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TOTALLY QUASI-UMBILIC TIMELIKE SURFACES IN R1,2∗

JEANNE N. CLELLAND†

Abstract. For a regular surface in Euclidean space R3, umbilic points are precisely the points
where the Gauss and mean curvatures K and H satisfy H2 = K; moreover, it is well-known that the
only totally umbilic surfaces in R3 are planes and spheres. But for timelike surfaces in Minkowski
space R1,2, it is possible to have H2 = K at a non-umbilic point; we call such points quasi-umbilic,
and we give a complete classification of totally quasi-umbilic timelike surfaces in R1,2.
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1. Introduction. For a regular surface Σ in Euclidean space R3, it is well-known
(see, e.g., [5]) that the shape operator at any point x ∈ Σ is a self-adjoint linear
operator Sx : TxΣ → TxΣ and is therefore diagonalizable over R. But for a timelike
surface Σ in 3-dimensional Minkowski space R1,2 (cf. Definition 2.3), this is no longer
necessarily true; the shape operator is still self-adjoint, but because the metric on
TxΣ is now indefinite, it can have any of three algebraic types: diagonalizable over
R, diagonalizable over C but not R, or non-diagonalizable over C with a single null
eigenvector (see, e.g., [9], [10], [11]).

An umbilic point of a regular surface Σ in either Euclidean or Minkowski space
is a point x ∈ Σ for which the second fundamental form IIx of Σ is a scalar multiple
of the first fundamental form Ix. In the Euclidean case, the Gauss curvature K and
mean curvature H of Σ satisfy H2−K ≥ 0, and the umbilic points are precisely those
points where H2−K = 0. But for a timelike surface in Minkowski space, the quantity
H2 −K can take on any real value. Specifically:

1. If the shape operator is diagonalizable over R, then H2 −K ≥ 0, with H2 −
K=0 precisely at umbilic points.

2. If the shape operator is diagonalizable over C but not R, then H2 −K < 0.
3. If the shape operator is non-diagonalizable over C, then H2 −K = 0.

Because of this relationship between H and K in Case (3), we make the following
definition:

Definition 1.1. Let Σ be a regular timelike surface in R1,2. A point x ∈ Σ will
be called quasi-umbilic if the shape operator Sx : TxΣ → TxΣ is non-diagonalizable
over C.

Definition 1.2. A regular timelike surface Σ in R1,2 will be called totally quasi-
umbilic if every point x ∈ Σ is quasi-umbilic.

The goal of this paper is to give a classification of totally quasi-umbilic timelike
surfaces in R1,2. Our main result is:

Theorem (cf. Theorem 4.3). Let Σ be a totally quasi-umbilic, regular timelike
surface in R1,2. Then Σ is a ruled surface whose rulings are all null lines, with the
additional property that any null curve α in Σ which is transverse to the rulings is
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nondegenerate (i.e., the vectors α′, α′′ are linearly independent at each point). Con-
versely, given any nondegenerate null curve α(u) in R1,2 and any null vector field
f̄2(u) along α which is linearly independent from α′(u) for all u, the immersed ruled
surface

x(u, v) = α(u) + vf̄2(u)

is totally quasi-umbilic, possibly containing a curve of umbilic points.

There has been much previous research on timelike ruled surfaces in Minkowski
space, mostly regarding surfaces with either spacelike rulings (e.g., [1, 12]) or timelike
rulings (e.g., [3, 7, 13]). Surfaces with null rulings were considered in [4] and [8]; it was
shown in [4] that The Gauss and mean curvatures K,H of any such surface satisfy
H2 = K (which is equivalent to every point of the surface being either umbilic or
quasi-umbilic), but the converse, contained in Theorem 4.3, was previously unknown.

The paper is organized as follows: in §2 we briefly review basic notions from
the geometry of timelike surfaces in R1,2. In §3, we use Cartan’s method of moving
frames to derive and solve a system of PDEs whose solutions provide a complete
description of the Maurer-Cartan forms for totally quasi-umbilic surfaces in local null
coordinates. In §4, we solve the resulting Maurer-Cartan equations to find explicit
local parametrizations for all such surfaces and thereby prove Theorem 4.3. Finally,
in §5, we give some examples of totally quasi-umbilic surfaces.

2. Brief review of geometry of timelike surfaces in R1,2.

Definition 2.1. Three-dimensional Minkowski space is the manifold R1,2 defined
by

R1,2 = {x = (x0, x1, x2) : x0, x1, x2 ∈ R},

with the indefinite inner product 〈·, ·〉 defined on each tangent space TxR1,2 by

〈v,w〉 = v0w0 − v1w1 − v2w2.

Definition 2.2. A nonzero vector v ∈ TxR1,2 is called:
• spacelike if 〈v,v〉 < 0;
• timelike if 〈v,v〉 > 0;
• lightlike or null if 〈v,v〉 = 0.

For a given real number c, the “sphere” consisting of all vectors v with 〈v,v〉 = c
is:

• a hyperboloid of one sheet if c < 0;
• a hyperboloid of two sheets if c > 0;
• a cone, called the light cone or null cone if c = 0.

(See Figure 1; note that the x0-axis is drawn as the vertical axis.)

Definition 2.3. A regular surface Σ ⊂ R1,2 is called:
• spacelike if the restriction of 〈·, ·〉 to each tangent plane TxΣ is negative def-

inite;
• timelike if the restriction of 〈·, ·〉 to each tangent plane TxΣ is indefinite;
• lightlike if the restriction of 〈·, ·〉 to each tangent plane TxΣ is degenerate.
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Fig. 1. “Spheres” in R1,2 with c < 0, c > 0, c = 0

The Minkowski isometry group consists of all transformations ϕ : R1,2 → R1,2 of
the form

ϕ(x) = Ax + b,

where A ∈ O(1, 2) and b ∈ R1,2. Cartan’s method of moving frames can be used to
compute local invariants for timelike surfaces under the action of this isometry group.
Given a regular timelike surface Σ ⊂ R1,2, an adapted orthonormal frame at a point
x ∈ Σ consists of three mutually orthogonal vectors (e0, e1, e2) in TxR1,2 such that:

• 〈e0, e0〉 = 1, 〈e1, e1〉 = 〈e2, e2〉 = −1;
• e0, e1 span the tangent plane TxΣ.

An adapted orthonormal frame field along Σ consists of smooth vector fields (e0, e1, e2)
along Σ such that for each x ∈ Σ, the vectors (e0(x), e1(x), e2(x)) form an adapted
orthonormal frame at x. If the surface Σ is given an orientation, then the unit
normal vector field e2 along Σ is completely determined. In this case, it is convenient
to consider only oriented orthonormal frame fields, defined by the condition that
e0 × e1 = −e2, where the Minkowski cross product is given by

(2.1) v ×w = (v1w2 − v2w1, v0w2 − v2w0, v1w0 − v0w1)

for v = (v0, v1, v2), w = (w0, w1, w2).

Remark 2.4. These sign conventions are chosen in order to satisfy the orientation
condition

〈u,v ×w〉 = det
[
u v w

]
for any three vectors u,v,w, as well as the condition that the standard basis vectors

e0 = (1, 0, 0), e1 = (0, 1, 0), e2 = (0, 0, 1)

form an oriented orthonormal frame.

Given an oriented adapted orthonormal frame field (e0, e1, e2) along Σ, any other
oriented adapted orthonormal frame field (ẽ0, ẽ1, ẽ2) along Σ is given by

[
ẽ0 ẽ1 ẽ2

]
=
[
e0 e1 e2

] cosh θ sinh θ 0

sinh θ cosh θ 0

0 0 1


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for some real-valued function θ on Σ.
As in the Euclidean case, the normal vector field e2 of an oriented adapted or-

thonormal frame field along Σ defines the Gauss map from Σ to the Minkowski sphere
〈v,v〉 = −1, and at any point x ∈ Σ, the differential de2 of the Gauss map is a self-
adjoint linear operator

de2 : TxΣ→ TxΣ.

The shape operator of Σ at any point x ∈ Σ is defined to be

Sx = −de2 : TxΣ→ TxΣ.

The first and second fundamental forms Ix, IIx : TxΣ→ R are defined by

Ix(v) = 〈v,v〉,
IIx(v) = 〈Sx(v),v〉,

and the Gauss curvature K and mean curvature H at x are defined to be

K(x) = det (Sx) , H(x) = 1
2 tr (Sx) .

A point x ∈ Σ is called umbilic if the quadratic form IIx is a scalar multiple of Ix. It
is straightforward to show that x is umbilic if and only if Sx is a scalar multiple of
the identity; moreover, if x is an umbilic point, then H(x)2 −K(x) = 0.

The shape operator Sx is a self-adjoint linear operator; i.e., for any vectors v,w ∈
TxΣ, we have

〈Sx(v),w〉 = 〈v, Sx(w)〉.

This is equivalent to the condition that the matrix representation of Sx with respect
to any orthonormal basis (e0, e1) for TxΣ has the form

(2.2)

[
a b

−b c

]
.

So unlike in the Euclidean case, where Sx is always diagonalizable over R, any of
three possibilities may occur: Sx may be diagonalizable over R, diagonalizable over
C but not R, or non-diagonalizable over C with a repeated real eigenvalue and a
1-dimensional eigenspace.

If Sx is not diagonalizable over C, then there exists a basis for TxΣ with respect
to which the matrix for Sx has the form[

λ 1

0 λ

]

for some λ ∈ R. Thus we have K(x) = λ2, H(x) = λ, and so H(x)2 − K(x) = 0.
Because of this similarity with umbilic points, we call such points x quasi-umbilic (cf.
Definition 1.1). Moreover, the unique eigenvector for Sx is necessarily a null vector;
to see this, note that the condition that the matrix (2.2) has a repeated eigenvalue is

(a− c)2 = 4b2,
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and Sx has a 1-dimensional eigenspace (and hence x is quasi-umbilic) if and only if
a 6= c. In this case the repeated eigenvalue is λ = 1

2 (a+ c), with eigenvector e0 − e1,
which is clearly null.

It is well-known that totally umbilic surfaces in Euclidean space R3 are necessarily
contained in either planes or spheres. The analogous result for timelike surfaces in
R1,2 is:

Theorem 2.5. Suppose that a regular timelike surface Σ ⊂ R1,2 is totally umbilic.
Then Σ is contained in either a plane or a hyperboloid of one sheet (i.e., a Minkowski
“sphere”).

For the remainder of this paper, we will consider the classification problem for
totally quasi-umbilic timelike surfaces (cf. Definition 1.2).

3. Null frames and Maurer-Cartan forms. We will approach the classifi-
cation problem for totally quasi-umbilic timelike surfaces via the method of moving
frames. It turns out to be more convenient to use null frames rather than orthonormal
frames, and so we make the following definition:

Definition 3.1. An adapted null frame field along a timelike surface Σ ⊂ R1,2

consists of linearly independent, smooth vector fields (f1, f2, f3) along Σ such that for
each x ∈ Σ,

• f1(x), f2(x) are null vectors which span the tangent space TxΣ at each point
x ∈ Σ;

• 〈f1(x), f2(x)〉 = 1;
• f3(x) is orthogonal to TxΣ at each point x ∈ Σ, with 〈f3(x), f3(x)〉 = −1.

For instance, if (e0, e1, e2) is an adapted orthonormal frame field along Σ, then
the vector fields

f1 = 1√
2
(e0 + e1), f2 = 1√

2
(e0 − e1), f3 = e2

form an adapted null frame field along Σ.

Let ηi, ηij , 1 ≤ i, j ≤ 3 be the Maurer-Cartan forms on Σ associated to an adapted
null frame field along Σ. These forms are defined by the equations (note: all indices
range from 1 to 3, and we use the Einstein summation convention)

dx = fiη
i,(3.1)

dfi = fjη
j
i ,

and they satisfy the Maurer-Cartan structure equations

dηi = −ηij ∧ ηj ,(3.2)

dηij = −ηik ∧ ηkj .

(See [6] for a discussion of Maurer-Cartan forms and their structure equations.) Dif-
ferentiating the inner product relations

〈f1, f1〉 = 0, 〈f2, f2〉 = 0, 〈f3, f3〉 = −1,

〈f1, f2〉 = 1, 〈f1, f3〉 = 0, 〈f2, f3〉 = 0
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yields the following relations among the Maurer-Cartan forms:

η12 = η21 = η33 = 0,(3.3)

η22 = −η11 , η13 = η32 , η23 = η31 .

From the equation

dx = f1η
1 + f2η

2 + f3η
3

and the fact that dx takes values in TxΣ, it follows that η3 = 0. Moreover, η1 and η2

are linearly independent 1-forms which form a basis for the cotangent space T ∗xΣ at
each point x ∈ Σ.

Differentiating the equation η3 = 0 yields

0 = dη3 = −η31 ∧ η1 − η32 ∧ η2.

By Cartan’s Lemma (see [6]), there exist functions kij = kji on Σ such that

(3.4)

[
η31

η32

]
= −

[
k11 k12

k12 k22

][
η1

η2

]
.

(The minus sign is included for convenience in what follows.) Compare the matrix in
(3.4) to that of the shape operator at any point x ∈ Σ; using (3.1), (3.3), and (3.4),
we have:

Sx = −df3
= −f1η13 − f2η

2
3

= −f1η32 − f2η
3
1

= f1(k12η
1 + k22η

2) + f2(k11η
1 + k12η

2)

= (k12f1 + k11f2)η1 + (k22f1 + k12f2)η2.

This means that

Sx(f1) = k12f1 + k11f2, Sx(f2) = k22f1 + k12f2,

and so the matrix of Sx with respect to the basis (f1, f2) for TxΣ is[
k12 k22

k11 k12

]
.

Thus we have

H = k12, K = k212 − k11k12,
H2 −K = k11k22.

It follows that Σ is totally quasi-umbilic if and only if k11k22 ≡ 0 on Σ and k11, k22
are not both zero at any point x ∈ Σ. Without loss of generality, we may assume that
k22 = 0, k11 6= 0.
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Now we will examine how the functions kij transform if we make a change of

adapted null frame field. So suppose that (f̃1, f̃2, f̃3) is any other adapted null frame
field along Σ. Then we must have

(3.5)
[
f̃1 f̃2 f̃3

]
=
[
f1 f2 f3

] 
ε1e

θ 0 0

0 ε1e
−θ 0

0 0 ε2


for some function θ on Σ, where ε1, ε2 = ±1. (Note that we cannot exchange f1
and f2 due to our assumption that k11 6= 0, k22 = 0.) Under such a transformation,
the Maurer-Cartan forms η̃i, η̃ij associated to the frame field (f̃1, f̃2, f̃3) satisfy the
conditions: [

η̃1

η̃2

]
=

[
ε1e
−θ 0

0 ε1e
θ

][
η1

η2

]
=

[
ε1e
−θη1

ε1e
θη2

]
,

[
η̃13

η̃23

]
= ε2

[
ε1e
−θ 0

0 ε1e
θ

][
η13

η23

]
=

[
ε1ε2e

−θη13

ε1ε2e
θη23

]
.

Therefore, [
η̃31

η̃32

]
=

[
η̃23

η̃13

]
=

[
ε1ε2e

θη23

ε1ε2e
−θη13

]
=

[
ε1ε2e

θη31

ε1ε2e
−θη32

]
,

and the functions k̃ij associated to the frame field (f̃1, f̃2, f̃3) are given by[
k̃11 k̃12

k̃12 k̃22

]
= ε2

[
ε1e

θ 0

0 ε1e
−θ

][
k11 k12

k12 k22

][
ε1e

θ 0

0 ε1e
−θ

]
= ε2

[
e2θk11 k12

k12 e−2θk22

]
.

Since k11 6= 0, it follows that there exists an adapted null frame field (f1, f2, f3) along
Σ with k11 ≡ 1, and this frame field is unique up to the discrete transformation
(f̃1, f̃2, f̃3) = (ε1f1, ε1f2, f3). For such an adapted null frame field, the first and second
fundamental forms of Σ are:

I = 〈dx, dx〉 = 2η1η2,(3.6)

II = −〈df3, dx〉 = −(η31η
1 + η32η

2) = (η1)2 + 2Hη1η2.

(Recall that H = k12 and k22 = 0.)

Now let u, v be local null coordinates on Σ; note that these are well-defined up
to transformations of the form

u→ ũ(u), v → ṽ(v),

with ũ′(u), ṽ′(v) 6= 0. Then there exist functions f, g on Σ such that

(3.7) η1 = ef du, η2 = eg dv,
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and therefore

I = 2ef+g du dv,(3.8)

II = e2f du2 + 2Hef+g du dv.

From (3.4), we also have

(3.9) η31 = η23 = −(ef du+Heg dv), η32 = η13 = −Hef du.

The structure equations (3.2) for dη1 and dη2 can be used to show that

(3.10) η11 = −η22 = gu du− fv dv,

and according to (3.3), the remaining Maurer-Cartan forms are zero.
Finally, the remaining structure equations in (3.2)—which may be interpreted

as the Gauss and Codazzi equations for timelike surfaces in R1,2—imply that the
functions f, g,H satisfy the following PDE system:

Hv = 0,(3.11)

Hu = 2fve
f−g,(3.12)

(f + g)uv = H2ef+g.(3.13)

Conversely, any solution to this system gives rise (at least locally) to the Maurer-
Cartan forms (3.7), (3.9), (3.10) of a totally quasi-umbilic timelike surface.

Equation (3.11) implies that H is a function of u alone. In order to solve the
remaining equations, we will divide into cases based on whether H(u) is zero or
nonzero.

3.1. Case 1: H(u) ≡ 0. Then equations (3.12) and (3.13) reduce to:

fv = 0,

(f + g)uv = 0.

Thus f = f(u) is a function of u alone, and

f + g = φ(u) + ψ(v)

for some functions φ(u), ψ(v).
The first and second fundamental forms of Σ now take the form

I = 2eφ(u)eψ(v) du dv,

II = e2f(u) du2.

By making a change of coordinates (u, v)→ (ũ, ṽ) with

dũ = eφ(u) du, dṽ = eψ(v) dv

we can assume that φ(u) = ψ(v) = 0, and so

I = 2 du dv,(3.14)

II = e2f(u) du2.
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From (3.6), it follows that

(3.15) η1 = ef(u) du, η2 = e−f(u) dv,

and equations (3.9), (3.10) become:

η31 = η23 = −ef du, η32 = η13 = 0,(3.16)

η11 = −η22 = −f ′(u) du.(3.17)

Thus solutions of the PDE system (3.11)-(3.13) with H(u) ≡ 0 depend on one arbi-
trary function of one variable—i.e., the function f(u).

3.2. Case 2: H(u) 6= 0. Let h(u) = ln |H(u)|. Then we can write equation
(3.13) as

(f + g)uv = ef+g+2h(u),

or equivalently,

(f + g + 2h(u))uv = ef+g+2h(u).

Thus the function

z(u, v) = f(u, v) + g(u, v) + 2h(u)

is a solution to Liouville’s equation

(3.18) zuv = ez.

The general solution to (3.18) is

(3.19) z(u, v) = ln

(
2φ′(u)ψ′(v)

(φ(u) + ψ(v))2

)
,

where φ(u), ψ(v) are arbitrary functions with φ′(u), ψ′(v) 6= 0; thus we have

(3.20) f(u, v) + g(u, v) + 2h(u) = ln

(
2φ′(u)ψ′(v)

(φ(u) + ψ(v))2

)
for some functions φ(u), ψ(v) with φ′(u), ψ′(v) 6= 0.

Remark 3.2. The expression (3.19) for the general solution to (3.18) can be
derived from the Bäcklund transformation

(3.21)
zu − wu = 2e

(z+w)
2 ,

zv + wv = e
(z−w)

2 ,

which relates solutions z(u, v) of (3.18) to solutions w(u, v) of the wave equation
wuv = 0 (see, e.g., [2]). Substituting the general solution

w(u, v) = ρ(u) + σ(v)

of the wave equation into (3.21) and solving the resulting overdetermined PDE system
for z(u, v) yields (3.19), where

φ(u) =

∫
eρ(u) du, ψ(v) =

∫
1
2e
−σ(v) dv.
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By making the change of variables ũ = φ(u), ṽ = ψ(v), we can write (3.20) as

f(u, v) + g(u, v) + 2h(u) = ln

(
2

(u+ v)2

)
.

Thus we have

f + g = ln

(
2

(u+ v)2

)
− 2h(u)

= ln

(
2

(H(u))2(u+ v)2

)
.(3.22)

Now we can write equation (3.12) as

H ′(u) = 2fve
2fe−(f+g)

=
(e2f )v(H(u))2

(f + g)uv
(from equation (3.13));

therefore,

H ′(u)

(H(u))2
(f + g)uv = (e2f )v.

Integrating with respect to v yields

H ′(u)

(H(u))2
(f + g)u = (e2f ) + k(u)

for some function k(u). But from equation (3.22), we have

(f + g)u = −2

(
H ′(u)

H(u)
+

1

u+ v

)
.

Therefore,

e2f =
H ′(u)

(H(u))2
(f + g)u − k(u)

=
−2H ′(u)

(H(u))2

(
H ′(u)

H(u)
+

1

u+ v

)
− k(u)

=
−2H ′(u)

(H(u))2(u+ v)
− k̃(u),

where

k̃(u) = k(u) + 2
(H ′(u))2

(H(u))3
.

Thus the Maurer-Cartan forms are given by (3.7), (3.9), (3.10), where

H = H(u) 6= 0,

f = 1
2 ln

(
−2H ′(u)

(H(u))2(u+ v)
− k(u)

)
,(3.23)

g = ln

(
2

(H(u))2(u+ v)2

)
− 1

2 ln

(
−2H ′(u)

(H(u))2(u+ v)
− k(u)

)
,
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and k(u) is an arbitrary function of u. Thus solutions of the PDE system (3.11)-(3.13)
with H(u) 6= 0 depend on two arbitrary functions of one variable—i.e., the functions
h(u), k(u).

4. Explicit parametrizations. In this section we use the Maurer-Cartan forms
obtained in §3 to derive explicit local parametrizations for all totally quasi-umbilic
timelike surfaces. The Maurer-Cartan equations (3.1) can be written in matrix form
as

(4.1)
[
dx df1 df2 df3

]
=
[
x f1 f2 f3

]


0 0 0 0

η1 η11 η12 η13

η2 η21 η22 η23

η3 η31 η32 η33

 .

4.1. Case 1: H(u) ≡ 0. In this case, equation (4.1) takes the form

[
dx df1 df2 df3

]
=
[
x f1 f2 f3

]


0 0 0 0

ef(u) du −f ′(u) du 0 0

e−f(u) dv 0 f ′(u) du −ef(u) du

0 −ef(u) du 0 0

 .

This is equivalent to the compatible, overdetermined PDE system

[
x f1 f2 f3

]
u

=
[
x f1 f2 f3

]


0 0 0 0

ef(u) −f ′(u) 0 0

0 0 f ′(u) −ef(u)

0 −ef(u) 0 0

 ,(4.2)

[
x f1 f2 f3

]
v

=
[
x f1 f2 f3

]


0 0 0 0

0 0 0 0

e−f(u) 0 0 0

0 0 0 0

(4.3)

for the vector-valued functions x, f1, f2, f3 on Σ. These equations can be integrated
explicitly, and the general solution for x(u, v) is

x(u, v) = x0 + uef(0)f01 +

[
v + 1

2

∫ u

0

(∫ σ

0
e2f(τ)dτ

)2

dσ

]
e−f(0)f02 −

[∫ u

0

(∫ σ

0
e2f(τ)dτ

)
dσ

]
f03 ,

where x0, f01 , f
0
2 , f

0
3 represent the initial conditions[

x(0, 0) f1(0, 0) f2(0, 0) f3(0, 0)
]

=
[
x0 f01 f02 f03

]
.

Thus Σ is a cylindrical surface of the form

(4.4) x(u, v) = α(u) + vf02 ,
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where the v-coordinate curves are null lines parallel to the null vector f02 , and the
generating curve α(u) is the null curve

α(u) = x0 + uef(0)f01 +

[
1
2

∫ u

0

(∫ σ

0

e2f(τ)dτ

)2

dσ

]
e−f(0)f02 −

[∫ u

0

(∫ σ

0

e2f(τ)dτ

)
dσ

]
f03 .

We can give a slightly simpler parametrization for Σ (not by null coordinates) as
(4.4) with

α(u) = x0 + uef(0)f01 −
[∫ u

0

(∫ σ

0

e2f(τ)dτ

)
dσ

]
f03 .

Then α may be viewed as the graph in the f01 f
0
3 -plane of an arbitrary function F (u)

with F ′′(u) < 0. We summarize this result, noting that
• the f01 f

0
3 -plane is a lightlike plane,

• f03 spans the unique direction in this plane which is orthogonal to f02 , and
• α′(u) is always linearly independent from f03 ,

as:

Proposition 4.1. Let Σ be a totally quasi-umbilic, regular timelike surface in
R1,2 with mean curvature H ≡ 0. Then Σ is a cylinder over a convex curve α which is
contained in a lightlike plane, with null rulings transverse to the plane of α; moreover,
the tangent vector to α is nowhere orthogonal to the rulings. Conversely, any such
cylinder is totally quasi-umbilic with mean curvature H ≡ 0.

Remark 4.2. Since the surfaces of Proposition 4.1 haveK ≡ 0 as well, this propo-
sition shows that there exists a family of non-planar surfaces in R1,2, parametrized by
one arbitrary function of one variable, all of which have Gauss and mean curvature
identically equal to zero!

4.2. Case 2: H(u) 6= 0. In this case, the PDE system represented by equation
(4.1) is considerably more complicated and generally cannot be completely solved an-
alytically, but there is still enough information in (4.1) to give a geometric description
of the solution surfaces. The v-component of the corresponding PDE system is

(4.5)
[
x f1 f2 f3

]
v

=
[
x f1 f2 f3

]


0 0 0 0

0 −fv 0 0

eg 0 fv −Heg

0 −Heg 0 0

 ,

where f, g,H are given by (3.23). In particular, we have

(f2)v = fvf2,

and so

f2(u, v) = ef f̄2(u)

for some null vector field f̄2(u) along Σ which is a function of u alone. This means
that along any v-coordinate curve x(u0, v) in Σ, the vectors f2(u0, v) are all parallel.
Moreover, we have

xv(u, v) = egf2(u, v) = ef+g f̄2(u);
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it follows that the v-coordinate curve x(u0, v) is a null line parallel to f̄2(u0). So if we
let α be the null curve

α(u) = x(u, 0)

and define f̄2(u) to be the null vector field

f̄2(u) = f2(u, 0)

along α, then we can reparametrize Σ (not necessarily by null coordinates) as

x(u, v) = α(u) + vf̄2(u).

Therefore, any such surface is ruled, and the rulings are all null lines. Moreover, the
u-component of the PDE system corresponding to (4.1) implies that:

• The vectors α′(u) and α′′(u) are linearly independent for all u; we call such
a null curve nondegenerate.

• The vectors f̄2(u) and f̄ ′2(u) are linearly independent if and only if H(u) 6= 0.
Conversely, suppose that Σ is a timelike ruled surface whose rulings are all null

lines. Let α be a null curve contained in Σ which is transverse to the rulings, and
suppose further that α is nondegenerate. Define vector fields f̄1(u), f̄2(u), f̄3(u) along
α by the conditions that:

• f̄1(u) = α′(u);
• f̄2(u) spans the ruling of Σ passing through α(u), and 〈f̄1(u), f̄2(u)〉 = 1;
• f̄3(u) is a unit normal vector to Σ at α(u).

Then we can parametrize Σ as

x(u, v) = α(u) + vf̄2(u),

and there exists an adapted null frame field (f1, f2, f3) along Σ with the property that

f1(u, 0) = f̄1(u), f2(u, 0) = f̄2(u), f3(u, 0) = f̄3(u).

The u-component of the Maurer-Cartan equation (4.1) for the adapted null frame
field (f1, f2, f3) evaluated along α implies that there exist functions hij(u) such that

[
f̄ ′1(u) f̄ ′2(u) f̄ ′3(u)

]
=
[
f̄1(u) f̄2(u) f̄3(u)

] 
h11(u) 0 h32(u)

0 −h11(u) h31(u)

h31(u) h32(u) 0

 ,
and the condition that α is nondegenerate implies that h31(u) 6= 0 for all u.

In order to show that Σ is totally quasi-umbilic, we will compute the shape op-
erator Sx at any point x ∈ Σ with respect to the basis (xu,xv) for TxΣ. First we
compute:

xu = f̄1(u)− vh11(u)f̄2(u) + vh32(u)f̄3(u),

xv = f̄2(u).

It is straightforward to check that the unit normal vector field f3 to Σ is given by

f3(u, v) = f̄3(u) + vh32(u)f̄2(u).
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So the action of the shape operator on the basis (xu,xv) is given by:

Sx(xu) = −(f3)u

= −f̄ ′3(u)− v(h′32(u)f̄2(u) + h32(u)f̄ ′2(u))

= −h32(u)f̄1(u) + (−h31(u)− vh′32(u) + vh32(u)h11(u))f̄2(u)− v(h32(u))2f̄3(u)

= −h32(u)(f̄1(u)− vh11(u)f̄2(u) + vh32(u)f̄3(u))− (h31(u) + vh′32(u))f̄2(u)

= −h32(u)xu − (h31(u) + vh′32(u))xv,

Sx(xv) = −(f3)v

= −h32(u)f̄2(u)

= −h32(u)xv.

Therefore, the matrix of Sx with respect to the basis (xu,xv) is[
−h32(u) 0

−h31(u)− vh′32(u) −h32(u)

]
.

Since h31(u) 6= 0, it follows that Σ is quasi-umbilic almost everywhere, and if h′32(u) 6=
0, then Σ contains a curve of umbilic points defined by the equation v = −h31(u)

h′32(u)
.

Together with Proposition 4.1, this proves the following classification theorem:

Theorem 4.3. Let Σ be a totally quasi-umbilic, regular timelike surface in R1,2.
Then Σ is a ruled surface whose rulings are all null lines, with the additional prop-
erty that any null curve α in Σ which is transverse to the rulings is nondegenerate.
Conversely, given any nondegenerate null curve α(u) in R1,2 and any null vector field
f̄2(u) along α which is linearly independent from α′(u) for all u, the immersed ruled
surface

x(u, v) = α(u) + vf̄2(u)

is totally quasi-umbilic, possibly containing a curve of umbilic points.

5. Examples. In light of Theorem 4.3, any totally quasi-umbilic, regular time-
like surface Σ has a parametrization of the form

x(u, v) = α(u) + vf̄2(u),

where α is a nondegenerate null curve whose tangent vector f̄1(u) = α′(u) is a null
vector which is linearly independent from the null vector f̄2(u). The nondegeneracy
of α implies that f̄ ′1(u) must be linearly independent from f̄1(u).

For convenience, we can reparametrize the curve α(u) and scale the vector field
f̄2(u) so as to arrange that both f̄1(u) and f̄2(u) have Euclidean length 2; i.e., we can
assume that

f̄1(u) = (1, cos θ1(u), sin θ1(u)), f̄2(u) = (1, cos θ2(u), sin θ2(u))

for some functions θ1(u), θ2(u). (These vectors will no longer necessarily satisfy the
condition that 〈f̄1(u), f̄2(u)〉 = 1, but this condition is not important at this point.)
Then the linear independence conditions of the previous paragraph are simply that
θ′1(u) 6= 0 and θ1(u) 6= θ2(u) for all u. Moreover, Σ has Gauss and mean curvature
H ≡ K ≡ 0 if and only if θ′2(u) ≡ 0.
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5.1. Case 1: H(u) ≡ 0. In this case θ2(u) must be constant, while θ1(u) must
be either strictly increasing or strictly decreasing and never equal to θ2(u).

Example 5.1. Let

θ1(u) = 2 tan−1 u, θ2(u) = π.

Then we have θ′1(u) > 0 for all u, and since −π < θ1(u) < π, the linear independence
requirements are satisfied. The corresponding null vector fields are given by

f̄1(u) =
(
1, cos

(
2 tan−1 u

)
, sin

(
2 tan−1 u

))
=

(
1,

1− u2

1 + u2
,

2u

1 + u2

)
and f̄2(u) = (1,−1, 0). Thus we have

α(u) =

∫
f̄1(u) du =

(
u, 2 tan−1 u− u, ln(1 + u2)

)
,

and the corresponding surface Σ is given by

x(u, v) = α(u) + vf̄2(u)

=
(
u+ v, 2 tan−1 u− u− v, ln(1 + u2)

)
.

Note that we could rewrite x(u, v) as

x(u, v) =
(
tan−1 u, tan−1 u, ln(1 + u2)

)
+ (u− tan−1 u+ v,−(u− tan−1 u+ v), 0)

=
(
tan−1 u, tan−1 u, ln(1 + u2)

)
+ ṽ(1,−1, 0),

where ṽ = u− tan−1 u+ v. This realizes Σ as a cylinder over the convex curve

α(u) = (tan−1 u)(1, 1, 0) + ln(1 + u2)(0, 0, 1)

in the lightlike plane spanned by the vectors (1, 1, 0) and (0, 0, 1). Making the substitu-
tion σ = tan−1 u shows that this curve is the graph of the function F (σ) = ln(sec2 σ).
(See Figure 2; note that the x0-axis is drawn as the vertical axis.)

5.2. Case 2: H(u) 6= 0. In this case, θ1(u) and θ2(u) must both be either strictly
increasing or strictly decreasing, and we must have θ1(u) 6= θ2(u) for all u.

Example 5.2. Let

θ1(u) = u, θ2(u) = u+ π.

The corresponding null vector fields are given by

f̄1(u) = (1, cosu, sinu), f̄2(u) = (1, − cosu, − sinu).

Thus we have

α(u) =

∫
f̄1(u) du = (u, sinu, − cosu) ,
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Fig. 2. The surface of Example 5.1

Fig. 3. Embedded and immersed portions of the surface of Example 5.2

and the corresponding surface Σ is given by

x(u, v) = α(u) + vf̄2(u)

= (u+ v, sinu− v cosu, − cosu− v sinu) .

(See Figure 3 for embedded and immersed portions of this surface; note that the
x0-axis is drawn as the vertical axis.)

In order to compute shape operator Sx, first we compute

xu = (1, cosu+ v sinu, sinu− v cosu)

xv = (1, − cosu, − sinu).
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The unit normal vector to Σ is given by

f3(u, v) =
xu × xv√

−〈xu × xv,xu × xv〉

=
(
−v

2
, − sinu+

v

2
cosu, cosu+

v

2
sinu

)
.

(Note that the cross product here denotes the Minkowski cross product (2.1).) Now
the action of the shape operator on the basis (xu,xv) for TxΣ is given by:

Sx(xu) = −(f3)u

=
(
0, cosu+ 1

2 sinu, sinu− 1
2 cosu

)
= 1

2xu −
1
2xv,

Sx(xv) = −(f3)v

=
(
1
2 , −

1
2 cosu, 1

2 sinu
)

= 1
2xv.

Therefore the matrix of Sx with respect to the basis (xu,xv) for TxΣ is[ 1
2 0

− 1
2

1
2

]
.

Thus we see that Σ has constant Gauss and mean curvatures K ≡ 1
4 , H ≡ 1

2 . More-
over, Σ contains no umbilic points.

Example 5.3. Let

θ1(u) = u3 + u, θ2(u) = u3 + u+ π.

The corresponding null vector fields are given by

f̄1(u) = (1, cos(u3 + u), sin(u3 + u)), f̄2(u) = (1, − cos(u3 + u), − sin(u3 + u)).

Define

α(u) =

∫ u

0

f̄1(s) ds =

(
u,

∫ u

0

cos(s3 + s) ds,

∫ u

0

sin(s3 + s) ds

)
,

and the corresponding surface Σ is given by

x(u, v) = α(u) + vf̄2(u)

=

(
u+ v,

∫ u

0

cos(s3 + s) ds− v cos(u3 + u),

∫ u

0

sin(s3 + s) ds− v sin(u3 + u)

)
.

In order to compute shape operator Sx, first we compute

xu = (1, cos(u3 + u) + v(3u2 + 1) sin(u3 + u), sin(u3 + u)− v(3u2 + 1) cos(u3 + u))

xv = (1, − cos(u3 + u), − sin(u3 + u)).

The unit normal vector to Σ is given by

f3(u, v) =
xu × xv√

−〈xu × xv,xu × xv〉

=
(
0, − sin(u3 + u), cos(u3 + u)

)
+
v

2
(3u2 + 1)

(
−1, cos(u3 + u), sin(u3 + u)

)
.
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A computation shows that the action of the shape operator on the basis (xu,xv) for
TxΣ is given by:

Sx(xu) = 1
2 (3u2 + 1)xu +

(
3uv − 1

2 (3u2 + 1)
)
xv,

Sx(xv) = 1
2 (3u2 + 1)xv.

Therefore the matrix of Sx with respect to the basis (xu,xv) for TxΣ is[ 1
2 (3u2 + 1) 0

3uv − 1
2 (3u2 + 1) 1

2 (3u2 + 1)

]
.

Thus we see that Σ has Gauss and mean curvatures

K = 1
4 (3u2 + 1)2, H = 1

2 (3u2 + 1).

Moreover, Σ contains a curve of umbilic points defined by the equation

3uv − 1
2 (3u2 + 1) = 0.

See Figure 4 for various views of embedded and immersed portions of this surface,
including the curve of umbilic points; note that the x0-axis is drawn as the vertical
axis.

Example 5.4. The previous two examples were immersed surfaces; we can obtain
an embedded example by perturbing the totally umbilic hyperboloid 〈v,v〉 = −1. We
begin with the standard parametrization

x(u, v) = (0, cosu, sinu) + v(1, − sinu, cosu)

for the hyperboloid. (Unlike our previous examples, the generating curve α(u) =
(0, cosu, sinu) is not a null curve, but this is not crucial.) We will modify this example
by replacing the parameter u in the ruling vector field by the function u+ 1

2 sinu.

Remark 5.5. Any small perturbation of the parameter u would suffice, as long
as the perturbation is 2π-periodic and has a derivative of magnitude less than 1.
Alternatively, we could perturb the generating curve, or perform some combination
of the two perturbations.

Thus we will consider the surface Σ with parametrization

x(u, v) = (0, cosu, sinu) + v
(
1, − sin(u+ 1

2 sinu), cos(u+ 1
2 sinu)

)
.

Computations similar to those of the previous example show that Σ is totally quasi-
umbilic, with a curve of umbilic points defined by the equation

[8 sin(u− sinu) + 8 sinu− sin(2u+ sinu) + sin(2u− sinu)− 2 sin(sinu)]v

+ [8 cos(u+ 1
2 sinu) + 8 cos(u− 1

2 sinu)] = 0.

See Figure 5 for two views of this surface, including the curve of umbilic points (which
has two components); note that the x0-axis is drawn as the vertical axis.
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Fig. 4. Embedded and immersed portions of the surface of Example 5.3
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