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LUTTINGER SURGERY AND KODAIRA DIMENSION∗

CHUNG-I HO† AND TIAN-JUN LI†

Abstract. In this note we show that the Lagrangian Luttinger surgery preserves the symplectic
Kodaira dimension. Some constraints on Lagrangian tori in symplectic four manifolds with non-
positive Kodaira dimension are also derived.
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1. Introduction. Let (X,ω) be a symplectic 4-manifold with a Lagrangian torus
L. It was discovered by Luttinger in [25] that there is a family of surgeries along L that
produce symplectic 4-manifolds. This family is countable and indexed by the pairs
([γ], k), where [γ] is an isotopy class of simple closed curves on L and k is an integer.
When X = R4 and ω is the standard symplectic form ω0 = dx1 ∧ dy1 + dx2 ∧ dy2, he
also applied Gromov’s celebrated work in [18] to show that, for any Lagrangian torus
L, all the resulting symplectic manifolds are symplectomorphic to (R4, ω0). This does
not occur in general; a Luttinger surgery often fails even to preserve homology. As a
matter of fact, many new exotic small manifolds are constructed via this surgery. In
this note, we observe that the Luttinger surgery preserves one basic invariant:

Theorem 1.1. The Luttinger surgery preserves the symplectic Kodaira dimen-
sion.

The symplectic Kodaira dimension of a symplectic 4-manifold (X,ω) is defined
by the products K2

ω and Kω · [ω], where Kω is the symplectic canonical class; if (X,ω)
is minimal, then

κ(X,ω) =















−∞ K2
ω < 0 or Kω · [ω] < 0

0 K2
ω = 0 and Kω · [ω] = 0

1 K2
ω = 0 and Kω · [ω] > 0

2 K2
ω > 0 and Kω · [ω] > 0

For a general symplectic 4-manifold, the Kodaira dimension is defined as the Kodaira
dimension of any of its minimal models. According to [22], κ(X,ω) is independent of
the choice of symplectic form ω and hence is denoted by κ(X).

Theorem 1.1 is related to a question of Auroux in [5] (see Remarks 3.4 and
4.10). Furthermore, together with the elementary analysis of the homology change,
the invariance of κ implies that

Theorem 1.2. Let (X,ω) be a symplectic 4-manifold with κ(X) = −∞ and
(X̃, ω̃) be constructed from (X,ω) via a Luttinger surgery. Then (X̃, ω̃) is symplecto-
morphic to (X,ω).

For minimal symplectic manifolds of Kodaira dimension zero, i.e., symplectic
Calabi-Yau surfaces, we conclude that the Luttinger surgery is a symplectic CY
surgery. Moreover, together with the homology classification of such manifolds in
[23], we have
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Theorem 1.3. Suppose (X,ω) is a symplectic 4-manifold with κ(X) = 0 and
χ(X) > 0. If (X̃, ω̃) is constructed from (X,ω) under a Luttinger surgery, then X
and X̃ have the same integral homology type.

In fact, we conjecture that X̃ and X in Theorem 1.3 are diffeomorphic to each
other. For symplectic CY surfaces with χ = 0, the only known examples are torus
bundles over torus. We conjecture that they all can be obtained from T 4 via Lutttinger
surgeries (Conjecture 4.9).

Theorems 1.2 and 1.3 provide topological constraints, phrased in terms of topo-
logical preferred framings (see Definition 5.1), on the existence of exotic Lagrangian
tori in such manifolds.

Theorem 1.4. Let L be a Lagrangian torus in (X,ω). If κ(X) = −∞, or L
is null-homologous, κ(X) = 0 and χ(X) > 0, then the Lagrangian framing of L is
topological preferred. In particular, the invariant λ(L) in [13] vanishes whenever it is
defined.

The organization of this paper is as follows. In section 2, the construction of the
Luttinger surgery is reviewed. We also discuss the Lagrangian fibrations as the first
application of this surgery. In section 3, we establish the invariance of the symplectic
Kodaira dimension, which is the main result of this note. In section 4, we prove
Theorems 1.2 and 1.3. In section 5, we apply these two theorems to derive constraints
on framings of Lagrangian tori in symplectic 4-manifolds with non-positive Kodaira
dimension.

We are grateful to the Referee for many useful suggestions which improve the
exposition. The first author would like to thank the following scholars for their in-
sightful discussions and suggestions: Anar Akhmedov, Inanc Baykur, Joel Gomez,
Robert Gompf, Conan Leung, Weiwei Wu and Weiyi Zhang. The second author is
grateful to the support of NSF.

2. Luttinger surgery. In this section, we describe the Luttinger surgery fol-
lowing [6]. Applications to Lagrangian fibrations are also discussed. We assume all
manifolds are oriented.

2.1. Construction. Topologically, Luttinger surgery is a framed torus surgery.
We start with a general description of framed torus surgeries. Let X be a smooth
4-manifold and L ⊂ X an embedded 2-torus with trivial normal bundle. Then let
U be a tubular neighborhood of L. If we assume Y = X − U is the complement of
U , Z = ∂Y = ∂U and g : Z → Z is a diffeomorphism, a new manifold X̃ can be
constructed by cutting U out of X and gluing it back to Y along Z via g:

X̃ = Y ∪g U.(2.1)

Such surgery is called a torus surgery.

It is often more explicit to describe this process via a framing of L.

Definition 2.1. Let X, L, U and Z be given as above. A diffeomorphism
ϕ : U → T 2×D2 is called a framing of L if ϕ−1(T 2× 0) = L. Let π1 : T 2×D2 → T 2

be the projection. For any γ ⊂ L and z ∈ ∂D2, the lift γϕ = ϕ−1(π1(γ)× z) of γ in
Z is called a longitudinal curve of ϕ. Let

∂ϕ : Z → ∂(T 2 ×D2) ∼= T 2 × S1
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be the induced map. Two framings ϕ1, ϕ2 : U → T 2 × D2 are smoothly isotopic to
each other if the map

∂ϕ2 ◦ (∂ϕ1)
−1 : T 2 × S1 → T 2 × S1

is homotopic to the identity map.

∂ϕ induces an S1-bundle structure on Z. A positive oriented fiber µ of Z is called
a meridian of L. For X̃ in (2.1), we will use L̃ to denote the torus L ⊂ U ⊂ X̃. Notice
that L̃ also inherits a framing ϕ̃ and its meridian µ̃ ⊂ Z satisfies

[µ̃] = p[µ] + k[γϕ],

in H1(Z;Z). Here γϕ is a longitudinal curve of ϕ and p, k are coprime integers. The

diffeomorphism type of X̃ only depends on the class [µ̃]. It is called a generalized log-
arithmic transform of X along (L,ϕ, γ) with multiplicity p and auxiliary multiplicity
k, or of type (p, k) (see [17]), and denoted as X(L,ϕ,γ,p,k). For brevity, we will call it
a (p, k)-surgery.

If X is a symplectic 4-manifold, Weinstein’s theorem states that there is a canon-
ical framing for any Lagrangian torus of X .

Definition 2.2. Let X be a symplectic 4-manifoldand and L a Lagrangian torus
of X. A framing ϕ of L is called a Lagrangian framing if ϕ−1(T 2×z) is a Lagrangian
submanifold of X for any z ∈ D2.

Topologically, a Luttinger surgery is a (1, k)-surgery with respect to a Lagrangian
framing. In order to deal with the sympelctic structure, it is more convenient to use
a square neighborhood rather than the disk neighborhood of L as above.

Express the cotangent bundle T ∗T 2 as

{(x1, x2, y1, y2) ∈ R4}/(x1 = x1 + 1, x2 = x2 + 1)

equipped with the canonical 2-form

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2

and let

Ur = {(x1, x2, y1, y2) ∈ T ∗T 2| − r < y1 < r,−r < y2 < r},

There exists a tubular neighborhood U of L and a symplectomorphism ϕ : (U, ω) →
(Ur, ω0) for small r which satisfies

ϕ(L) = T 2 × (0, 0).

In addition, given a simple closed curve γ on L, we can choose the coordinates x1, x2

of T 2 such that

ϕ(γ) = {(x1, 0, 0, 0) | x1 ∈ R/Z}.

Let As,t = Us −Ut (s > t) be an annular region and f : (−r, r) → [0, 1] a smooth
increasing function such that f(t) = 0 for t ≤ − r

3 and f(t) = 1 for t ≥ r
3 . For any

integer k, we can define a diffeomorphism hk:

Ar, r
2

→ Ar, r
2

(x1, x2, y1, y2) 7→

{

(x1 + kf(y1), x2, y1, y2) y2 ≥ r
2

(x1, x2, y1, y2) otherwise
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Observe that

(2.2) h∗
k(ω0) = ω0,

which follows from the relation

(dx1 + kf ′(y1)dy1) ∧ dy1 + dx2 ∧ dy2 = ω0

for y2 ≥ r
2 .

Let XL = X − ϕ−1(U r
2
) and define gk = ϕ−1 ◦ hk ◦ ϕ via the following diagram

XL ⊃ U − ϕ−1(U r
2
)

gk
→ U − ϕ−1(U r

2
) ⊂ U

↓ ϕ ϕ ↓

Ar, r
2

hk→ Ar, r
2

,

then we can construct a new smooth manifold

X̃ := XL ∪gk U.

Notice that, by (2.2), we have g∗k(ω) = ω. Thus X̃ carries a symplectic form ω̃ induced
by ω. This process is called a Luttinger surgery (along the Lagrangian torus L).

y1

y2

x1

y
′

1

y
′

2

x
′

1

We know that

Lemma 2.3. [13] Any two Lagrangian framings of a Lagrangian torus are
smoothly isotopic to each other.

Hence the symplectomorphism type of (X̃, ω̃) only depends on the Lagrangian
isotopy class of L, the isotopy class of γ in L, and the integer k. Therefore, X̃ is also
denoted as X(L, γ, k).

It is worth mentioning that a Luttinger surgery can be reversed. Let L̃, γ̃ be the
subsets ϕ−1(T 2 × (0, 0)) and ϕ−1(R/Z× (0, 0, 0)) of X̃. We can apply the Luttinger
surgery to X(L, γ, k), L̃, γ̃ with coefficient −k to recover X .

2.2. Lagrangian fibrations. One natural source of Lagrangian tori is smooth
fibers of Lagrangian fibrations.

Definition 2.4. Let (X,ω) be a symplectic 4-manifold, and let B be a 2-manifold
(with boundary or vertices). A smooth map π : X → B is called a Lagrangian fibration
if there exists an open dense subset B0 ⊂ B such that π−1(b) is a compact Lagrangian
submanifold of X for any b ∈ B0. X is called Lagrangian fibered if such a structure
exists.

It is easy to see that any smooth fiber of a Lagrangian fibration must be a torus.
Moreover, we have
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Lemma 2.5. A Luttinger surgery along a Lagrangian fiber preserves the La-
grangian fibration structure.

Proof. Let π : X → B be a Lagrangian fibration and L = π−1(b) ⊂ X a
generic fiber. Using notations from section 2.1, it is shown in [28] that there is a
neighborhood Br of b and U = π−1(Br) with local charts ϕ : (U, ω) → (Ur, ω0) and
ϕ0 : Br → Dr = (−r, r)× (−r, r) such that the diagram

U
ϕ

−→ Ur

π ↓ ↓ π0

Br
ϕ0
−→ Dr

commutes. Here π0 is the projection (x1, x2, y1, y2) 7→ (y1, y2).
If X̃ = XL ∪gk U is obtained by performing Luttinger surgery along L (indexed

by γ ⊂ L and k ∈ Z), we can define a map π̃ : X̃ → B as π̃(x̃) = π(x). Since
π0 ◦ hk = π0, we have

π ◦ gk = π ◦ ϕ−1 ◦ hk ◦ ϕ = ϕ−1
0 ◦ π0 ◦ hk ◦ ϕ = ϕ−1

0 ◦ π0 ◦ ϕ = π

So π̃ is well-defined. It is clear that π̃ is Lagrangian and X̃ also possesses a Lagrangian
fibration structure.

Lagrangian fibrations appear widely in toric geometry, integral systems and mirror
symmetry. We will discuss almost toric fibration introduced by Symington in some
detail.

Definition 2.6. An almost toric fibration of a symplectic 4-manifold (X,ω) is
a Lagrangian fibration π : X → B with the following properties: for any critical point
x of π, there exists a local coordinate (x1, x2, y1, y2) near x such that x = (0, 0, 0, 0),
ω = dx1 ∧ dy1 + dx2 ∧ dy2, and π has one of the forms

(x1, x2, y1, y2) →







(x2
1 + y21 , x

2
2 + y22)

(x2
1 + y21 , x2)

(x2
1 − y21 , x2)

An almost toric 4-manifold is a symplectic 4-manifold equipped with an almost toric
fibration.

The base B of an almost toric fibration has an affine structure with boundary
and vertices. Moreover, these three types of critical points project to vertices, edges
and interior of B respectively. Almost toric fibrations are classified by Leung and
Symington:

Theorem 2.7. [24] Let (X,ω) be a closed almost toric 4-manifold. There are
seven types of almost toric fibrations according to the homeomorphism type of the base
B.

1. CP2♯nCP2 or S2 × S2, B is (homeomorphic to) a disk;
2. (S2 × T 2)♯nCP2 or (S2×̃T 2)♯nCP2, B is a cylinder;
3. (S2 × T 2)♯nCP2 or (S2×̃T 2)♯nCP2, B is a Möbius band;
4. the K3 surface, B is a sphere;
5. the Enriques surface, B is RP2;
6. a torus bundle over torus with monodromy

{

I,

(

1 m
0 1

)}

,m ∈ Z

B is a torus;



304 C.-I HO AND T.-J. LI

7. a torus bundle over the Klein bottle with monodromy

{(

1 0
0 −1

)

,

(

1 m
0 1

)}

,m ∈ Z

B is a Klein bottle.

An immediate consequence of this classification is the calculation of the symplectic
Kodaira dimension.

Proposition 2.8. If (X,ω) → B is an almost toric fibration, then κ(X) ≤ 0.
Moreover, κ(X) = 0 if and only if the base B is closed.

The effect of Luttinger surgeries on almost toric fibrations is also easy to describe.

Proposition 2.9. Suppose (X,ω) → B is an almost toric fibration and (X̃, ω̃) is
obtained from (X,ω) by performing a Luttinger surgery along a smooth fiber L, then
(X̃, ω̃) retains an almost toric fibration structure with the same base. Moreover, X̃ is
diffeomorphic to X if χ(X) > 0.

Proof. The first statement is given by Lemma 2.5. If χ(X) > 0, X and X̃ are
in one of the types 1–5 in Theorem 2.7. In each of them, the list of manifolds are
distinguished by the type of intersection forms and Euler numbers. So the second
result for types 1–3 follows from Proposition 4.4 and the fact that homology classes
of Lagrangian tori in manifolds with b+ = 1 are torsion. It is clear for 4 and 5 from
the classification.

Propositions 2.8 and 2.9 provide examples of Luttinger surgeries preserving the
symplectic Kodaira dimension. In the next section, we will show that it is true for
any Luttinger surgery.

3. Preservation of Kodaira dimension. In this section, we prove Theorem
1.1. To proceed, we must first prove the invariance of minimality under Luttinger
surgery.

3.1. Minimality. A symplectic (smooth) −1 class is a degree 2 homology class
represented by an embedded symplectic (smooth) sphere with self-intersection −1. A
symplectic 4-manifold is called symplectically (smoothly) minimal if it does not have
any symplectic (smooth) −1 class. The symplectic minimality is actually equivalent
to smooth minimality.

Proposition 3.1. The Luttinger surgery preserves the minimality.

Proof. Since a Luttinger surgery can be reversed and the reverse operation is also
a Luttinger surgery, it suffices to show that, if we start with a non-minimal symplectic
4-manifold, then after a Luttinger surgery, the resulting symplectic manifold is still
non-minimal. But this is a direct consequence of the following fact in [37]:

Theorem 3.2. Given a Lagrangian torus L and a symplectic −1 class, there is
an embedded symplectic −1 sphere in that class which is disjoint from L.

3.2. Kodaira dimension. Now, we analyze the effect of Luttinger surgery on
the symplectic canonical class Kω and the symplectic class [ω]. Recall that XL is an
open submanifold of both X and X̃, and let ν : XL → X and ν̃ : XL → X̃ be the
inclusions.
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To prepare for the following lemma, we use the notations from section 2.1. For
the sake of simplicity, we will identify any object in X with their image of ϕ and
(x1, x2, y1, y2), (x

′
1, x

′
2, y

′
1, y

′
2) will denote the coordinates of Ar, r

2
on XL and U re-

spectively.

Lemma 3.3. There exists a 2-dimensional submanifold S ⊂ XL such that
ν∗([S]) = PD(Kω) ∈ H2(X) and ν̃∗([S]) = PD(Kω̃) ∈ H2(X̃).

Proof. Let J be a ω-tamed almost complex structure in X which induces a
complex structure on T ∗U as

J(dx1) = −dy1, J(dx2) = −dy2

Assume ρ : (−r, r) → [0, 1] is a continuous increasing function satisfying

ρ(t) =

{

0 t ≤ 0
1 t > r

3 .

Another almost complex structure J ′ in T ∗U is defined as

J ′(dx′
1) = −kf ′(y1)ρ(y2)dx

′
1 − (k2f2(y1)ρ(y2) + 1)dy′1, J ′(dx′

2) = −dy′2

It is easy to check that J ′ is ω-tamed and (gk)∗(J) = J ′ in XL ∩ U .
Let π : L → X and π̃ : L̃ → X̃ be the canonical bundles of X and X̃ , respectively,

and let s : X → L and s̃ : X̃ → L̃ denote the corresponding embeddings of zero
sections. Since L is trivial on U , we can find a global section σ of L and a Thom class
Φ ∈ H2

cv(L) such that σ = (dx1 + idy1) ∧ (dx2 + idy2) in XL ∩ U and Φ = 0 in s(U).
Another nonzero (2, 0)-form in U is constructed as

σ′ = (dx′
1 + iJ ′(dx′

1)) ∧ (dx′
2 + iJ ′(dx′

2))

In XL ∩ U , we have

g∗k(σ
′)

= g∗k((dx
′
1 + iJ ′(dx′

1)) ∧ (dx′
2 + iJ ′(dx′

2)))

= g∗k((dx
′
1 + i(−kf ′(y1)ρ(y2)dx

′
1 + (k2f ′2(y1)ρ(y2) + 1)dy′1) ∧ (dx′

2 + idy′2))

= (dx1 + kf ′(y1)dy1 + i(−kf ′(y1)dx1 + dy1)) ∧ (dx2 + idy2)

= (1− ikf ′(y1))(dx1 + idy1) ∧ (dx2 + idy2)

= (1− ikf ′(y1))σ

σ and σ′ give two local trivializations of π̃−1(XL ∩ U) with transition function
θ = 1− ikf ′(y1). Since −

π
2 < arg(θ) < π

2 , we can normalize the frame of π̃−1(U) such

that θ = 1. Hence Φ |π−1(XL) can be extended to L̃ via constant function and form a

Thom class Φ̃ satisfying
1. Φ̃ = Φ in L |XL

∼= L̃ |XL
(= π−1(XL)).

2. Φ̃ is independent of the coordinates (x′
1, x

′
2, y

′
1, y

′
2) in π̃−1(U). In particular,

Φ̃ = 0 in s̃(U).
It is clear that these 2-forms e = s∗(Φ) and ẽ = s̃∗(Φ̃) are equivalent in XL and

vanish in U ⊂ X and U ⊂ X̃ respectively. Using these representations, we can find
a 2-submanifold S ⊂ supp(e) ⊂ XL which is Poincaré dual to Kω in X , and dual to
Kω̃ in X̃.
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The main theorem can be proved now.

Proof of Theorem 1.1. Suppose X̃ is obtained from X by applying a Luttinger
surgery along L. Let us first consider the case in which X is minimal. By Proposition
3.1, X̃ is also minimal. Let Kω and Kω̃ denote the canonical classes of X and X̃
respectively. By Lemma 3.3, there exists a submanifold S ⊂ XL such that ν∗([S]) =
PD(Kω) and ν̃∗([S]) = PD(Kω̃). We also know that ω = ω̃ in XL. So

K2
ω =

∫

S

Kω =

∫

S

Kω̃ = K2
ω̃

Kω · [ω] =

∫

S

ω =

∫

S

ω̃ = Kω̃ · [ω̃]

Thus the Kodaira dimensions of X and X̃ coincide.
If X is not minimal, we can blow down X along symplectic −1 spheres disjoint

from L to a minimal model. These spheres are contained in XL and the same proce-
dure can be applied to X̃, so we can argue as above.

Theorem 1.1 can be used to distinguish non-diffeomorphic manifolds. In [1, 2, 3,
4, 9, 14], several symplectic manifolds homeomorphic but not diffeomorphic to non-
minimal rational surfaces are constructed. With κ = 2 for the building blocks, it also
easily follows from Theorem 1.1 that they are exotic.

Remark 3.4.

1. The main theorem is proved based on the invariance of Kω · [ω] and K2
ω.

Actually, the class [ω]2 is also preserved since the volume is invariant under
a Luttinger surgery. Theorem 1.1 is expected, in light of Auroux’s Question
2.6 in [5]:

Let X1, X2 be two integral compact symplectic 4-manifolds with the
smae (K2, χ,K · [ω], [ω]2). Is it always possible to obtain X2 from X1 by a
sequence of Luttinger surgeries?

2. It is well known that the Dolgachev surfaces S(p, q) obtained by performing
two logarithmic transforms with multiplicities p > 1, q > 1 to CP2♯9CP2 have
κ = 1. So a generalized logarithmic transform may not preserve κ (see a
related discussion in [10]).

4. Manifolds with non-positive κ. In this section we apply Theorem 1.1 to
study the effect of Luttinger surgeries on symplectic 4-manifolds with κ ≤ 0.

4.1. Torus surgery and homology. We start by analyzing how homology
changes under a general torus surgery. Suppose X is a smooth 4-manifold and L ⊂ X
is an embedded 2-torus with trivial normal bundle. Moreover, U, Y, Z, g, X̃ are defined
as in section 2.1.

4.1.1. To compare the homology of X and X̃, we need to compare both of them
with the homology of Y . The inclusion i : Z → Y induces homomorphisms

iZk : Hk(Z;Z) → Hk(Y ;Z)(4.1)
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and

iQk : Hk(Z;Q) → Hk(Y ;Q)(4.2)

in homology. We often use ik to denote iQk and Hk(−) to denote Hk(−,Q). We also
use r(A) to denote the dimension of any Q-vector space A.

The following lemma is a well know fact, for which we offer a geometric argument.

Lemma 4.1. [µ] ∈ ker i1 if and only if [L] 6= 0 in H2(X).

Proof. Suppose i1[µ] = 0 in H1(Y ), i.e. l iZ1 [µ] = 0 in H1(Y ;Z) for some positive
integer l. Thus l copies of µ bounds an oriented surface A in Y . Extend A by l
normal disks inside the tubular neighborhood to obtain a closed oriented surface A′

intersecting with L at l points with the same sign. This implies in particular that
[L] 6= 0 in H2(X).

Conversely, suppose [L] 6= 0 in H2(X), then there exists a closed oriented surface
B in X intersecting L with nonzero algebraic intersection numbers, say l. We may
assume that the intersection is transverse with l+ b positive intersection points and b
negative intersection points. We can further assume that B intersects the closure of
U at l + 2b normal disks, l + b of those having positive orientations, the remaining b
disks having negative orientations. This implies that the complement of those disks
in B is an oriented surface in Y , whose boundary is homologous to lµ, and thus i1[µ]
is zero.

When we consider the integral homology, Lemma 4.1 immediately implies

Corollary 4.2. If [L] = 0 in H2(X ;Z), then iZ1 [µ] is a non-torsion class in
H1(Y ;Z).

Consider the Mayer-Vietoris sequence

(4.3) · · ·
∂k+1

−→ Hk(Z)
ρk
−→ Hk(Y )⊕Hk(U)

νk−→ Hk(X)
∂k−→ Hk−1(Z)

ρk−1

−→ · · ·

where ρk = (ik, jk) and νk = ν′k ⊕ (−ν′′k ) with ik, jk, ν
′
k, ν

′′
k induced by inclusions.

Lemma 4.3.

1. ∂1 = 0 and ν′1 : H1(Y ) → H1(X) is surjective.
2.

r(Imρ1) =

{

3 if i1[µ] 6= 0
2 if i1[µ] = 0

and ρ1 is injective if and only if [µ] /∈ ker i1.
3.

(4.4) H1(X ;Z) ∼= H1(Y ;Z)/ < iZ1 [µ] >

4. If [L] = 0 ∈ H2(X), then ν′2 : H2(Y ) → H2(X) is surjective.

Proof.
1. It is clear that any class a in H1(X ;Z) can be represented by a 1-cycle C

disjoint from L. C is also disjoint from Z if the neighborhood U is small
enough. So ∂1a = [C ∩ Z] = 0. C ⊂ Y implies that ν′1 is surjective.
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2. We know ker ρ1 = ker i1 ∩ ker j1 ⊂ ker j1. Since ker j1 =< [µ] >,

kerρ1 =

{

0 if i1[µ] 6= 0
< [µ] > if i1[µ] = 0

and ρ1 is injective if and only if i1[µ] 6= 0. The rank of Imρ is given from
r(Imρ1) = r(H1(Z))− r(ker ρ1).

3. The sequence (4.3) induces a short exact sequence

0 → H1(Y ;Z)⊕H1(U ;Z)/ ker ν1 → H1(X ;Z) → Im∂1 → 0

∂1 = 0 implies that

H1(Y ;Z)⊕H1(U ;Z)/ ker ν1 ∼= H1(X ;Z)

Because ν′1 is surjective, we also have

H1(X ;Z) = H1(Y ;Z)/ ker ν′1

If {[µ], γ1, γ2} is a basis of H1(Z;Z), then Imρ1 =< ([µ], 0), (γ1, γ1), (γ2, γ2) >
and γ1, γ2 6= 0 ∈ H1(U ;Z). For a ∈ H1(Y ;Z), a ∈ ker ν′1 if and only if
(a, 0) ∈ ker ν1 =Imρ1, or a = kiZ1 [µ] for some k ∈ Z. So ker ν′1 =< iZ1 [µ] >
and

H1(X ;Z) = H1(Y ;Z)/ < iZ1 [µ] >

4.

[L] = 0 ∈ H2(X) ⇔ [µ] 6= 0 ∈ H1(Y ) (by Lemma 4.1)
⇔ ρ1 injective (by part 2)
⇔ ∂2 = 0 (exactness)
⇔ ν2 surjective (exactness)

Since [L] = 0 also implies ν′′2 = 0, ν′2 has to be surjective.

All the results hold if we replace X , L, µ by X̃, L̃ and µ̃. Now, we are ready to
compare X and X̃.

4.1.2. Comparing H∗(X) and H∗(X̃). Lemma 4.3, applied to torus surgeries,
gives

Proposition 4.4. If X̃ is obtained from X via a torus surgery, then
1. χ(X̃) = χ(X), σ(X̃) = σ(X).
2.

b1(X̃)− b1(X) =







0 if i1[µ] = 0 = i1[µ̃] or i1[µ] 6= 0 6= i1[µ̃]
−1 if i1[µ] = 0 and i1[µ̃] 6= 0
1 if i1[µ] 6= 0 and i1[µ̃] = 0

3. |b1(X̃)− b1(X)| ≤ 1 and |b2(X̃)− b2(X)| ≤ 2.

Proof.
1. Obvious.
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2. Since ∂1 = 0, we can conclude that

b1(X) = b1(Y ) + 2− r(Imρ1) =

{

b1(Y )− 1 if i1[µ] 6= 0
b1(Y ) if i1[µ] = 0.

The same is true for b1(X̃) with i1[µ] replaced by i1[µ̃]. The proof is finished
by comparing b1(X) and b1(X̃).

3. The first inequality is given by part 2. The second inequality follows from
part 1 and the first inequality.

The next result concerns with the intersection forms.

Proposition 4.5. Suppose X and X̃ are defined as above. If [L] is a torsion
class in H2(X ;Z) and the intersection form Q(X) is odd, then Q(X̃) is odd as well.
In particular, if both [L] and [L̃] are torsion, then X̃ and X have the same intersection
form.

Proof. Since Q(X) is odd, there exists a closed oriented surface S in X such that
S ·S is odd. By Lemma 4.3 part 4, [S] ∈ Imν′2 and S can be chosen such that S ⊂ Y .
Thus, S is contained in X̃, and hence, Q(X̃) is also odd.

4.2. κ = −∞. By Proposition 2.9, if a symplectic manifold (X,ω) with κ(X) =
−∞ has an almost toric structure π : X → B and if we apply a Luttinger surgery
along a smooth fiber of π, the new manifold (X̃, ω̃) is diffeomorphic to (X,ω). Such
phenomenon is still true for any 4-manifold with κ = −∞. Moreover, we have the
stronger Theorem 1.2.

Proof of Theorem 1.2. Proposition 3.1 allows us to reduce to the case where
(X,ω) is minimal.

We first show that X̃ is diffeomorphic to X . Observe that the diffeomorphism
types of minimal manifolds with κ = −∞ are distinguished by their Euler numbers
and intersection forms. Since such manifolds have b+ = 1, the homology classes of
Lagrangian tori are torsion. Thus, both quantities are preserved by Proposition 4.4
and 4.5.

To show further that (X̃, ω̃) and (X,ω) are symplectomorphic to each other, it is
enough to show that ω is cohomologous to ω̃ ([26]). If X is diffeomorpic to CP2, the
symplectic structure is determined by the volume [ω]2, which is preserved by Remark
3.4 part 1.

When X is ruled, H2(X) is either generated by Kω and the Poincaré dual to
the homology class of a fiber F = S2, or by Kω and [ω]. Hence the class of ω is
determined by Kω · [ω], [ω]2 and [ω](F ). As mentioned above, the first two quantities
are preserved. By [37] the fiber sphere can be chosen to be disjoint from L, so it
follows that the last quantity is also preserved.

4.3. Luttinger surgery as a symplectic CY surgery. A symplectic CY
surface is a symplectic 4-manifold with torsion canonical class, or equivalently, a
minimal symplectic 4-manifold with κ = 0.

By Theorem 1.1 and Proposition 3.1, we have

Proposition 4.6. A Luttinger surgery is a symplectic CY surgery in dimension
four.

There is a homological classification of symplectic CY surfaces in [23] and [7].
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Theorem 4.7. A symplectic CY surface is an integral homology K3, an integral
homology Enriques surface or a rational homology torus bundle over torus.

The following table lists possible rational homological invariants of symplectic CY
surfaces [23]:

b1 b2 b+ χ σ known manifolds
0 22 3 24 -16 K3
0 10 1 12 -8 Enriques surface
4 6 3 0 0 4-torus
3 4 2 0 0 T 2−bundles over T 2

2 2 1 0 0 T 2−bundles over T 2

Proof of Theorem 1.3. It follows from Propositions 4.4, 4.6, Theorem 4.7 and the
table above.

It is also speculated that a symplectic CY surface is diffeomorphic to the K3
surface, the Enriques surface or a torus bundle over torus. Thus we make the following

Conjecture 4.8. If X is a K3 surface, or an Enriques surface, then under a
Luttinger surgery along any embedded Lagrangian torus, X̃ is diffeomorphic to X.

As for torus bundles over torus, we have

Conjecture 4.9. Any smooth oriented torus bundle X over torus possesses a
symplectic structure ω such that (X,ω) can be obtained by applying Luttinger surgeries
to (T 4, ωstd).

In the list of torus bundles over torus in [15], any manifold in classes (a), (b) and
(d) has a Lagrangian bundle structure. For any such manifold, it is not hard to verify
Conjecture 4.9 via Luttinger surgery along Lagrangian fibers.

Remark 4.10.

1. Conjectures 4.8 and 4.9 are clearly related to Question 2.6 in [5].
2. There is another symplectic CY surgery in dimension six, the symplectic

conifold transition. If (M6, ω) with Kω = 0 contains disjoint Lagrangian
spheres S1, ..., Sn with homology relations generated by

∑n
i=1 λi[Si] = 0 with

all λi 6= 0, Smith, Thomas, Yau ([32]) construct from (M6, ω) a new sym-
plectic manifold (M ′, ω′) with Kω′ = 0 and smaller b3.

3. We notice that there is a parametrized Luttinger surgery in higher dimension
and believe it also should be a symplectic CY surgery. This will be discussed
elsewhere.

5. Topological preferred framing and Lagrangian framing. In this sec-
tion, we will introduce topological preferred framings and compare them with the
Lagrangian framing for Lagrangian tori in κ ≤ 0 symplectic 4-manifolds.

Suppose X is a smooth 4-manifold and L ⊂ X is an embedded 2-torus with trivial
normal bundle. Recall that a framing is a diffeomorphism ϕ : U → T 2 × D2 for a
tubular neighborhood U of L such that ϕ−1(T 2 × 0) = L and a longitudinal curve of
ϕ is a lift γϕ of some simple closed curve γ ⊂ L in Z. Let

H1,ϕ :=< [γϕ]|γϕ : longitudinal curve of ϕ >

H1,ϕ is a subgroup of H1(Z;Z) and it induces a decomposition of H1(Z;Z):

H1(Z;Z) =< [µ] > ⊕H1,ϕ.
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Conversely, any rank 2 subgroup V ofH1(Z;Z) such that [µ] and V generateH1(Z;Z)
corresponds to a framing of L.

In [25], Luttinger introduced a version of topological preferred framings of La-
grangian tori in R4. It requires that H1,ϕ is in the kernel of iZ1 . On the other hand,
Fintushel and Stern ([13]) defined null-homologous framings for a null-homologous
torus via iZ2 (seemingly, under the assumption that H1(X ;Z) vanishes, though not
explicitly mentioned).

The following definition is essentially the same as in [13], but without assuming
that H1(X ;Z) vanishes.

Definition 5.1. Suppose L is null-homologous, i.e., [L] = 0 in H2(X ;Z). A
framing ϕ is called a topological preferred framing if [Lϕ] ∈ ker iZ2 . Here, Lϕ ⊂ Z is a
longitudinal torus of ϕ given by ϕ−1(T 2 × z), z ∈ ∂D2.

There is the following generalization when [L] is a torsion class in H2(X ;Z).

Definition 5.2. Assume [L] is a torsion class in H2(X ;Z). A framing ϕ is
called a rational topological preferred framing if [Lϕ] ∈ ker iQ2 .

When L is null-homologous, it is clear that a topological preferred framing is also
a rational topological preferred framing.

5.1. Comparing ker i1 and ker i2. In order to compare various preferred fram-
ings and the Lagrangian framing, we need to investigate the relation of the maps i1
and i2 given by (4.1) and (4.2). Let Y be a smooth oriented 4-manifold with boundary
Z = T 3.

Lemma 5.3. The maps i1 and i2 satisfy the following properties
1. r(ker i1) + r(ker i2) = 3.
2. With the pairing

H1(Z)×H2(Z) → H0(Z) ∼= Q,

given by the cap product, ker i2 and ker i1 annihilate each other:

ker i2 = ann(ker i1) := {c ∈ H2(Z)|a · c = 0 ∈ H0(Z) for any a ∈ ker i1}

and ker i1 = ann(ker i2).
3. r(ker i1) > 0.

Proof.
1. Consider the exact sequence

· · ·
∂2−→ H2(Z)

i2−→ H2(Y )
δ2−→ H2(Y, Z)

∂1−→ H1(Z)
i1−→ H1(Y )

δ1−→ · · ·

It induces a short exact sequence

(5.1) 0 −→ H2(Y )/Imi2
ν2−→ H2(Y, Z)

∂1−→ Im∂1 = ker i1 −→ 0

By Lefschetz duality and universal coefficient theorem,

H2(Y, Z) ∼= H2(Y ) ∼= H2(Y )

and r(H2(Y, Z)) = r(H2(Y )). So (5.1) implies that

r(ker i1) = r(Imi2) = r(H2(Z))− r(ker i2)

which is part 1.
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2. Consider the dual pairing

H1(Y ) × H1(Y ) → H0(Y )
↑ i1 ↓ j ↑∼=

H1(Z) × H1(Z) → H0(Z)

Because the maps i1 and j are induced by embedding and restriction, this
pairing is natural, i.e., for a ∈ H1(Z) and α ∈ H1(Y ),

< i1(a), α >=< a, j(α) >

There is an isomorphism of long exact sequences induced naturally by Lef-
schetz and Poincaré dualities:

· · · −→ H1(Y,Z) −→ H1(Y ) −→ H1(Z)
j

−→ H2(Y,Z) −→ · · ·

↓ ∩[Y ] ↓ ∩[Y ] ↓ ∩[Z] ↓ ∩[Y ]

· · ·
i3
−→ H3(Y )

δ3
−→ H3(Y,Z)

∂2
−→ H2(Z)

i2
−→ H2(Y )

δ2
−→ · · ·

Using this diagram, the dual pairing induces the intersection pairing:

↓
H3(Y )

↓
H1(Y ) × H3(Y, Z) → H0(Y )
↑ i1 ↓ ∂ = ∂2 ↑∼=

H1(Z) × H2(Z) → H0(Z)
↓ i2

H2(Y )
↓

Given z2 ∈ ker i2, there exists z3 ∈ H3(Y, Z) such that ∂z3 = z2. Let β be
the Lefschetz dual of z3 in H1(Y ). For any z1 ∈ ker i1,

z1 · z2 = z1 · ∂z3 = i1(z1) · z3 =< i1(z1), β >= 0

It shows that ker i2 ⊂ ann(ker i1). From part 1,

r(ann(ker i1)) = r(H2(Z))− r(ker i1) = r(ker i2).

So ker i2 = ann(ker i1). Similar argument shows that ker i1 = ann(ker i2).
3. Suppose r(ker i1) = 0, then r(ker i2) = 3 and i2 is the zero map by part 1.

Let T1, T2 be two nonisotopic embedded tori in Z intersecting in a curve C
transversely. Since Z = T 3, [T1] ∩ [T2] = [C] 6= 0 in H1(Z). Meanwhile, each
Ti bounds a 3-manifold Wi in Y . W1 ∩ W2 is a 2-cycle whose boundary is
C and [C] is in the kernel of i1, which contradicts the assumption that i1 is
injective.

Here is a geometric interpretation of this lemma. Assume z2 is an integral class
of ker i2 and C is a closed curve in Z such that [C] · z2 6= 0 in Z. There exists
a relative 3-cycle W in (Y, Z) such that [∂W ] = z2. In particular, we can assume
that W intersects Z transversely and ∂W intersects C transversely at a1, · · · , ap and
b1, · · · , bn in Z with positive and negative intersections respectively. Furthermore, we
can give a collar structure V ∼= Z × [0, ǫ) near Z and assume W ∩ V = ∂W × [0, ǫ). If
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we push C to C′ = C × ǫ
2 in the interior of Y , then C′ and W intersect transversely

at a1 ×
ǫ
2 , · · · , ap ×

ǫ
2 and b1 ×

ǫ
2 , · · · , bn × ǫ

2 with positive and negative intersections
respectively. Hence [C′] = i1([C]) and

[C′] · [W ] = [C] · [∂W ] = p− n = [C] · z2 6= 0

So [C] can not be in ker i1.

Remark 5.4.

1. Part 1 of Lemma 5.3 is still true in arbitrary dimension. If Y is a (n + 1)-
dimensional manifold with connected boundary Z and ik : Hk(Z) → Hk(Y )
denotes the homomorphism induced by the inclusion Z → Y , then

r(ker ik−1) + r(ker ik) = r(Hk(Z))

for 2 ≤ k ≤ n− 1.
2. Part 3 of Lemma 5.3 is pointed out by Robert Gompf.

In the following, we give examples to illustrate Lemma 5.3 according to r(ker i1).
1. Let K0 be the trivial knot in S3 and X = S1 × S3. The complement of the

torus L = S1 ×K0 is

Y = S1 × (S3 −K0) ∼= S1 × (S1 ×D2)

If t,m denote the isotopy classes of these two S1 and l = ∂D2, thenH1(Z) =<
[t], [m], [l] > and ker i1 has rank 1 which is generated by [l]. On the other
hand, ker i2 is generated by [l × t], [l ×m] and has rank 2.
In general, if K is any knot in S3 and S is a Seifert surface with boundary K,
we can define t and m as above and choose l as the push-off of K in S. Then
Y and T 2×D2 have isomorphic homology groups and ker i1 is still generated
by l, which bounds the surface S. Similarly, ker i2 has rank 2 and is generated
by [l × t], [l ×m]. They bound S1 × S and {pt} × (S3 −K) respectively. In
[12], Fintushel and Stern use these manifolds as building blocks to define knot
surgery in 4-manifolds.
In the next example, the results of Lemma 5.3 are not obvious. Let π : X →
Σg be a ruled surface and the loop γ ⊂ X be a lift of a loop in Σg. We can
construct a torus L in X as the product of γ and some circle b in the fiber. If
µ ⊂ Z is a meridian of L and π(γ) is nontrivial in π1(Σg), it is easy to show
that ker i1 is generated by a push-off of b. But ker i2 is not obvious even when
X = S2 × Σg is the trivial bundle. By Lemma 5.3, we know that ker i2 has
rank 2 and is generated by [µ× b] and [µ× γ].

2. Let L = a× b be the Clifford torus embedded in the rational manifold X =
CP2. The group H1(Z) is generated by [a], [b] and the meridian [µ]. It is easy
to show that ker i1 =< [a], [b] > has rank 2 and ker i2 =< [a× b] >.
In general, if X is simply connected and L ⊂ X is a torus with trivial normal
bundle, then r(ker i1) = 2 if and only if [L] = 0 in H2(X).

3. If r(ker i1) = 3, it follows from Proposition 4.4 that any torus surgery along
L will not change the homology.

There are similar results for Lemma 5.3 over Z if we consider r(·) as the rank of
abelian groups. In particular, the following lemma is the analogue of 5.3 part 2.

Lemma 5.5. With the pairing

H1(Z;Z)×H2(Z;Z) → H0(Z;Z) ∼= Z,
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given by the cap product, ker iZ2 annihilates ker iZ1 :

ker iZ2 ⊂ annZ(ker i
Z
1) = {c ∈ H2(Z;Z)|a · c = 0 ∈ H0(Z;Z) for any a ∈ ker iZ1}.

Proof. By Lemma 5.3 part 2, ker iQ1 = ann(ker iQ2 ). If H1(Z;Z) is considered as

the integral elements of H1(Z;Q), then ker iQ1 = ker iZ1 ⊗ Q and ker iZ1 ⊂ ker iQ1 . So

ker iZ1 ⊂ ann(ker iQ2 ) = ann(ker iZ2).

5.2. Preferred framings via ker i1. Now we characterize topological preferred
framings via i1. We first consider the rational ones.

Proposition 5.6. Assume [L] = 0 in H2(X ;Q) and ϕ is a framing of L. Then
ϕ is a rational topological preferred framing if and only if ker iQ1 ⊂ H1,ϕ ⊗Q.

Proof.

ϕ is a rational topological preferred framing

⇔ [Lϕ] ∈ ker iQ2

⇔ < [Lϕ] >⊂ ker iQ2

⇔ ann(< [Lϕ] >) ⊃ ann(ker iQ2 )

⇔ ker iQ1 ⊂ H1,ϕ ⊗Q. (Lemma 5.3)

In the integral cases, we have

Proposition 5.7. Suppose L is null-homologous and ϕ is a framing of L. Then
1. L has topological preferred framings, and
2. ker iZ1 ⊂ H1,ϕ if ϕ is a topological preferred framing.

Proof.
1. Since [L] = 0 in H2(X ;Z), there exists a 3-chain W such that ∂W = L.

We can assume that W intersects Z transversely. In fact, we can choose
a framing ϕ : U → T 2 × D2 such that W ∩ U = ϕ−1(T 2 × Sx), where
Sx = {(x, 0) ∈ D2|x ≥ 0}. Then W ∩ Z = ϕ−1(T 2 × (1, 0)) is a longitudinal
torus of ϕ and W ∩ Y is a relative 3-cycle of (Y, Z) with ∂(W ∩ Y ) = W ∩Z.
So [W ∩ Z] ∈ ker iZ2 and ϕ is a topological preferred framing.

2. [Lϕ] ∈ ker iZ2 implies that annZ([Lϕ]) ⊃ annZ(ker i
Z
2 ). It is easy to observe

that annZ(< [Lϕ] >) = H1,ϕ. By Lemma 5.5,

ker iZ1 ⊂ annZ(ker i
Z
2 ) ⊂ annZ([Lϕ]) = H1,ϕ.

If [L] is torsion in X , Proposition 5.7 part 1 may fail in two situations. First,
there may exist a ∈ H1(Z;Z) such that a /∈ ker iZ1 but ka ∈ ker iZ1 for some nonzero
integer k. So we can only define rational topological preferred framings. Second, [µ]
and ker iZ1 might not generate the group H1(Z;Z). In this case, rational topological
preferred framings also do not exist.

Remark 5.8.

1. In knot theory, the notion of preferred framings is similar to that of Definition
5.1. Let M be an integral homology 3-sphere and K ⊂ M be a knot. If V is
a tubular neighborhood of K, a diffeomorphism h : S1 × D2 → V satisfying
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h(S1 × 0) = K is called a framing of K. Furthermore, h is called a preferred
framing if h(S1 × a) is homologically trivial in M − V . For any knot K in
M , preferred framings exist and are unique up to isotopy ([30]).

2. It is easy to see from Proposition 5.7 that Luttinger’s definition coincides with
Definition 5.1 when X = R4.

3. In [13], an invariant λ(L) is defined when [L] = 0 and L has a unique topolog-
ical preferred framing ϕ0. Assume ϕLag is the Lagrangian preferred framing.
Then ϕLag = ϕ0 if and only if λ(L) = 0. Otherwise, λ(L) is the smallest
positive integer k such that k[µ] + [γϕ] ∈ H1,ϕLag

for some [γϕ] ∈ H1,ϕ0
.

5.3. (1, k)-surgeries and topological preferred framings. The following
proposition relates rational topological preferred framings and (1, k)-surgeries.

Proposition 5.9. Suppose X is a smooth 4-manifold and L ⊂ X is a torus with
trivial normal bundle such that [L] = 0 in H2(X ;Q) and ϕ is a framing of L. Let
X̃ = X(L,ϕ,γ,1,k) be constructed from X via (1, k)-surgery along (L,ϕ, γ).

1. If ϕ is a rational topological preferred framing of L, then X̃ satisfies

r(H1(X̃)) = r(H1(X))

for any γ and k.
2. If H1(X̃;Z) ∼= H1(X ;Z) for any γ and k, then ϕ is a rational topological

preferred framing of L.

Proof.
1. By Lemma 4.3 part 3, we have

r(H1(X)) =

{

r(H1(Y ))− 1 if i1[µ] 6= 0
r(H1(Y )) if i1[µ] = 0.

Lemma 4.1 implies that i1[µ] 6= 0 in H2(Y ). Since ϕ is a rational topological
preferred framing, Proposition 5.6 implies that [µ] + k[γϕ] /∈ ker i1 for any
integer k and [γϕ] ∈ H1,ϕ. So

r(H1(X̃)) = r(H1(Y ))− 1 = r(H1(X))

if X̃ is given via (1, k)-surgery.
2. We first prove that any a ∈ ker iZ1 lies in H1,ϕ. Let a = s[µ] + t[γϕ] for some

s, t ∈ Z and γ ⊂ L (Recall that γϕ is a lift of γ). For X̃ = X(L,ϕ,γ,1,kt), the

meridian of L̃ in X̃ satisfies

(5.2) [µ̃] = [µ] + kt[γϕ] = [µ] + k(a− s[µ]) = (1− sk)[µ] + ka

So
H1(X̃;Z) = H1(Y ;Z)/ < iZ1 ((1− sk)[µ] + ka) > (by (4.4))

= H1(Y ;Z)/ < iZ1 ((1− sk)[µ]) > (a ∈ ker iZ1 )
∼= H1(Y ;Z)/ < iZ1 [µ] >

Because [µ] is essential in Y and k is arbitrary, s should be zero and a ∈ H1,ϕ.
Otherwise, H1(X ;Z) has infinitely many torsion classes with different orders.
Tensoring with Q, we have

ker i1 = ker iZ1 ⊗Q ⊂ H1,ϕ ⊗Q

By Proposition 5.6, ϕ is a rational topological preferred framing.
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For integral cases, we have

Proposition 5.10. Suppose H1(X ;Z) has no torsion and L is null-homologous.
Then a framing ϕ of L is a topological preferred framing if and only if H1(X̃ ;Z) ∼=
H1(X ;Z) for any X̃ = X(L,ϕ,γ,1,k) obtained from X via (1, k)-surgery.

Proof. Assume ϕ is a topological preferred framing. Consider the 3-chainW given
in the proof of Proposition 5.7. It is clear that a meridian µ intersects W at one point.
So iZ1 [µ] · [W ] = ±1 and iZ1 [µ] is a primitive class. Similarly, the simple closed curve µ̃
has class [µ] + k[γϕ] and is homotopic to a curve intersecting W at one point. Hence
iZ1 [µ̃] is also a primitive class for any γ, k. Since H1(Y ;Z) is a free abelian group, we
have H1(Y,Z)/ < iZ1 [µ] >

∼= H1(Y,Z)/ < iZ1 [µ̃] >. So H1(X,Z) ∼= H1(X̃;Z) by Lemma
4.3 part 3.

Conversely, if H1(X,Z) ∼= H1(X̃ ;Z) for any X̃, the proof of Proposition 5.9 part
2 shows that ϕ is a rational topological preferred framing. The assumption that
H2(X ;Z) has no torsion implies that ϕ is actually a topological preferred framing.

The knot surgery in [12] is an example of (1, k)-surgeries. Suppose X0 = S3×S1,
K is a knot in S3 and L = K × S1. Let µ be the meridian of L, a the longitude
of the preferred framing of K and b = S1. Then ker iZ1 =< [a] > and ker iZ2 =<
[µ×a], [a× b] >. Consider the framings ϕp of L where H1,ϕp

is generated by p[µ]+ [a]
and [b]. It is clear that ϕp is a topological preferred framing of L exactly when p = 0.

If K is the trivial knot and [γ] = p[µ]+[a], the resulting manifold of (1, k)-surgery
is

S3
(L,ϕp,γ,1,k)

∼= L(1 + pk, k)× S1

and H1(S
3
(L,ϕp,γ,1,k)

;Z) ∼= Z1+kp ⊕ Z. If |p| > 1, H1(S
3
(L,ϕp,γ,1,k)

;Z) has rank 1 for

any p, k, but the torsion subgroups vary. Propositions 5.10 and 5.9 show that ϕp is
not a rational topological preferred framing. Actually, such framings do not exist for
L.

5.4. Constraints for Lagrangian framings. Here we provide topological con-
straints on the isotopy classes of Lagrangian tori in many symplectic manifolds with
non-positive Kodaira dimension. In particular, they imply that the invariant λ(L)
of Fintushel and Stern (Remark 5.8(3)) is zero if the manifold has non-positive Ko-
daira dimension and vanishing integral H1. Recall that the Lagrangian framing for
Lagrangian tori is defined in section 2.1.

Proposition 5.11. Suppose L is a Lagrangian torus in (X,ω) and any Luttinger
surgery along L preserves the integral homology.

1. If H2(X ;Z) is torsion free and L is null-homologous, then the Lagrangian
framing of L is a topological preferred framing.

2. If [L] is torsion then the Lagrangian framing of L is a rational topological
preferred framing.

Proof. The result follows directly from Propositions 5.10 and 5.9.
In particular, we have

Corollary 5.12. If κ(X) = −∞ and L is a Lagrangian torus in X, then the
Lagrangian framing of L is a topological preferred framing.

Proof. Since b+(X) = 1 and H2(X ;Z) has no torsion, L is null-homologous. For
any X̃ given from X by applying Luttinger surgery along L, X̃ is diffeomorphic to X
by Theorem 1.2. Now the claim follows from Proposition 5.11.
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In the case that X is a symplectic CY surface, it is convenient to introduce

Definition 5.13. An embedded 2-torus L of a 4-manifold X is called essential
if [L] 6= 0 in H2(X). Moreover, L is called completely essential if r(ker iQ1 ) = 3.

Proposition 5.14. If κ(X) = 0 and X is an integral homology K3, then any
Lagrangian torus L satisfies one of the following conditions:

1. L is null-homologous and the Lagrangian framing is a topological preferred
framing.

2. L is completely essential.

Proof. When L is null-homologous, the claim follows from Theorem 1.3 and
Proposition 5.11.

When L is essential, [µ] ∈ ker iQ1 by Lemma 4.1. If r(ker iQ1 ) 6= 3, there exists γ ⊂ L

such that iQ1 ([γϕ]) 6= 0. In the manifold X̃ = X(L, γ, 1), the class [µ̃] = [µ] + [γϕ] is

nonzero in H1(Y ). By Proposition 4.4, b1(X) 6= b1(X̃), which contradicts Theorem
1.3. So r(ker iQ1 ) = 3 and L is completely essential.

Similarly we have

Proposition 5.15. If κ(X) = 0 and X is an integral homology Enriques surface,
then any Lagrangian torus L satisfies one of the following conditions:

1. L is null-homologous and the Lagrangian framing is a topological preferred
framing.

2. [L] is torsion and the Lagrangian framing is a rational topological preferred
framing.

Proof of Theorem 1.4. The first statement follows from Theorem 4.7, Corollary
5.12, Propositions 5.14 part 1 and 5.15 part 1. The last statement on λ(L) follows
from Remark 5.8 part 3.
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