
Journal Afrika Statistika
Vol. 7, 2012, pages 441–458.
DOI: http://dx.doi.org/10.4314/afst.v7i1.5

Bias-reduced estimation of Wang’s two-sided
deviation risk measure under Lévy-stable
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Abstract. Several risk measures, such as the distorted insurance premium and the two-
sided deviation (TSD) measure, can be regarded as L-functionals with specific weight func-
tions. In this paper, we focus on the TSD risk measure as we define a new estimator by using
the bias-reduced estimators of extreme quantiles proposed by Li et al. (2010). A simulation
study is carried out to compare, in terms of bias and mean squared error, the new estimator
with that introduced recently by Necir and Meraghni (2010).

Résumé. Plusieurs mesures de risque, telles la prime d’assurance distordue et la mesure
de déviation bilatérale (two-sided deviation: TSD), peuvent être considérées comme des
L-fonctionnelles avec des fonctions poids spécifiques. Dans ce papier, on définit un nouvel
estimateur pour la TSD en utilisant les estimateurs à biais rduits des quantiles extrêmes
proposés par Li et al. (2010). Une étude de simulation est effedtuée dans le but de comparer,
en termes de biais et d’erreur quadratique moyenne, le nouvel estimateur avec celui introduit
par Necir and Meraghni (2010).
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1. Introduction

A Lévy-stable random variable (rv) X, denoted X ∼ Sα(σ, β, µ), is typically described by
its characteristic function

φX (t) := E [exp {iXt}] = exp {iµt− σ |t|α [1− iβsgn (t) z (t, α)]} , t ∈ R,

with i2 = −1,

z (t, α) :=


tan

(πα
2

)
if α 6= 1

− 2

π
log |t| if α = 1

and sgn (t) :=

 −1 if t < 0
0 if t = 0
1 if t > 0,

where 0 < α ≤ 2, −1 ≤ β ≤ +1, σ > 0 and −∞ < µ < +∞ are four parameters that
completely characterize the stable distribution. The parameter α, called stability index,
characteristic exponent or tail index, is the main one; it governs the tails of the distribution
(the smaller α, the heavier the tails). The case α = 2 corresponds to the well-known Gaussian
law. β is the skewness parameter and σ and µ are the usual scale and location parameters.
When α > 1, the mean of X exists and is equal to the location parameter. In general the kth
moment of a stable variable is finite if and only if k < α < 2. When β = 0, the distribution is
said to be symmetric about µ. For full details on the stable law, we refer to Samorodnitsky
and Taqqu (1994) and Zolotarev (1986).

When α < 2, the lower and upper tails of the cumulative distribution function (cdf) F of X
are asymptotically equivalent to those of a Pareto distribution, i.e. they exhibit a power-law
behavior. Indeed, from Property 1.2.15 of page 16 in Samorodnitsky and Taqqu (1994), there
exist two non-negative constants C1and C2 such that, for 0 < α < 2,

F (−x) ∼ C1x
−α and 1− F (x) ∼ C2x

−α, as x→∞. (1)

This means that both distribution tails are regularly varying at infinity with index (−α) < 0.
In other words, we have as x→∞,

F (−x) = x−αL1 (x) and 1− F (x) = x−αL2 (x) ,

where L1 and L2 are slowly varying functions at infinity (i.e. limt→∞ Li (xt) /Li (t) = 1,
i = 1, 2, for any x > 0). Furthermore, L1 and L2 satisfy what is known as the balance
condition

lim
x→∞

L1 (x)

L1 (x) + L2 (x)
=

1 + β

2
.

Using the expansion (to the second order) of the stable distribution right tail and the rela-
tionship between both tails, respectively given on top of page 95 and in page 65 of Zolotarev
(1986), we may write, for 1 < α < 2, as x→∞

F (−x) = cLx
−α + dLx

−λ + o
(
x−λ

)
, (2)

and
1− F (x) = cRx

−α + dRx
−λ + o

(
x−λ

)
, (3)

with λ = 2α where cL, cR, dL and dR are real constants expressed in terms of the stable
parameters α, β, σ and µ. This means that stable distributions belong to Hall’s class of
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heavy-tailed distributions (see Hall, 1982 and Hall and Welsh, 1985), to be defined later by
relation (11) below which is a special case of a more general second-order regular variation
condition (see de Haan and Stadtmüller, 1996).

In general, stable variables suffer a crucial drawback: they do not have closed form expres-
sions for their probability densities and cdf’s, which severely hampers the estimation of
their parameters. However, several useful numerical procedures based on classical estima-
tion methods (sample quantiles, characteristic function, maximum likelihood) are proposed
in the literature. For a complete survey of these methodologies, we refer those interested
to Garcia et al. (2006). Furthermore, the heavy-tail feature allows the use of extreme value
theory tools to make semi-parametric inference about the stable parameters. Indeed, the
characteristic exponent α could be estimated by one of the existing tail index, estimators
such as the very popular Hill estimator (Hill, 1975) and for parameters µ and σ, Peng (2001)
and Meraghni and Necir Meraghni and Necir (2007) respectively proposed asymptotically
normal estimators. For a discussion on the performance of Hill’s estimator of α under the
Lévy-stable regime, see Weron (2001).

This class of distributions was introduced by Paul Lévy during his investigations of the
behavior of sums of independent rv’s in the early 1920’s (Lévy, 1925). They owe their im-
portance in both theory and practice to the generalized central limit theorem which states
that stable laws are the only possible limit distributions for properly normalized and cen-
tered sums of independent and identically distributed (iid) rv’s. It is a rich class of probabil-
ity distributions (with many important mathematical properties) that allow skewness and
thickness of tails. As shown in early work by Mandelbrot (1963), the stable model is a good
candidate to accommodate heavy-tailed financial series. It also proved to be appropriate for
data sets in many types of physical and socioeconomic systems (see Chapter 1 in Zolotarev,
1986).

In the process of risk management, the main task is to properly measure the risk. It necessi-
tates determining an appropriate price that must cover the riskiness due to possible losses.
It is clear that the shape of the loss distribution (particularly the behavior of its tails) has
a great influence on the strategy of computing the price of the risk. A risk measure is de-
fined as a mapping from the set of all loss rv’s to the non-negative real numbers. Artzner et
al. (1999) put the axioms to be satisfied by any risk measure in order to have the desirable
property of coherence. A large variety of risk measures are proposed in the literature, among
which the two-sided deviation (TSD). Introduced by Wang (1998), it seems to be a suitable
risk measure when dealing with financial data (such as asset log returns) which are modeled
by rv’s that can take any real values. If we let X be a real-valued rv with continuous cdf F,
then Wang’s TSD, denoted by ∆r, is an average of the right-tail deviation and the left-tail
deviation, respectively defined, for 0 < r < 1, by

DR
r [X] :=

∫ ∞
−∞

([1− F (x)]
r − [1− F (x)]) dx,

and

DL
r [X] := DR

r [−X] =

∫ ∞
−∞

([F (x)]
r − F (x)) dx.

That is

∆r = ∆r [X] :=
1

2

(
DL
r [X] +DR

r [X]
)
, 0 < r < 1.
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Changing variables and integrating by parts yield the following expression for ∆r :

∆r =

∫ 1

0

Jr (s)Q (s) ds, 0 < r < 1, (4)

where
Jr (s) :=

r

2

(
(1− s)r−1 − sr−1

)
, 0 < s < 1,

is a specific weight function and Q (s) := inf {x ∈ R : F (x) ≥ s} , 0 < s ≤ 1, is the quantile
function pertaining to F. Note in passing that, for t ↓ 0, the quantile Q (1− t) is called high
or extreme quantile.

Representation (4) shows the TSD in an L-functionnal form. Jones and Zitikis (2003) made
a broad opening for developing statistical inferential results in the actuarial area, based
on L-functionnals. They revealed a fundamental relationship between some risk measures
and the classical L-statistics which themselves are considered as the natural estimates of
L-functionnals. Indeed, let (X1, ..., Xn) be a sample, of size n ≥ 1, drawn from a rv X ∼
Sα(σ, β, µ) and let X1,n ≤ ... ≤ Xn,n denote the corresponding order statistics. The non-
parametric estimator of ∆r, denoted by ∆n,r, is obtained by replacing Q (s) in (4) by its
empirical counterpart

Qn (s) := inf {x ∈ R : Fn (x) ≥ s} , 0 < s ≤ 1,

corresponding to the empirical distribution function Fn (x) := n
−1∑n

i=1 I (Xi ≤ x) , x ∈ R,
with I (·) denoting the indicator function. That is

∆n,r :=

n∑
i=1

a
(r)
i,nXi,n,

where, for i = 1, ..., n,

a
(r)
i,n :=

1

2

[(
1− i− 1

n

)r
−
(

1− i

n

)r
−
(
i− 1

n

)r
+

(
i

n

)r]
.

For more details on L-statistics and their asymptotic properties, one refers to Chapter 19 of
Shorack and Wellner (1986) and Jones and Zitikis (2003), Jones and Zitikis (2005).

Let bn,r and en,r respectively denote the bias and the root of the mean squared error (RMSE)
of ∆n,r. That is

bn,r := E [∆n,r −∆r] and en,r :=

√
E [∆n,r −∆r]

2
.

From Lemma 1 (see the Appendix), we have

bn,r = 0 and en,r =
δr√
n
, for any 0 < r < 1,

where

δ2r :=

∫ 1

0

∫ 1

0

(min(s, t)− st) Jr (s) Jr (t) dQ (s) dQ (t) . (5)
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This implies that, for any 0 < r < 1, ∆n,r is an unbiased estimator for ∆r, with an
asymptotically negligible RMSE (which is the standard deviation in this case), of convergence
rate n−1/2, provided that δr <∞. But, this is a very restrictive condition in the context of
Lévy-stable distributions. Indeed, in Lemma 2 (see the Appendix), we show that δr = ∞
for any 1 < α < 2 and 0 < r < 1. It follows that the RMSE en,r is infinite as well. Hence,
we need to seek another approach to estimate ∆r in order to handle the case.

Many other authors discussed the empirical estimation of L-functionals in the restrictive case
of finite variances. Exploiting the extreme value theory, Necir and Meraghni (2010) proposed
an alternative estimation method that extends the existing results to the more significant
case where variances are infinite, which is more pertinent for dangerous risks in the areas of
finance and insurance. They proposed estimators that are asymptotically normal regardless
of the shape of the distribution tails. Next, we present the items that are necessary to the
definition of the extreme value based TSD estimator (Necir and Meraghni, 2010).

Let ` = `n and m = mn be two sequences of integers (called trimming sequences) satisfying

1 < ` < n, 1 < m < n, `→∞, m→∞, `/n→ 0 and m/n→ 0, as n→∞. (6)

Then

α̂HL = α̂HL (`) :=

(
1

`

∑̀
i=1

log+ (−Xi−1,n)− log+ (−X`,n)

)−1
, (7)

and

α̂HR = α̂HR (m) :=

(
1

m

m∑
i=1

log+ (Xn−i+1,n)− log+ (Xn−m,n)

)−1
. (8)

with log+ (u) := max (0, log u) , are two forms of Hill’s estimator for the stability index
α (Hill, 1975), respectively based on the left tail and right tail of the distribution. Hill’s
estimator of the tail index (also known as the extreme value index), originally defined for
positive indices, has been thoroughly studied, improved and even generalized to any real
index. As we can see, extreme value based estimators heavily rely on the numbers ` and m
of lower and upper order statistics used in estimate computation. An optimal choice of these
numbers involves the typical trade-off between bias and variance. Indeed, estimators α̂L and
α̂R have, in general, substantial variances for small values of ` and m and considerable biases
for large values of ` and m. Hence, a theoretical optimal choice of ` and m is to minimize the
asymptotic mean squared errors of the estimators. Although there is no universal direction
as how to optimally choose such numbers, several graphical and numerical procedures of
sample fraction selection are available in the literature. For a discussion on this thorny
issue, one may consult Necir and Meraghni (2010) and the references therein.

After observing that the asymptotic normality of ∆n,r is not guaranteed for distributions
with infinite variances, Necir and Meraghni (2010) use the extreme value theory to introduce
an asymptotically normal estimator for ∆r when F belongs to the domain of attraction of
a Lévy-stable distribution. The proposed semi-parametric estimator ∆̃∗n,r is constructed as
follows:
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∆̃∗n,r =

∫ `/n

0

Jr (s)QWL (s) ds+

∫ 1−m/n

`/n

Jr (s)Qn (s) ds+

∫ 1

1−m/n
Jr (s)QWR (s) ds,

where

QWL (t) := − (nt/`)
−1/α̂HL X`,n and QWR (1− t) := (nt/m)

−1/α̂HR Xn−m,n, as t ↓ 0,

are Weissman’s estimators of the left and right high quantiles respectively. Note that both
of functions s→ Jr (s)QWL (s) and s→ Jr (s)QWR (s) are regularly varying with tail indices
r − 1− 1/α̂HL and r − 1− 1/α̂HR respectively, then for all large n, we have∫ `/n

0

Jr (s)QWL (s) ds = − (1 + o (1))
(`/n) J (`/n)

r − 1/α̂HL
X`,n,

and ∫ 1

1−m/n
Jr (s)QWR (s) ds = (1 + o (1))

(m/n) J (1−m/n)

r − 1/α̂HR
Xm,n,

provided that

r − 1/α̂HL > 0 and r − 1/α̂HR > 0. (9)

On the other hand, for all large n, we have

J (`/n) = − (1 + o (1))
r

2
(`/n)

r−1
and J (1−m/n) = (1 + o (1))

r

2
(m/n)

r−1
.

Then instead of ∆̃∗n,r, we may use

∆̂n,r :=
r

2

(`/n)
r

r − 1/α̂HL
X`,n +

n−m∑
j=`+1

a
(r)
j,nXj,n +

r

2

(m/n)
r

r − 1/α̂HR
Xn−m,n. (10)

In the context of insurance risks, that is when the loss is supposed to be a non negative rv,
analogue studies were made as well (see, Necir et al., 2007; Necir and Meraghni, 2009 and
Brahimi et al., 2011).

Let b+n,r and e+n,r respectively denote the bias and the RMSE of ∆̂n,r. From the asymptotic

normality of ∆̂n,r (Theorem 4.2 in Necir and Meraghni, 2010), we infer that, for any 1/α <
r < 1, there exists a constant ωr <∞ such that

(i) b+r,n → 0; (ii)
√
ne+n,r/ (`/n)

−1/α+1/2 → ωr, as n→∞.

Assertion (i) implies that ∆̂n,r is asymptotically unbiased. That is, the estimator ∆̂n,r has
negligible bias as n → ∞. On the other hand, we deduce from assertion (ii) that, since

α < 2, the RMSE e+n,r converges to zero with convergence rate n−1/2 (`/n)
1/α−1/2

.
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Assertion (i) is still a theoretical result, but from a practical point of view, when one deals

with finite sample sizes, the estimator ∆̂n,r presents a big bias. The reason is that ∆̂n,r is
based on Weissman’s estimator of high quantiles for heavy-tailed distributions, known to be
largely biased (Weissman, 1978). As a better alternative to Weissman’s estimators, several
estimators of extreme quantiles with reduced biases are proposed in the literature. For a
survey, see, for instance, Feuerverger and Hall (1999), Beirlant et al. (2002), Beirlant et al.
(2008), Gomes and Martins (2002), Gomes and Martins (2004), Caeiro et al. (2004), Caeiro
et al. (2009), Peng and Qi (2004), Matthys et al. (2004), Gomes and Figueiredo (2006),
Gomes and Pestana (2007).

Our task in this paper is to derive a new TSD estimator with reduced bias by applying
the results of Peng and Qi (2004) and Li et al. (2010) who respectively introduced censored
maximum likelihood (CML) based estimators for regular variation parameters and high
quantiles. Our choice is motivated by the nice asymptotic properties of such results.

The rest of the paper is organized as follows. In Section 2, we briefly describe the bias
reduction methods of Peng and Qi (2004) and Li et al. (2010) before constructing our new
estimator for the TSD. In Section 3, we apply the algorithm of Reiss and Thomas (1997)
to select the optimal numbers of extreme order statistics used in the computation of the
TSD estimate. In Section 4, we perform a simulation study, by sampling from Lévy-stable
distributions, to compare the newly proposed estimator with that previously introduced by
Necir and Meraghni (2010). Section 5 is devoted to some concluding comments and remarks.
Finally, some useful auxiliary results are gathered in the Appendix.

2. Bias-reduced estimator for the TSD

We start this section by a brief description of the method of Li et al. (2010) to reduce the
bias in the estimation of high quantiles for heavy-tailed distributions. Let K be a cdf with
tail belonging Hall’s class of models, i.e.

1−K (x) = cx−γ1 + dx−γ2 + o
(
x−γ2

)
, as x→∞, (11)

where c > 0, d 6= 0 and γ2 > γ1 > 0. Based on a sample Z1, ..., Zn from cdf K and the
pertaining order statistics Z1,n, ..., Zn,n, Peng and Qi (2004) define the CML estimators
(γ̂1, γ̂2) of (γ1, γ2) as the solution of the following system (with the constraint γ2 > γ̂1) :

1

k

k∑
i=1

1

Gi (γ1, γ2)
= 1

1

k

k∑
i=1

1

Gi (γ1, γ2)

(
log+ (Zn−i+1,n)− log+ (Zn−k,n)

)
= γ−12 ,

where k = kn is an integer sequence such that 1 < k < n and k/n→ 0 (as n→∞) and

Gi (γ1, γ2) :=
γ1
γ2

(
1 +

γ1γ2
γ1 − γ2

H (γ1)

)(
Zn−i+1,n

Zn−k,n

)γ2−γ1
− γ1γ2
γ1 − γ2

H (γ1) ,

with
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H (γ1) :=
1

γ1
−

(
1

k

k∑
i=1

log+ (Zn−i+1,n)− log+ (Zn−k,n)

)
.

If we denote the quantile function associated to cdf K by R, then it is easy to verify that
(11) is equivalent to

R (1− t) = c1/γ1t−1/γ1
(

1 + γ−11 c−γ2/γ1dtγ2/γ1−1 + o (1)
)
, as t ↓ 0. (12)

Substituting γ̂1 and γ̂2 for γ1 and γ2 in (12), we obtain the bias-reduced estimator for the
quantile, R (1− t) , t ↓ 0, proposed by Li et al. (2010) and that we denote by RLPY (1− t)
(the abbreviation LPY relates to the name initials of the authors of the paper).

RLPY (1− t) := ĉ1/γ̂1t−1/γ̂1
(

1 + γ̂−11 ĉ−γ̂2/γ̂1 d̂tγ̂2/γ̂1−1
)
, t ↓ 0,

where
(
ĉ, d̂
)

are given by
ĉ :=

k

n

γ̂1γ̂2
γ̂1 − γ̂2

Z γ̂1n−k,n

(
1

γ̂2
− 1

k

k∑
i=1

log+ (Zn−i+1,n) + log+ (Zn−k,n)

)
,

d̂ :=
k

n

γ̂1γ̂2
γ̂2 − γ̂1

Z γ̂2n−k,n

(
1

γ̂1
− 1

k

k∑
i=1

log+ (Zn−i+1,n) + log+ (Zn−k,n)

)
.

Now, we apply the results above to the case of a Lévy-stable distribution F with parameters
α, β, σ and µ. Note that (2) and (3) may be respectively rewritten in terms of the left and
right high quantiles QL (t) and QR (1− t) . We have, as t ↓ 0

QL (t) = −c1/αL t−1/α
(

1 + α−1c
−λ/α
L dLt

λ/α−1
)

+ o (1) ,

and

QR (1− t) = c
1/α
R t−1/α

(
1 + α−1c

−λ/α
R dRt

λ/α−1
)

+ o (1) .

Hence, the bias-reduced estimators of QL (t) and QR (1− t) as t ↓ 0, that we respectively
denote by QLPY

L (t) and QLPY
R (1− t) , are defined, for t ↓ 0, by

QLPY
L (t) := −ĉ1/α̂LL t−1/α̂L

(
1 + α̂−1L ĉ

−λ̂L/α̂L
L d̂Lt

λ̂L/α̂L−1
)
, (13)

and

QLPY
R (1− t) := ĉ

1/α̂R
R t−1/α̂R

(
1 + α̂−1R ĉ

−λ̂R/α̂R
R d̂Rt

λ̂R/α̂R−1
)
, (14)

where
ĉL :=

`

n

α̂Lλ̂R

α̂L − λ̂L
(−X`,n)

α̂L

(
1

λ̂R
− 1

`

∑̀
i=1

log+ (−Xi,n) + log+ (−X`,n)

)
,

d̂L :=
`

n

α̂Lλ̂L

λ̂L − α̂L
(−X`,n)

λ̂L

(
1

α̂L
− 1

`

∑̀
i=1

log+ (−Xi,n) + log+ (−X`,n)

)
,

(15)
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and


ĉR :=

m

n

α̂Rλ̂R

α̂R − λ̂R
X α̂R
n−m;n

(
1

λ̂R
− 1

m

m∑
i=1

log+ (Xn−i+1,n) + log+ (Xn−m,n)

)
,

d̂R :=
m

n

α̂Rλ̂R

λ̂R − α̂R
X λ̂R
n−m;n

(
1

α̂R
− 1

m

m∑
i=1

log+ (Xn−i+1,n) + log+ (Xn−m,n)

)
.

(16)

The CML estimators
(
α̂L, λ̂L

)
of (α, λ) are solutions of the system

1

`

∑̀
i=1

1

GLi (α, λ)
= 1

1

`

∑̀
i=1

1

GLi (α, λ)

(
log+ (−Xi,n)− log+ (−X`,n)

)
= λ−1,

(17)

where

GLi (α, λ) :=
α

λ

(
1 +

αλ

α− λ
HL (α)

)(
Xi,n

X`,n

)λ−α
− αλ

α− λ
HL (α) ,

with

HL (α) :=
1

α
−

(
1

`

∑̀
i=1

log+ (−Xi,n)− log+ (−X`,n)

)
.

Whereas
(
α̂R, λ̂R

)
are solutions of the system

1

m

m∑
i=1

1

GRi (α, λ)
= 1

1

m

m∑
i=1

1

GRi (α, λ)

(
log+ (Xn−i+1,n)− log+ (Xn−m,n)

)
= λ−1,

(18)

where

GRi (α, λ) :=
α

λ

(
1 +

αλ

α− λ
HR (α)

)(
Xn−i+1,n

Xn−m,n

)λ−α
− αλ

α− λ
HR (α) ,

with

HR (α) :=
1

α
−

(
1

m

m∑
i=1

log+ (Xn−i+1,n)− log+ (Xn−m,n)

)
.

Next, we introduce the bias-reduced estimator of Wang’s TSD ∆r. First, let us write ∆r,
defined in (4) , as

∆r = ∆L,n + ∆M,n + ∆R,n,
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where

∆L,n :=

∫ `/n

0

Jr (s)Q (s) ds, ∆R,n :=

∫ 1

1−m/n
Jr (s)Q (s) ds, (19)

and

∆M,n :=

∫ 1−m/n

`/n

Jr (s)Q (s) ds.

As for ∆̂n,r, the middle term ∆M,n is estimated by
∑n−m
j=`+1 a

(r)
j,nXj,n. On the other hand,

by replacing the lower high quantile Q (s) as s ↓ 0 and the upper high quantile Q (s) as
s ↑ 1, in equations (19), by their respective estimators QLPY

L (s) and QLPY
R (s) , and after

straightforward calculations, we get

∆̃L,n :=
r

2
ĉ
1/α̂L
L (`/n)

−1/α̂L+r

 α̂L
rα̂L − 1

+ d̂L
ĉ
−λ̂L/α̂L
L (`/n)

λ̂L−1

α̂L
+r−1

λ̂L − 1 + α̂L (r − 1)

 ,

and

∆̃R,n :=
r

2
c1/α̂R (m/n)

−1/α̂R+r

 α̂R
rα̂R − 1

+ d̂R
c−λ̂R/α̂R (m/n)

λ̂R−1

α̂R
+r−1

λ̂R − 1 + α̂R (r − 1)

 ,

to respectively estimate ∆L,n and ∆R,n. Finally, our bias-reduced estimator, for Wang’s
TSD ∆r, has the following form:

∆̃n,r := ∆̃L,n +

n−m∑
j=`+1

a
(r)
j,nXj,n + ∆̃R,n. (20)

3. Optimal choices of the sample fractions ` and m

In this paper we adopt the algorithm of Reiss and Thomas (1997), who proposed a heuristic
method of choosing the optimal number of upper extremes used in the computation of the
tail index estimate. For Hall’s model (11) , this methodology selects the value k̃ of k which
minimizes the quantity

1

k

k∑
i=1

iθ
∣∣γ̂1i,n −median

(
γ̂11,n , ..., γ̂1k,n

)∣∣ , 0 ≤ θ ≤ 1/2, (21)

where γ̂1i,n is an estimator of the shape parameter γ1, based on the i upper extremes. Notice

that k̃ = k̃(θ) with respect to θ = 0, ..., 0.5. For a discussion on the choice of θ, one refers to
the paper of Neves and Fraga Alves (2004).

In our simulation study, we apply the procedure above once to the left tail of cdf F and then
to its right tail in order to determine the optimal numbers ˜̀and m̃ of lower and upper order
statistics, to be used in the computation of ∆̃n,r. On the light of the information provided
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by the simulation study, we choose θ = 0.3. That is, we select ˜̀ and m̃ which respectively
minimize

1

`

∑̀
i=1

i0.3
∣∣αLi,n −median

(
α̂L1,n, ..., α̂

L
`,n

)∣∣ and
1

m

m∑
i=1

i0.3
∣∣αRi,n −median

(
α̂R1,n, ..., α̂

R
m,n

)∣∣ ,
where α̂Li,n and α̂Ri,n designate the estimators of α respectively based on the i lower and
upper extremes.

Once ˜̀ and m̃ at hand, we calculate the corresponding
(
α̃L, λ̃L, α̃R, λ̃R

)
(solutions of the

two systems (17) and (18)) and
(
c̃L, d̃L, c̃R, d̃R

)
(given in (15) and (16)), in order to finally

compute ∆̃n:r given in (20). Finally,

4. Simulation study

In this section, we carry out a simulation study, by means of the statistical software R
(Ihaka and Gentleman, 1996) to compare the performance of our new estimator ∆̃n,r with the

estimator ∆̂n,r previously introduced by Necir and Meraghni (2010). But, before we start the
simulations, we would like to mention that, for the sake of computation time optimization,
we limit the research of ˜̀and m̃ to the integer intervals (`∗, 2`∗) and (m∗, 2m∗) respectively,
where `∗ and m∗ are initial values for ` and m, obtained by applying the algorithm of Cheng
and Peng (2001) to Hill estimators of α, given in (8) and (7).

For the sake of simplicity, we consider the standard α-stable distribution Sα(1, 0, 0). We
choose (α, r) = (1.7, 0.6) and (1.5, 0.7) , so that 1/α < r < 1 (see, (9)), and we compute the
corresponding true values of the TSD which turn out to be 1.659 and 1.508 respectively.
Then, we draw 200 samples, of size n = 2000, from a rv X ∼ Sα(1, 0, 0), to derive both

TSD estimators ∆̂n,r and ∆̃n,r. Our results are obtained by averaging over the number of
replications. We repeat the same procedure with another 200 samples of size n = 5000. The
simulation results are summarized in Tables 1 and 2.

n = 2000

∆̂n,r ∆̃n,r

Bias 0.553 Bias 0.093
Rmse 0.554 Rmse 0.189

m∗ 182 m̃ 262
αH
R 2.588 α̂R 2.321

`∗ 191 ˜̀ 271
αH
L 2.330 α̂L 2.120

n = 5000

∆̂n,r ∆̃n,r

Bias 0.301 Bias 0.019
Rmse 0.302 Rmse 0.082

m∗ 433 m̃ 773
αH
R 2.506 α̂R 2.092

`∗ 441 ˜̀ 781
αH
L 2.045 α̂L 1.920

Table 1. Comparison of the new TSD estimator and Necir and Meraghni TSD estimator,
based on 200 samples from the standard Lvy-stable distribution with α = 1.7, r = 0.6. The
true value of the TSD is 1.659.
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n = 2000

∆̂n,r ∆̃n,r

Bias 0.407 Bias 0.087
Rmse 0.408 Rmse 0.153

m∗ 181 m̃ 251
αH
L 2.003 α̂R 1.751

`∗ 180 ˜̀ 250
αH
R 1.878 α̂L 1.717

n = 5000

∆̂n,r ∆̃n,r

Bias 0.168 Bias 0.009
Rmse 0.172 Rmse 0.051

m∗ 452 m̃ 772
αH
R 1.782 α̂R 1.710

`∗ 449 ˜̀ 769
αH
L 1.747 α̂L 1.708

Table 2. Comparison of the new TSD estimator and Necir and Meraghni TSD estimator,
based on 200 samples from the standard Lvy-stable distribution with α = 1.5, r = 0.7. The
true value of the TSD is 1.508.

The second part of our simulation study consists of a graphical comparison between the bias
and RMSE of ∆̃n,r and ∆̂n,r, as the sample fractions increase. We start by 100 samples of
size n = 2000. For i ∈ {1, 2, ..., 21} , we compute, by averaging over all the replications, the

value of ∆̃n,r for the couple of sample fractions (` (i) ,m (i)) , where

` (i) = `∗ + (i− 1)× 10 and m (i) = m∗ + (i− 1)× 10,

Let us denote it by ∆̃n,r (i) and the resulting bias and RMSE by b̃n,r (i) and ẽn,r (i) re-

spectively. Next, we plot in distinct panels the two sets of points
(

(i− 1)× 10, b̃n,r (i)
)

and

((i− 1)× 10, ẽn,r (i)) , and we add in each panel, a horizontal line representing the bias

and the RMSE of ∆̂n,r, see Figures 1 and 3. We repeat the same procedure for another 100
samples of size n = 5000, with i = 1, 2, ..., 51, see Figures 2 and 4.

In Table 1 for α = 1.7, the graphical optimal values of
(˜̀, m̃) is (271, 262) and (781, 773)

corresponding to i = 9 and i = 35, respectively for n = 2000, and n = 5000, by applying
Reiss and Thomas’s algorithm we get respectively, (269, 277) and (771, 772) . The same

things in Table 2, for α = 1.5, the graphical optimal values
(˜̀, m̃) is (250, 251) and (769, 772)

corresponding to i = 8 and i = 33, respectively for n = 2000, and n = 5000. If we apply Reiss
and Thomas’s algorithm in the above steps we get (247, 256) and (760, 763) respectively.

5. Concluding remarks

The overall conclusion that we might make is that, on the light the tables and figures, the
new TSD estimator ∆̃n,r performs better in the sense of bias and RMSE, but with larger

sample fractions than the estimator ∆̂n,r proposed by Necir and Meraghni (2010).
Through our simulation study, we found that for α = 1.7, the values of Hill estimator of the
stability index exceed the limit 2 of the Lévy-stable regime. This issue is discussed by Weron
(2001) who noted that for α ≤ 1.5 Hill’s estimation is quite reasonable but as α approaches
2, there is a significant overestimation when considering samples of typical size. For such
values of α, a very large number of observations (one million or more) is needed in order to
obtain acceptable estimates and avoid misleading inference on the characteristic exponent,
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Fig. 1. Bias (left panel) and RMSE (right panel) of the new TSD estimator and Necir and
Meraghni TSD estimator for α = 1.7 and r = 0.6, based on 200 samples of 2000 stable
observations.

because the true tail behavior of Lévy-stable distributions is only visible for extremely large
data sets.

Acknowledgments. We thank the referee for her/his helpful comments.

Appendix A:

Lemma 1. For any 0 < r < 1, we have E [∆n,r −∆r] = 0 and
√

E [∆n,r −∆r]
2

= δr/
√
n,

where δr is as in (5) .

Proof. Since ∆n:r is an L-statistics, then from Shorack and Wellner (1986), page 662, we
have

∆n,r −∆r
d
= − 1

n

n∑
i=1

∫ 1

0

[
1[Ui≤t] − t

]
Jr (t) dQ (t) ,

where U1, U2, ... is a sequence of iid (0, 1)-uniform rv’s. Observe that

Yi :=

∫ 1

0

[
1[Ui≤t] − t

]
Jr (t) dQ (t) , i = 1, ..., n,
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regime. 454

Fig. 2. Bias (left panel) and RMSE (right panel) of the new TSD estimator and Necir and
Meraghni TSD estimator for α = 1.7 and r = 0.6, based on 200 samples of 5000 stable
observations.

are iid centred rv’s, that is E [∆n,r −∆r] = 0, with E [∆n,r −∆r]
2

= E
[
Y 2
1

]
/n. It is easy

to verify that

E
[
Y 2
1

]
=

∫ 1

0

∫ 1

0

(min(s, t)− st) Jr (s) Jr (t) dQ (s) dQ (t) ,

which is exactly δ2r . �

Lemma 2. Suppose F ∼ Sα(σ, β, µ) for 1 < α < 2. Then for any 1 < r < 1, we have
δr =∞.

Proof. Note that δ2r may be rewritten into

δ2r =

∫ 1

0

G2
r (s) ds−

(∫ 1

0

Gr (s) ds

)2

,

where Gr (s) :=
∫ s
0
Jr (t) dQ (t) (see, e.g., equation (1.12) in Mason and Shorack, Mason and

Shorack (1992)). It is clear that for any 0 < ε < 1, we have
∫ 1

0
G2
r (s) ds ≥

∫ ε
0
G2
r (s) ds. On

the other hand, from (1), we infer that Q (t) ∼ −C−11 t−1/α, as t ↓ 0, then

Gr (s) ∼ (αC1)
−1
∫ s

0

t−1/α−1Jr (t) dt, as s ↓ 0.
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Fig. 3. Bias (left panel) and RMSE (right panel) of the new TSD estimator and Necir and
Meraghni TSD estimator for α = 1.5 and r = 0.7, based on 200 samples of 2000 stable
observations.

Since Jr (t) ∼ −rtr−1/2, as t ↓ 0, then it is readily checked that, for small ε > 0, we have

∫ ε

0

G2
r (s) ds ∼


r2ε2(r−1/α−1)+1

4 (r − 1/α)
2

(2 (r − 1/α) + 1)
, if 2 (r − 1/α)− 1 ≥ 0,

∞, if 2 (r − 1/α)− 1 < 0.

This implies that δ2r =∞ for any 0 < r < 1/2 + 1/α which is verified for any 0 < r < 1 and
1/2 < 1/α < 1. �
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Fig. 4. Bias (left panel) and RMSE (right panel) of the new TSD estimator and Necir and
Meraghni TSD estimator for α = 1.5 and r = 0.7, based on 200 samples of 5000 stable
observations.
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