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FINE SELMER GROUP OF HIDA DEFORMATIONS OVER
NON-COMMUTATIVE p-ADIC LIE EXTENSIONS∗
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Abstract. We study the Selmer group and the fine Selmer group of p-adic Galois representations
defined over a non-commutative p-adic Lie extension and their Hida deformations. For the fine Selmer
group, we generalize the pseudonullity conjecture of [C-S] in this context and discuss its invariance
in a branch of a Hida family. We relate the structure of the ‘big’ Selmer (resp. fine Selmer) group
with the specialized individual Selmer (resp. fine Selmer) groups.

Key words. Selmer group, congruences of modular forms, Hida theory, p-adic Galois represen-
tation, non-commutative Iwasawa theory.

AMS subject classifications. Primary 11R23, 11F33, 11F80; Secondary 11G05, 14G05,
16E40.

Introduction. Let E be an elliptic curve over a number field K and let p be
an odd prime number. Suppose that L/K is a Galois extension such that the Galois
group G = Gal(L/K) is a pro-p, p-adic Lie group with no elements of order p and L
contains the cyclotomic Zp-extension, Kcyc of K. The fine Selmer group of E over
such p-adic Lie extensions L of K is an interesting arithmetic module that is studied
in Iwasawa theory. In [C-S], Coates and Sujatha formulated some conjectures about
the fine Selmer group for such extensions. One of these, namely Conjecture A of [C-S]
was generalized in [J-S] for Hida families. The main aim of this article is to formulate
the analogue of Conjecture B of [C-S] for the Galois representation associated to a
modular form and also for a ‘large’ Galois representation attached to a Hida family,
as enunciated by Hida theory (see [Hi]). We investigate the relationship between
these two conjectures and also study, under certain hypotheses, the invariance of the
Λ(H)-rank of the dual Selmer group and the dual fine Selmer group of the members
in a branch of a Hida family where H = Gal(L/Kcyc) and Λ(H) is the usual Iwasawa
algebra of H. The article consists of four sections. Section 1 sets forth the notation
and some preliminary results and in section 2, the fine Selmer group is defined and the
analogues of Conjecture B are formulated. In section 3, we prove a control theorem
and study the relationship between the conjecture on the ‘big’ fine Selmer group
for a Hida family and the corresponding conjecture for the specializations. We also
illustrate our main results with a numerical example. Finally in section 4, we study
the Λ(H)-rank of the dual Selmer group in a branch of the Hida family under the
additional hypothesis that cyclotomic µ-invariant of the dual Selmer group vanishes.

1. Preliminaries. Throughout the article, p will denote an odd prime integer
and N a natural number prime to p. Fix an embedding of an algebraic closure Q̄

of the field Q of rational numbers into C and also an embedding of Q̄ into a fixed
algebraic closure Q̄p of the field Qp of the p-adic numbers. Throughout, K will denote
an abelian number field. The cyclotomic Zp-extension of K is denoted by Kcyc with
Γ = Gal(Kcyc/K) ∼= Zp. Let S be a finite set of places of K containing the primes
over Np and the infinite primes and let KS denote the maximum algebraic extension
of K unramified outside S. Let L be an algebraic extension of a number field K such
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that

K ⊂ Kcyc ⊂ L ⊂ KS.

Put G = Gal(L/K) and assume that G is a pro p, p-adic Lie group of dimension ≥ 1
with no p-torsion. We further assume that only finitely many primes of K ramify
in L. Such an extension L, is called an admissible p-adic Lie extension of K. Write
H = Gal(L/Kcyc), so that G/H ∼= Γ ∼= Zp. Let B be a complete, commutative, regular
local ring with finite residue field. The Iwasawa algebra for a p-adic Lie extension L
over the ring B is defined by B[[G]] = ΛB(G) := lim

←−
U

B[[G/U ]], where U varies over an

inverse system of open normal subgroups of G. For a finite extension O of Zp and for
G = Γ, the Iwasawa algebra ΛO(Γ) is (non-canonically) isomorphic to the power series
ring O[[T ]]. The algebra O[[T ]] is a commutative regular local ring while ΛO(G) is in
general, an Auslander regular domain. All modules considered over non-commutative
Iwasawa algebras will be left modules. For any field L, GL denotes the Galois group
Gal(L̄/L). Given a field extension L/K and a discrete module M over the Galois
group Gal(L/K), the Galois cohomology groups are denoted by Hi(L/K,M). Also
for a module N over an Iwasawa algebra, N∨ denotes its Pontryagin dual.

The group Γ′ denotes the group of diamond operators for the tower of modular
curves {Y1(p

t)}t≥1. There are canonical isomorphisms χ : Γ ∼= 1 + pZp ⊂ Z∗
p (resp.

κ : Γ′ ∼= 1 + pZp ⊂ Z∗
p) with χ the p-adic cyclotomic character. We also fix a

topological generator γ (resp. γ′) of Γ (resp. Γ′), such that χ(γ) = κ(γ′). Let Hord
F

be the quotient of the universal ordinary Hecke algebra Hord
Np∞ , that corresponds to

an ordinary Λ-adic newform F (see [Hi]). The algebra Hord
F is a Zp-algebra which is

a local domain and is finite flat over Zp[[Γ
′]]. Let

(1) F =
∑

n≥1

An(F)q
n

denote the formal q-adic expansion of F with An(F) ∈ Hord
F . By a celebrated result

of Hida (cf. [Hi], [Wi]) there exists a ‘large’ continuous irreducible representation

(2) ρ : GQ −→ AutHord
F

(TF )

where TF is a finitely generated, torsion-free module of generic rank 2 over Hord
F . This

representation ρ is unramified at all the primes l ∈ Z not lying below S. Moreover,
the trace of the (geometric) Frobenius Frl ∈ GQ acting on TF is equal to the Fourier
coefficient Al(F) of F for every prime ideal l not lying below S.

Let m be the maximal ideal of Hord
F and let F denote the finite residue field Hord

F /m.
Then we obtain the residual representation

(3) ρ̄ : GQ −→ AutHord
F

(TF/m).

The representation space of ρ̄ is an F-vector space of dimension two with semi-simple
GQ-action, along with the additional property that the trace of Frl is congruent to
Al(F) modulo m, for every prime l not lying below S. (see [M-W]) Throughout this
article, we shall always assume that the following conditions hold, although we may
not always state them explicitly:

(Nor): The ring Hord
F
∼= O[[Γ

′

]], where O is some finite extension of Zp.
(Irr): The residual representation ρ̄ of TF in (3) is an absolutely irreducible GQ-
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module.

For a non negative integer w, recall that an element ξ ∈ HomZp
(Hord

F , Q̄p) is called
an arithmetic point of weight w if there exists an open subgroup U of Γ′ such that
the restriction

(4) ξ|U : U →֒ Zp[[Γ
′]]∗ →֒ (Hord

F )∗
ξ
−→ Q̄∗

p

sends u to κw(u), for any u ∈ U . The set of arithmetic points is denoted by
Xarith(H

ord
F ), and for an arithmetic point ξ, the weight of ξ will be denoted by w(ξ).

For any ξ in Xarith(H
ord
F ), put Pξ = Ker ξ. Then Pξ = (pξ) is a height 1 princi-

pal prime ideal in Hord
F . In fact, the ideal (pξ) in Hord

F lies above the prime ideal
(1 + p)w(ξ) − (1 + T ) in Zp[[Γ

′]] ∼= Zp[[T ]].
Under the assumption (Irr) above, we have the following basic properties (see

[Oc, section 2]) :
(i) The module T = TF is a free Hord

F -module of rank 2.
(ii) For each ξ ∈ Xarith(H

ord
F ), there exists a normalized cuspidal eigenform fξ of

weight w(ξ) + 2, such that the quotient T /(pξ) is isomorphic to Tfξ , where Tfξ is the
(unique) lattice of Deligne’s Galois representation associated to the modular form fξ.
We have Tfξ

∼= Oξ ⊕Oξ, where Oξ := Hord
F /(pξ).

(iii) As a representation of the decomposition group GQp
⊂ GQ at p, T = TF has a

filtration

0 −→ F+T −→ T −→ F−T −→ 0

such that the graded pieces F+T and F−T are free of rank 1 over Hord
F . Moreover

Ap(F) ∈ Hord
F satisfies the interpolation property

ξ(Ap(F)) = ap(fξ),

the pth Fourier coefficient of the cuspidal ordinary form fξ, for each ξ ∈ Xarith(H
ord
F ).

Throughout this article we will consider the Galois representation associated to
the family of p-ordinary, p-stabilized newforms that arise as the specialization at
arithmetic points of an ordinary Λ-adic newform F in the sense discussed above.
This will correspond to a branch of a minimal Hida family. In particular, every
cuspform in the family has level Npr for some r and their residual representations are
all isomorphic. (see [E-P-W] for details.)

2. Fine Selmer group. Let f =
∑
anq

n ∈ Sk(Γ0(Np
r), ψ) be a normalized

eigenform of weight ≥ 2, tame level N and character ψ. We further assume that f is
ordinary at p, and that f is p-stabilized. Let Kf be the number field generated by
the Fourier coefficients of f and the values of ψ. Let Kf,v denote the completion of
this number field at a prime v lying above p and let Of denote its ring of integers. By
results of Deligne, Eichler, Shimura, and Mazur-Wiles, Wiles (cf. [Wi]) there exists a
Galois representation

(5) ρf : GQ −→ GL2(Kf,v)

which is ordinary at p, and unramified at all primes l not dividing Np. Let Vf denote
the representation space of ρf . Choose a lattice Tf of Vf which is invariant under ρf ,
so that we get an action of GQ on Af = Vf/Tf . Let

(6) ρ̄ : GQ −→ GL2(Of/π)
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be the residual representation of ρ, where π is a uniformizing parameter for Kf,v. If
we further assume that ρ̄f is an absolutely irreducible representation of GQ, then there
exists a unique (up to conjugation) Galois invariant lattice in Vf (see, for example
[Ca]).
For a finite extension L of K and each each v in S, we define Ki

v(Af/L) as

(7) Ki
v(Af/L) := ⊕

w|v
Hi(Lw, Af )

for i = 0, 1, 2, where for each prime w in L lying over v, Lw denotes a completion of
L at w. For an infinite extension L∞ of K, the groups Ki

v(Af/L∞) are defined by
taking the inductive limit of Ki

v(Af/L
′) over all finite extensions L′ of K contained in

L∞. Let L be a p-adic Lie extension of K and S be chosen as before. We now define
the fine Selmer group of f over L/K for the lattice Tf , denoted by R(Af/L) as

Definition 1. R(Af/L) = Ker(H1(KS/L, Af ) −→ ⊕
v∈S

K1
v(Af/L)).

We denote the Pontryagin dual R(Af/L)
∨ by Y (Tf/L). Then Y (Tf/L) is a finitely

generated (left) module over the Iwasawa algebra Of [[G]]. Since K/Q is abelian, by a
deep result of Kato (see [Ka]), the ‘Weak Leopoldt Conjecture’ holds for Kcyc i.e.

(8) H2(KS/Kcyc, Af ) = 0.

It then follows (see for example [C-S, Lemma 3.1]) that Y (Tf/Kcyc) is a finitely
generated torsion ΛOf

[[Γ]] module.
Let f be a cuspidal eigenform as in the begining of this section. The generalization
of Conjecture 1 in [C-S] is the following conjecture:

Conjecture A. Y (Tf/Kcyc) is a finitely generated Of -module.

To proceed further we need the following lemmas. The first lemma is a generalization
of a result of Howson [Ho1, Theorem 1.1]. The proof is similar and hence we skip the
proof.

Lemma 1. Let B be a complete, commutative, regular local ring with finite residue
field, and let M be a finitely generated B[[H]]-module. Then for all i, the groups
Hi(H,M) are finitely generated B-modules and we have

(9) rankB[[H]] M = Σ
i≥0

(−1)irankB Hi(H,M).

We use the above lemma to prove the following generalized ‘fundamental diagram’.

Lemma 2. Let L,H, S and B are as defined before. Take C to be a cofinitely
generated B-module with continuous GQ action such that the action is trivial when
restricted to the subgroup Gal(Q̄/KS). Then
(i) the kernel and the cokernel of the map

H1(KS/Kcyc, C)
α
−→ H1(KS/L, C)

H

are cofinitely generated B-modules.
(ii) for each v in S, the kernel of the map

K1
v (C/Kcyc)

βv
−→ K1

v(C/L)
H
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is a cofinitely generated B-module, where Ki
v(C/L) is defined by replacing Af by C

in (7).

Proof. The kernel of the map α is H1(H, CGL) and cokernel of α is contained
in H2(H, CGL). Since C itself is a cofinitely generated B-module, it is obvious
that CGL is a cofinitely generated B[[H]]-module. It follows from Lemma 1 that
Hi(H, CGL)∨ ∼= Hi(H, (C

GL)∨) is a finitely generated B-module, which proves (i).
To prove (ii), we see that, using Shapiro’s Lemma, the kernel of βv is isomorphic to
⊕
w|v
H1(Hw, C

GLw ), where w runs over the finite set of primes of Kcyc lying above v,

and Hw denotes a decomposition group in H of some fixed extension of w to L. Now
proceeding as in (i) and replacingH and L respectively by their local counterpartsHw

and Lw and summing over finitely many w, we get (ii). Thus the Lemma is proved.

Assume Conjecture A holds for Y (Tf/Kcyc). Then putting B = Of and C = Af

in Lemma 2 and using the definition of R(Af/L), we deduce that the kernel and the
cokernel of the map

Y (Tf/L)H −→ Y (Tf/Kcyc)

are finitely generated Of modules and hence using Nakayama’s Lemma we see that
Y (Tf/L) is a finitely generated ΛOf

(H) module.
LetB and G be as before. LetM be a finitely generated torsionB[[G]]-module. We

recall that M is defined to be a pseudonull B[[G]]-module if Ext1B[[G]](M,B[[G]]) = 0.
In the case B = O, a finite extension of Zp, a result of Venjakob [Ve] asserts that an
O[[G]]-module which is a finitely generated O[[H]]-module is pseudonull as an O[[G]]-
module if and only if it is a torsion O[[H]]-module. Now we extend Conjecture B of
[C-S] as follows.

Conjecture B. Assume Conjecture A holds for Y (Tf/Kcyc). Let dimension of
G as a p-adic Lie group is ≥ 2. Then the fine Selmer group Y (Tf/L) is a finitely
generated torsion ΛOf

(H) module or equivalently a pseudonull ΛOf
(G) module.

Next we define the fine Selmer group associated to the large Galois representation
(2). The discrete dual of T is given by

(10) A = T ⊗Hord
F

HomZp
(Hord

F ,Qp/Zp).

Let S be chosen as before and letKi
v(A/L) be defined as in (7) with Af being replaced

byA. The fine Selmer group of the Λ-adic representation, over the p-adic Lie extension
L of K denoted by R(A/L), is defined by

(11) R(A/L) = Ker(H1(KS/L,A) −→ ⊕
v∈S

K1
v(A/L)).

Clearly R(A/L) is an Hord
F -module. Further, the action of the Galois group G on the

cohomology groups commutes with the Hord
F -action, thereby endowing R(A/L) with

a structure of an Hord
F [[G]]-module. The corresponding Pontryagin dual in this case is

denoted by Y(T /L).
Since K/Q is abelian, it can be shown (see [Oc, Proposition 4.9]) that Y(T /Kcyc)

is a finitely generated torsion Hord
F [[Γ]]-module. The following is a generalization of

Conjecture 1 of [J-S] to an arbitrary abelian number field K,

Conjecture 1. Y(T /Kcyc) is a finitely generated Hord
F -module.
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For a B-module M and an element α ∈ B, define M [α] = {x ∈ M : αx = 0}. Using
the fact that T /pξ ∼= Tfξ , it is immediate that A[pξ] ∼= Afξ , where fξ is the cuspform
associated to the specialization of T at the arithmetic point ξ. The following theorem
establishes the relation between Conjecture A and Conjecture 1.

Theorem 3. The following are equivalent.
1. There exist ξ0 ∈ Xarith(H

ord
F ) such that Conjecture A is true for Y (Tfξ0/Kcyc).

2. For every ξ ∈ Xarith(H
ord
F ), Conjecture A is true for Y (Tfξ/Kcyc).

3. Conjecture 1 is true for Y(T /Kcyc).

Proof. The proof is essentially same as that of [J-S, Theorem 8] and hence we
skip the proof.

Assume that Conjecture 1 holds for Y(T /Kcyc). Now setting B = Hord
F and

C = A in Lemma 2 and using the definition of R(A/L), we deduce that the kernel
and the cokernel of the map

Y(T /L)H −→ Y(T /Fcyc)

are finitely generated Hord
F -modules and hence using Nakayama’s Lemma, we get that

Y(T /L) is a finitely generatedHord
F [[H]]-module. We propose the following conjecture:

Conjecture 2. Assume that Conjecture 1 is true for Y(T /Kcyc). Let dimension
of G as a p-adic Lie group is ≥ 2. Then Y(T /L) is a finitely generated torsion
Hord

F [[H]]-module.

We shall study the relation between Conjecture B and Conjecture 2 in section 3.

3. Control theorem and specializations. Recall from the previous section
that for an arithmetic point ξ, we have A[pξ] ∼= Afξ , the discrete lattice associated to
the eigenform fξ. There is an obvious map

(12) R(A[pξ]/L)
rξ
−→ R(A/L)[pξ].

Our aim is to prove a “control theorem” for the above maps.

Theorem 4. Assume that the conditions (Nor) and (Irr) hold. Then the Pon-
tryagin dual of the kernel and the cokernel of the map

R(A[pξ]/L)
rξ
−→ R(A/L)[pξ]

are finitely generated Oξ[[H]]-modules for all ξ ∈ Xarith(H
ord
F ) and are even Oξ[[H]]-

torsion i.e. Oξ[[G]]-pseudonull for all but finitely many such ξ.

Proof. Consider the following commutative diagram

(13) 0 // R(A[pξ]/L) //

rξ

��

H1(KS/L,A[pξ]) //

φξ

��

⊕
v∈S

K1
v (A[pξ]/L)

θξ

��

0 // R(A/L)[pξ] // H1(KS/L,A)[pξ] // ⊕
v∈S

K1
v (A/L)[pξ]

where all the vertical arrows are the natural maps. It is plain from the Kummer
sequence that the middle vertical arrow is surjective. Now the kernel of the middle
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vertical map is (AG∞)/pξ, where G∞ denotes the Galois group Gal(Q̄/L). Hence
(Ker rξ)

∨ is isomorphic to a quotient of (T ∗)G∞
[pξ], where T

∗ denotes the module
HomHord

F

(T ,Hord
F ). Clearly T ∗ is a finitely generated Hord

F -module, and hence T ∗[pξ]

is a finitely generated Hord
F /pξ ∼= Oξ-module, whence a finitely generated torsion

Oξ[[H]]- module. Thus we have shown that (Ker rξ)
∨ is a finitely generated torsion

Oξ[[H]]-module for all ξ ∈ Xarith(H
ord
F ).

Next we show that (Coker rξ)
∨ is a finitely generated Oξ[[H]]-module for all ξ ∈

Xarith(H
ord
F ). Clearly it suffices to show that (Ker θξ)

∨ is a finitely generated Oξ[[H]]-
module for all ξ. Now using Shapiro’s lemma, it is easy to see that Ker θξ ∼=
( ⊕
v∈S

K0
v (A/L))/pξ. For each v, and for any extension L of K, set UL

v := (K0
v (A/L))

∨.

Then again using Shapiro’s lemma, it follows that (UL
v )H

∼= U
Kcyc
v . Now there are

only finitely many primes in Kcyc lying over a prime v of K. Using this it is easy to

see that U
Kcyc
v is a finitely generated Hord

F -module. Hence by Nakayama’s lemma, it
is immediate that UL

v is finitely generated Hord
F [[H]]-module. Thus UL

v [pξ] is a finitely
generated Oξ[[H]]-module. Summing over finitely many v ∈ S, we get that (Ker θξ)

∨

is a finitely generated Oξ[[H]]-module.
Now we go on to show that (Ker θξ)

∨ (and hence (Coker rξ)
∨ ) is a finitely generated

torsion Oξ[[H]]-module for all but finitely many ξ ∈ Xarith(H
ord
F ). We need the follow-

ing lemma to complete the proof. Recall that each pξ, lies in the centre of Hord
F [[H]]

and Hord
F [[H]]/pξ ∼= Oξ[[H]].

Lemma 5. Let N be a finitely generated Hord
F [[H]]-module. Then

rankOξ[[H]] N/pξ = rankHord
F

[[H]] N + rankOξ[[H]] N [pξ].

Proof. We use the homological definition of rank of N as Hord
F [[H]]-module and

use the fact Tor1
Hord

F
[[H]](N,H

ord
F [[H]]/pξ) ∼= N [pξ]. From these two facts the lemma

follows easily.

We continue the proof of the Theorem 4. Let us denote Hord
F [[H]] by R and ⊕

v∈S
UL
v

by M for the rest of the proof. Then we have to show that

(14) for all but finitely many ξ, rankR/pξ
M [pξ] = 0.

Recall that an element l ∈ R is called a central prime if l is a prime in R and lies
in the centre of R. Let Mct be the submodule of M generated by elements of M
annihilated by any product of central primes. By definition of Mct, we get that for
any ξ, (M/Mct)[pξ] = 0. Thus applying Lemma 5 with N = M/Mct we get the
assertion that

(15) for all ξ ∈ Xarith(H
ord
F ), rankR/pξ

(M/Mct)/pξ = rankR M/Mct.

Also we have

(16) rankR M = rankR M/Mct.

Using (16) in Lemma 5 for N =M , it is immediate that

(17) for all ξ ∈ Xarith(H
ord
F ), rankR/pξ

M/pξ = rankR M/Mct + rankR/pξ
M [pξ].
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Note that R = Hord
F [[H]] ∼= O[[G′]] where O is the ring of integers of a p-adic number

field and G′ ∼= Γ×H. With this identification it follows from [Ho2, Theorem 2.5] that
there exist a pseudoisomorphism φ,

(18) 0→ P1 −→M
φ
−→ ⊕

1≤i≤n

O[[G′]]

(qni

i )
⊕M/Mct −→ P2 → 0,

where qi for i = 1, ..., n are central primes and P1, P2 are pseudonull R modules. This
representation is unique upto a permutation of q1, ..., qn. Now for any pξ not in the set

{q1, ...., qn}, it follows that
O[[G′]]

(q
ni
i

)
/pξ is R/pξ-torsion, so that rankR/pξ

( ⊕
1≤i≤n

O[[G′]]

(q
ni
i

)
⊕

M/Mct)/pξ = rankR/pξ
(M/Mct)/pξ. Also for a pseudonull R module P , both P [pξ]

and P/pξ are torsion as R/pξ modules. This follows from the fact that E0
R/pξ

(P [pξ]) ∼=

E1
R(P [pξ]) = 0 and similarly E0

R/pξ
(P/pξ) ∼= E1

R(P/pξ) = 0. We split (18) in to two

short exact sequences and tensor each of them with R/pξ (over R). Using the above
observations and noting that alternating rank is zero in an exact sequence, we get

(19) for all but finitely many ξ, rankR/pξ
M/pξ = rankR/pξ

(M/Mct)/pξ.

Hence using (19) and (15) in (17) we deduce that for all but finitely many ξ ∈
Xarith(H

ord
F ), we have

rankR/pξ
M [pξ] (= rankR/pξ

(M/Mct)[pξ]) = 0,

which establishes (14) and hence the theorem is proved.

Remark 6. We stress that we do not need to assume Conjecture 1 for proving
the control theorem. This is clear from the proof.

Remark 7. The last part of the proof shows that for a finitely generated R :=
Hord

F [[H]]-module M , the equality

rankR M = rankR/pξ
M/pξ

holds for all but finitely many ξ.

Assume now that one of the equivalent conditions in Theorem 3 holds. Then we
know that both Y(T /L)/pξ and Y (Tξ/L) are finitely generated modules over Oξ[[H]]
for any ξ. By Remark 7, for all but finitely many ξ, the Hord

F [[H]] rank of Y(T /L) and
the Oξ[[H]] rank of Y(T /L)/pξ are the same. Combining these facts with Theorem
4, we get the following result.

Proposition 8. Assume (Nor), (Irr) and that K/Q is abelian. Also assume
that Conjecture A holds for some ξ0 ∈ Xarith(H

ord
F ). Then for all but finitely many

ξ ∈ Xarith(H
ord
F ), the Oξ[[H]] ranks of Y (Tξ/L) are the same with the rank being equal

to the Hord
F [[H]] rank of Y(T /L).

Proof. Let Σ be the finite subset of Xarith(H
ord
F ) consisting of ξ’s for which the

Hord
F [[H]] rank of Y(T /L) is strictly less than the Oξ[[H]] rank of Y (Tξ/L) and those

ξ for which (Coker rξ)
∨ in Theorem 4 is not Oξ[[H]]-torsion. For any ξ ∈ Hord

F \ Σ
the assertion follows directly from Theorem 4 and the above discussions.

We make the following hypothesis for an admissible p-adic Lie extension L of a
number field K with G ∼= Gal(L/K). Note that since Kcyc ⊂ L we know that for each
v, the decomposition group Gv has dimension ≥ 1.
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(DimS) : For each v in S, The decomposition group of G at v, denoted by Gv, has
dimension ≥ 2.

Now we can deduce the following corollary from the above control theorem.

Corollary 9. Assume Conjecture A holds for some ξ ∈ Xarith(H
ord
F ) and also

(DimS) holds. Then for every ξ ∈ Xarith(H
ord
F ), the Oξ[[H]] rank of Y(T /L)/pξ and

Y (Tξ/L) are the same.

Proof. We continue to use the notation introduced in Theorem 4. First note
that, the corollary follows from the proof of control theorem once we prove that for
every ξ ∈ Xarith(H

ord
F ), rankOξ[[H]] (Ker θξ)

∨ = 0 i.e. rankR/pξ
⊕

v∈S
UL
v [pξ] = 0. Set,

as before, M = ⊕
v∈S
UL
v . We will show that for all ξ, rankR/pξ

M/pξ = 0. Then

rankR/pξ
M [pξ] = 0 will follow immediately from Lemma 5. Fix a prime in L above

v (abusing notation we continue to denote it by v) and set WL
v := (H0(GLv

,A))∨.
Then we have

UL
v
∼= Hord

F [[G]]⊗Hord
F

[[Gv]]W
L
v .

Similarly, we see that

UL
v /pξ

∼= Oξ[[G]]⊗Oξ[[Gv]] W
L
ξ,v,

where WL
ξ,v := (H0(GLv

, Afξ))
∨. By (DimS), it follows that dimension of Hv ≥ 1.

NowWL
ξ,v, being a finitely generated Zp-module, is torsion as an Oξ[[Hv]]-module and

hence pseudonull as an Oξ[[Gv]]-module. Note that

Ext1Oξ[[G]]
(UL

v /pξ, Oξ[[G]]) ∼= Oξ[[G]]⊗Oξ[[Gv]] Ext
1
Oξ[[Gv]](W

L
ξ,v, Oξ[[Gv]]).

Consequently, we see that UL
v /pξ is pseudonull as an Oξ[[G]]-module and hence a

finitely generated torsion Oξ[[H]]-module for all ξ. Thus rankR/pξ
UL
v /pξ = 0 holds

for all ξ. Summing over finitely many v ∈ S, we get that rankR/pξ
M/pξ = 0 for all

ξ ∈ Hord
F . Hence the corollary is proved.

We now discuss the invariance of the pseudonullity conjecture in a branch of a Hida
family.

Theorem 10. Assume (Nor), (Irr), (DimS) and K/Q is abelian. Let

ρ : GQ −→ AutHord
F

(TF )

be an ordinary Hida deformation, where T = TF is a finitely generated free module of
rank 2 over the ordinary Hecke algebra Hord

F , associated to a ordinary Λ-adic newform
F . Then the following assertions are equivalent:

1. Conjecture 2 holds for the Hord
F [[G]]-module Y(T /L).

2. Conjecture B holds for the dual fine Selmer group Y (Afξ/L), for all but

finitely many specialization pξ with ξ ∈ Xarith(H
ord
F ).

3. There exists ξ0 ∈ Xarith(H
ord
F ) such that Conjecture B holds for Y (Afξ0

/L).

Proof. Assume (1) holds. Then Y(T /L) is a finitely generated torsion module
over Hord

F [[H]] and hence by Proposition 8 we get (2). It is obvious that (2)⇒ (3). To
prove (3)⇒ (1), suppose that for some ξ0, we have Y (Afξ0

/L) is a finitely generated
Oξ0 [[H]]-torsion module. Since we have assumed (DimS), by Corollary 9 we get that
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(Y(T /L))/pξ0 is Oξ0 [[H]]-torsion. Then (1) follows from Lemma 5, and the theorem
is proved.

We now consider the special case when the p-adic Lie extension is the false Tate
curve extension which we define below. Set K = Q(µp) and Kcyc = Q(µp∞). Let m
be a positive integer which is p-power free. The false Tate curve extension K∞ over
K is defined by

(20) K∞ =
⋃

n≥1

Q(µpn ,m1/pn

).

Denote by G = Gal(K∞/K), H = Gal(K∞/Kcyc) and Γ = Gal(Kcyc/K). Then
G ∼= Zp ⋊ Zp is a pro-p, non-commutative p-adic Lie group of dimension 2 and is
without p-torsion. The groups H and Γ are both isomorphic to Zp. The finite set S
of primes of K consists of the infinite primes and the primes lying over mNp.

Remark 11. Let (K∞/K) be the false Tate curve extension described above.
Then we can simplify the proof of Theorem 10, as explained below.

In this case H ∼= Zp. So we have Hord
F [[H ]] ∼= (O[[W ]])[[H ]] ∼= (O[[T1]])[[T2]] for

some finite extension O of Zp (by (Nor) ). Also for any pξ, a height 1 prime in
O[[W ]], O[[W ]]/pξ ∼= Oξ holds. Hence we apply the structure theorem of finitely
generated modules over Hord

F [[H]] ∼= O[[T1, T2]] (see [N-S-W]), which provides us with
a characteristic element h ∈ O[[T1, T2]] for Y(T /K∞). For any pξ not dividing this
h, we get by the same structure theorem that the O[[T1, T2]] rank of Y(T /K∞) is
same as the Oξ[[T2]] rank of Y(T /K∞)/pξ. Also in this case, by (DimS) for each
v in S, dim Gv = dim G = 2. Hence there are only finitely many primes in K∞

lying over each prime v in S. Then K0
v (Afξ/K∞) is itself a cofinitely generated Of

module for every ξ. Using this in the proof of Theorem 4, it is clear that both the
kernel and the cokernel of rξ are cofinitely generated Of module. Thus by applying
the same theorem for every ξ, we get that both Y(T /K∞)/pξ and Y (Tξ/K∞) have
the same Oξ[[T2]] rank. Finally it is clear that the O[[T1, T2]] rank of Y(T /K∞) is
a lower bound of the O[[T1, T2]]/pξ rank of Y(T /K∞)/pξ for any ξ ∈ Xarith(H

ord
F ).

From these discussions the theorem follows.

Numerical Example. Let E be the elliptic curve 79A1 of conductor 79 in
Cremona’s Table. Take p = 3. Consider the false Tate curve extension K∞/K
with K = Q(µ3) and K∞ = Q(µ3∞ ,

⋃
n≥1

m1/3n), where m = 79n for any n such

that 3 does not divide n. Now v3, the unique prime over 3 in K, is a prime of
good, ordinary reduction for E in K and E has non-split multiplicative reduction
at both the primes over 79 in K. By [D-D, Theorem A.37], we get that the dual
Selmer group X(E/Kcyc) is isomorphic to Z3 and also we can deduce that the dual
Selmer group X(E/K∞) has Λ(H) rank 1. Now (0,0) is a point of infinite order of
E(K). Applying [C-S, Proposition 4.9], the Λ(H) rank of the dual fine Selmer group
Y (E/K∞) is strictly less than that of the dual Selmer group X(E/K∞). Since the
later rank is 1, the former rank is zero. Hence Y (E/K∞) is pseudonull as a ΛZp

(G)-
module i.e. conjecture B holds for E. In this case we can take S = {3, 79}. Now
by [H-V] the hypothesis (DimS) is satisfied. Further, the residual representation is
irreducible for p = 3. Hence if we take the Hida family associated to fE , the weight 2
newform in S2(Γ0(79)) corresponding to E, then we see that in a branch of the Hida
family associated to fE , for all but finitely many members g, Conjecture B holds for
Y (Tg/K∞).
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4. Selmer group. We continue with the notation used in Section 2. All the
results in this section for the Selmer groups can be proved in a way entirely analogous
to the corresponding assertions for the fine Selmer groups, and hence we skip all the
proofs.

For a finite extension L of K and each v not lying over p in S, we define

(21) J i
v(Af/L) := ⊕

w|v
Hi(Lw, Af )

and for vp, a prime lying over p,

(22) J i
vp(Af/L) := ⊕

w|vp
Hi(Iw , Af/A

+
f )

for i = 0, 1, 2, where for each prime w in L lying over v, Lw denotes a completion of
L at w, and Iw is the corresponding inertial subgroup and A+

f , as usual, is defined
using the filtration of Af as a GQp

-module which is obtained using the ordinarity of
f at p. For an infinite extension L∞ of K, the definition of J i

v(Af/L∞) extends by
taking the inductive limit of J i

v(Af/L
′) over all finite extension L′ of K contained

in L∞. We now define the Greenberg Selmer group or simply the Selmer group of f
over L/K for the lattice Tf , denoted by S(Af/L), as

Definition 2. S(Af/L) = Ker(H1(KS/L, Af ) −→ ⊕
v∈S

J1
v (Af/L)).

The Pontryagin dual of S(Af/L), denoted by X(Tf/L), is a finitely generated (left)
module over the Iwasawa algebra Of [[G]]. As K/Q is abelian, it is a deep result of
Kato (see [Ka]) that X(Tf/Kcyc) is a finitely generated torsion Of [[Γ]] module. We
state the following hypothesis.

(µ = 0): The dual Selmer group X(Tf/Kcyc) is a finitely generated Of module.

We remark that unlike the case of the fine Selmer group Y (Tf/Kcyc), there are
examples known where X(Tf/Kcyc) is not finitely generated over Zp. However under
the assumption (Irr) and for K = Q, a conjecture of Greenberg [Gr, Conjecture
1.11] asserts that for an elliptic curve E, (µ = 0) holds for X(TpE/Qcyc).

Assume that (µ = 0) holds for X(Tf/Kcyc). Then it is easy to see (similar to
Lemma 2) that the kernel and the cokernel of the map

X(Tf/L)H −→ X(Tf/Kcyc)

are finitely generated Of -modules. Thus using Nakayama’s Lemma and assuming
(µ = 0) hypothesis, we see that X(Tf/L) is a finitely generated ΛOf

(H) module.

Next we define the Selmer group associated to the large Galois representation
(2). Let S be chosen as before. The definition of the Selmer group of the Λ-adic
representation over the admissible p-adic Lie extension L/K, denoted by S(A/L),
is obtained by replacing Af with A in the Definition 2. The Pontryagin dual of
S(A/L), denoted by X (T /L) can be given the structure of an Hord

F [[G]]-module in a
natural way. It can be shown (see [Oc, Proposition 4.9]) that X (T /Kcyc) is a finitely
generated Hord

F [[Γ]] module. The following theorem is essentially due to [E-P-W] and
[Oc]. It can also be proved along the lines of [J-S, Theorem 8].

Theorem 12. The following are equivalent.
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1. There exists ξ0 ∈ Xarith(H
ord
F ) such that (µ = 0) is true for X(Tfξ0/Kcyc).

2. For every ξ ∈ Xarith(H
ord
F ) , (µ = 0) is true for X(Tfξ/Kcyc).

3. X (T /Kcyc) is a finitely generated Hord
F -module.

We assume one of the equivalent conditions of Theorem 12 holds. Again, it is easy to
see that the kernel and the cokernel of the map

X (T /L)H −→ X (T /Fcyc)

are finitely generated Hord
F -modules and hence using Nakayama’s Lemma we see that

X (T /L) is a finitely generated Hord
F [[H]] module. Thus in this case, we know that

both X (T /L)/pξ and X (Tξ/L) are finitely generated modules over Oξ[[H]] for any
arithmetic point ξ.

Recall that for an arithmetic point ξ, we have A[pξ] ∼= Afξ , the discrete lattice asso-
ciated to the eigenform fξ. The control theorem in this case is as follows.

Theorem 13. Assume that the conditions (Nor) and (Irr) hold. Then the
Pontryagin dual of the kernel and the cokernel of the map

S(A[pξ]/L)
sξ
−→ S(A/L)[pξ]

are finitely generated Oξ[[H]] modules for all ξ ∈ Xarith(H
ord
F ) and are in fact Oξ[[H]]

torsion i.e. Oξ[[G]] pseudonull for all but finitely many such ξ.

Remark 14. Note that we do not need to assume that one of the equivalent
conditions of Theorem 12 for proving this control theorem.

Assume that one of the equivalent conditions of Theorem 12 holds. Let dimension
of G is ≥ 2. Then both X (T /L)/pξ and X(Tξ/L) are finitely generated Oξ[[H]]
modules and it is immediate from the above Theorem 13 that for all but finitely
many ξ ∈ Xarith(H

ord
F ), the Oξ[[H]] rank of X (T /L)/pξ and X(Tξ/L) are the same.

Also by Lemma 5, for all but finitely many ξ, the Hord
F [[H]] rank of X (T /L) and the

Oξ[[H]] rank of X (T /L)/pξ are the same. Combining this with Theorem 13, we get
the following result.

Proposition 15. Assume (Nor), (Irr), and K/Q is abelian. Also assume
that (µ = 0) holds for some ξ0 ∈ Xarith(H

ord
F ). Then for all but finitely many ξ ∈

Xarith(H
ord
F ), the Oξ[[H]] rank of X(Tξ/L) are the same with the rank being equal to

the Hord
F [[H]]-rank of X (T /L).

Remark 16. Let K = Q(µp), L = K∞ correspond to the false Tate curve
extension. In this case [Sh] has shown that under the hypothesis of Proposition 15,
the Oξ[[H]] ranks of X(Tξ/L) are the same for all ξ ∈ Xarith(H

ord
F ). He has also

given a numerical example where the above proposition holds for the Hida family
associated to X0(11). However his methods do not seem to generalize easily to a
general admissible p-adic Lie extension.
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