (H ′1)2 − φz(hn)

hHE2K1
(EK1H

′
1)

2
= Π1n −Π2n. (31)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hn)

E2K1
E
{
K2

1

∫
H ′2(t) (f ′z(x− thn)− f ′z(x) + f ′z(x)) dt

}
.

Meanwhile, by (H0), (H4), (H8) and (H9), it follows that:

φz(hn)EK2
1

E2K1
−→
n→∞

ax2
(ax1)2

,

which leads

Π1n −→
n→∞

ax2f
z(x)

(ax1)2

∫
(H ′2dt, (32)

Regarding Π2n, by (H0), (H4) and (H7), we obtain

Π2n −→
n→∞

0. (33)

This result, combined with (31) and (32), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′z (x). (34)
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Secondly, by the boundedness of H ′, we have

E (|∆i∆j |) ≤
Cφz(hn)

nE2K1
(KiKj + EKiKj)

≤ C

nhn

{(
φz(hn)

n

)1/a

+ φz(x)(hn)

}
, ∀i 6= j.

Then, taking

δn = max
1≤i6=j≤n

{E (| ∆i∆j |)} =
C

nhn

((
φz(hn)

n

)1/a

+ φz(x)(hn)

)
.

Leads

nmnδn =
Cmn

hn

((
φz(hn)

n

)1/a

+ φz(x)(hn)

)
. (35)

Similarly, the boundedness of H ′ and K allows us to take Ci = O
(

1√
nh3

nφz(hn)

)
, which

implies that ∞∑
j=mn+1

α(j)

 n∑
i=1

C2
i ≤

C

hnφz(hn)

∫
t≥mn

t−adt =
C

hnφz(hn)

m−a+1
n

a− 1
. (36)

Then, the sum of the right side of (35) and (36) is of type Amn + Bm−a+1
n , by talking

mn = (A/B)−1/a = {(a − 1)φz(hn)((φz(hn)
n )1/a + φz(hn))}−1/a → ∞, it is clear that,

under conditions (H10a) and (H10b), combining (35) and (36) allows us to get

nmnδn = o(1), (37)

and  ∞∑
j=mn+1

α(j)

 n∑
i=1

C2
i = o(1), (38)

respectively. Finally, by choosing %n =
√

nh3
nφz(hn)
logn , under (H10a) again and a > 3, we

have
%n√
n

= o(1) (39)

and

n

%n
α(ε%n) ≤ C (log n)(a+1)/2

n(a−1)/2(h3
nφz(hn))(a+1)/2

≤ C (log n)(a+1)/2

n(a−3)/2
→ 0 as n→∞.

Therefore, combining (33)-(39) with Corollary 2.2 in Liebscher (2001), (28) is valid.
• Concerning (29). The proof is completed along the same steps as that of Π1n. We omit

it here.
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• Concerning (30). The idea is similar to that given by Ferraty et al. (2007).

By definition of F̂ zD(x), we have√
nh3

nφz(hn)(F̂ zD(x)− 1) = Ωn − EΩn,

where Ωn =

√
nh3

nφz(hn)
∑n

i=1Ki

nEK1
. In order to prove (30), similar to Ferraty et al. (2007),

we only need to proov V ar Ωn → 0, as n→∞. In fact, since

V ar Ωn =
nh3

nφz(hn)

nE2K1

nV arK1 +
∑
1≤i

∑
j≤n

cov(Ki,Kj)


≤ nh3

nφz(hn)

E2K1
EK2

1 +
nh3

nφz(hn)

nE2K1

∑∑
0≤|i−j|≤vn

cov(Ki,Kj)

+
nh3

nφz(hn)

nE2K1

∑∑
0≤|i−j|≥vn

cov(Ki,Kj)

= Ψ1 + Ψ2 + Ψ3,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3
nφz(hn)→ 0, as n→∞.

Meanwhile, by (H0) and (H1), it follows that

Ψ2 ≤ vnh3
n

{(
φz(hn)

n

)1/a

+ φz(hn)

}
. (40)

Finally, using the Davydov-Rio’s inequality in Rio (2000) for mixing processes leads to

|cov(Ki,Kj | ≤ Cα(|i− j|),

for all i 6= j. Then, we have

Ψ3 ≤
h3
nφz(hn)

nE2K1
n2Cα(|i− j|) ≤ Ch

3
nφz(hn)

nE2K1
n2v−a+1

n

≤ Ch3
nnv

−a+1
n . (41)

Since the right side of (40) and (41) is also of type Avn + Bv−a+1
n , by choosing vn =

[n−1((φz(hn)
n )1/a + φz(hn))]−1/a → ∞ and simple calculations, we get that Ψ2 → 0 and

Ψ3 → 0 as n→∞, respectively. Therefore, the proof of this result is completed.

Therefore, the proof of this lemma is completed.
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