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ON TWO-VARIABLE PRIMITIVE p-ADIC L-FUNCTIONS∗

YUNLING KANG†

Abstract. We construct a two variable p-adic L-function which lead to the p-adic interpolation
of values of primitive Hecke L-functions, and use it to give a modification of Yager’s theorem which
relate the p-adic L-function to a certain Iwasawa module.
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0. Introduction. Let E be an elliptic curve defined over an imaginary quadratic
field K, with complex multiplication by the ring of integers OK . Let −dK be the dis-
criminant of K. Since K has class number 1, we choose a global minimal Weierstrass
equation for E

(1) y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,
whose coefficient ai belong to O. We also fix an embedding of K into the field of
complex numbers C, and write L for the period lattice of the Néron differential

ω = dx

2y + a1x + a3
on E. Since O is a principal ideal domain, L is a free O-module of rank 1, and we
fix Ω∞ in L such that L is equal to Ω∞O. For each integral ideal a = (α) of OK ,
let Eα(or Ea) be the kernel of the endomorphism α of E and set Eα∞(or Ea∞) to be

⋃n≥0Eαn . We shall denote by ψ the Grossencharacter of E over K, and write f = (f)
for the conductor of ψ. We fix for the rest of this paper a rational prime p different
from 2 and 3, which splits as (p) = pp∗ in K, and where E has good reduction at both
p and p∗. Put π = ψ(p) , π∗ = ψ(p∗), and G = Gal(K(Ep∞)/K). Let χp ∶ G → Z

×
p and

χp∗ ∶ G → Z
×
p be respectively the characters giving the action of G on Eπ∞ and Eπ∗∞ .

We also use the same notations for their restrictions to subgroups or some quotient
of G (it is well defined modulo certain subgroup of Zp) .

For any positive integer k and any ideal g ofOK which is divisible by the conductor
of ψ̄k, we define the Hecke L-function Lg(ψ̄k, s) to be the analytic continuation of

Lg(ψ̄k, s) = ∑ ψ̄k(a)Na−s, Re(s) > 1 + k/2,
where the sum is taken over all integral ideals a which is prime to g. In general it is
imprimitive, and we will omit the subscript g if it’s primitive ( i.e. g equals to the
conductor of ψ̄k).

We denote by I the ring of integers of the completion of the maximal unramified
extension of Kp, where Kp is the completion of K at p. Let I (G) be the Iwasawa
algebra of G:

I (G) = lim←ÐI [G/H]
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where H runs over all open subgroups of G.
Katz[9] and Mannin-Vishik[13] first showed the existence of a two variable p-adic

L-function in I (G), which lead to the p-adic interpolation of values of (in general
imprimitive) Hecke L-functions. Yager[19] gave an elementary construction of a p-
adic measure on certain ray class group Gal(R(gp∞)/K). He exploited an identity
known to Eisenstein, and sought a natural choice of the p-adic period Ωp. Moreover,
in the spirit of Iwasawa and of Coates and Wiles, Yager[18] proved an important
theorem which related the p-adic L-function to the structure of a certain Iwasawa
module attached to the elliptic curve E. The theorem provided a key step to the
main conjecture, which was finally proved by Rubin[15].

In this paper, we use an important congruence from Yager[19] to construct a two
variable p-adic L-function on the Galois group Gal(K(Ep∞)/K), which lead to the
p-adic interpolation of values of primitive Hecke L-functions:

Theorem 0.1. There exists a p-adic period Ωp in I
× and a unique p-adic

measure µ ∈I (G) such that, for all integers k, j with k > j ≥ 0, we have

Ω
−(k+j)
p ∫G χ

k
pχ
−j
p∗
dµ = Ω−(k+j)∞ (k − 1)!( 2π√

dK
)jL∞(ψ̄k+j , k)

where

L∞(ψ̄k+j , k) = (1 − ψ
k+j(p)
(Np)j+1 )(1 −

ψ̄k+j(p∗)
(Np∗)k )L(ψ̄

k+j , k)

Note that the π appears in the factor 2π√
dK

denote the real number 3.14..., and for

all other cases π = ψ(p). We also remark that the one variable p-adic L-function
was constructed by Katz[10], Manin-Vishik[13], Coates-Wiles[6], Lichtenbaum[11]
and others, but Bernadi-Goldstein-Stephens[1] first dealt with primitive Hecke L-
functions and the trivial eigenspace. Moreover, we will use the two variable primitive

p-adic L-function to give a slight modification of Yager’s theorem, which we now de-
scribe:

We put Kn = K(Epn+1). Let Un,v be the local units of the completion of Kn at
a prime v which are congruent to 1 module v, and put Un = ∏v∣pUn,v, where the
product is taken over all primes of Kn lying above p. We will define a group of local
units C̄n for the field Kn (in the end of Section 3) which is a slight modification of
Robert’s elliptic units in Yager[18], and define

Y∞ = lim←Ð(Un/C̄n)

where the projective limit is taken relative to the norm maps, has a natural structure
as a module over the Iwasawa algebra

Zp(G) = lim←ÐZp[G/H]

where H runs over all open subgroups of G. We will prove that Y∞ is a finite generated
torsion Zp(G)-module, so it follows from the structure theory that there are non-zero
divisors f1, ..., fr of Zp(G) such that ⊕rn=1 Zp(G)/(fn) is pseudo-isomorphic to Y∞.
We may define the characteristic ideal chG(Y∞) of Y∞ by

chG(Y∞) = f1...frZp(G),
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see the Appendix of Coates-Sujatha[3] for details. Recall that µ is the p-adic measure
in theorem 0.1. Now we can state the modification of Yager’s theorem:

Theorem 0.2. chG(Y∞)I (G) = µI (G).
Our method of proof is strongly motivated by the original work of Yager, who

established the analogue of Theorem 0.2 with an imprimitive p-adic L-function instead
of our µ, but used a different group of elliptic units to us. It is important for the
arithmetic applications of Theorem 0.2, in particular for the proof of the two variable
main conjecture (proved in Rubin[15]) to have a result with the primitive L-function.

Acknowledgments. I am very grateful to John Coates for his patient guide
and useful discussion. The author benefit a lot from his wonderful course and many
unpublished notes which maybe appear in his new book with Sujatha. I would also like
to thank my Ph.D. adviser Hourong Qin, who first led me to this beautiful theory, for
his encouragement and excellent guidance. This paper was written when the author
was visiting University of Cambridge, he want to thank China Scholarship Council
and DPMMS of University of Cambridge.

1. Notation. We begin by introducing further notation, which will be used
throughout the paper. Let Fm denote the the field K(Eπ∗m+1) and Kn,m the field
Fm(Eπn+1). It is well known that the extension Kn,m over Fm is totally ramified
at the primes above p, and that p is unramified in Fm. In fact, From the relation
between the Grossencharacter and the action of the Galois group on points of finite
order, we see that the number of primes of Fm lying above p, which we denote by rm
is given by the index of the subgroup generated by π in (OK/p∗m+1)×. Hence, there
exists an integer M such that rm = r0pm for m <M and rm = r0pM for m ≥M .

We choose and fix a prime pM of FM lying above p, and let pm be the unique
prime of FM lying above or below pM .

We write pn,m for the unique prime of Kn,m lying above pm. If ω is any prime
of Fm above p, we let Hn,m,ω be the completion of Kn,m at the unique prime above
ω, and we let Φm,ω denote the completion of Fm at ω. We shall write Im,ω for the
ring of integers of Φm,ω, and we shall also write ω for the maximal ideal of Im,ω. Put
F∞ = ⋃

m≥0
Fm, and let ϕ denote the Artin symbol (p, F∞/K) for the extension F∞ over

K. Note that we always view our global fields as lying inside the complex numbers,
and equipped with embeddings into their completions.

The rings Hn,m = ∏Hn,m,ω and Φm = ∏Φm,ω, where the product is taken over
the set of primes ω of Fm lying above p, have a natural action of the Galois group
G as follows. Let αk,ω(k = 0,1,2, ...) be a Cauchy sequence of elements of Kn,m (or
Fm) which converge to αω in Hn,m,ω (or Φm,ω). Then the ωσ component of (αω)σ
is the limit of the Cauchy sequence ασk,ω(k = 0,1,2, ...). We embed Kn,m and Fm in
these rings via the diagonal map, and it is easy to verify that the usual norm and
trace maps on Hn,m, Φm, Kn,m and Fm, as well as the Galois action, all commute
with these embeddings.

It’s well known that G = Γ × ∆, where Γ is the Galois group of K(Ep∞) over
K0,0, and ∆ is the product of two cyclic groups of order p− 1 which can be identified
with the Galois group of K0,0 over K. If A is any Zp[∆]-module, we define A(i1,i2)

to be the submodule of A on which ∆ acts via χi1p χ
i2
p∗
. Thus, we have the canonical

decomposition

A = ⊕
i1,i2 mod (p−1)

A(i1,i2).
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Let Λ be the ring of formal power series in the commuting indeterminates T1 and T2
with coefficients in Zp. Choose a topological generator u of (1+ pZp)× and let γ1 and
γ2 be the elements of Γ for which χp(γ1) = χp∗(γ2) = u and χp(γ2) = χp∗(γ1) = 1. Any
compact Zp-module B on which Γ acts continuously can be endowed with a unique
Λ-module structure such that γ1x = (1 + T1)x and γ2x = (1 + T2)x for all x in B.

Let Ê be the formal group giving the kernel of reduction mod p on E with
parameter t = −x/y. Since Ê is defined over Op, we have the power series expansions

x = t−2a(t), y = −t−3a(t)
where a(t) has coefficients in Op and constant term equal to 1. Denote by Êπn+1 the

kernel of the endomorphism [πn+1] on Ê, which we identify with Eπn+1 .
Finally, we denote by U ′n,m,ω the units of Hn,m,ω and by Un,m,ω the subgroup

consisting of those units which are congruent to 1 modulo the maximal ideal. Put
U′n,m = ∏ω U ′n,m,ω and Un,m = ∏ω Un,m,ω, where again the product is taken over
the primes ω of Fm lying above p. Let U′∞ and U∞ denote the projective limits of
the U′n,m and Un,m respectively relative to the norm maps. We endow U∞ with its
natural structure as a Zp[G]-module. In particular U∞ is a compact Γ-module, and
thus also a Λ-module and Zp(G)-module.

2. Coleman power series. In this section, we will first recall some basic facts
about Coleman power series, and associate a two-variable power series with each
β ∈U′∞, then we will produce some important maps using these power series.

Let Tπ denote the Tate module lim←ÐÊπn+1 , where the limit is taken relative to the

usual projection maps given by multiplication by powers of π. We fix a basis (un) of
Tπ, and let β = (βn,m,ω) be an element of U′∞. Coleman[7] has shown that for each
integer m ≥ 0 and each prime ω of Fm lying above p, there is a unique power series
cm,ω,β(T ) ∈ Im,ω[[T ]] such that

βn,m,ω = cϕ−nm,ω,β(un) for all n ≥ 0.
Moreover, these power series satisfy the functional equation

(2) c
ϕ
m,ω,β([π]T ) = ∏

η∈Êπ

cm,ω,β(T ⊕ η)

where [π]T is the endomorphism of Ê induced by π, and T ⊕ η denotes the sum of T
and η under the addition on Ê.

We will denote by cm,β(T ) the element (cm,ω,β(T )) ∈ ∏ω Im,ω[[T ]], which we
shall write as Im[[T ]], with the obvious Galois structure inherited from the struc-
ture on Φm. It is plain that, for each m ≥ 0 and each prime ω of Fm lying
above p, the Coleman series cm,ω,β(T ) attached to an element β of U′∞ is a unit
in Im,ω[[T ]]. We denote by gm,β(T ) the vector whose ω-component (gm,β(T ))ω
is given by 1

p
log(cm,ω,β(T )p/cϕm,ω,β([π]T )). Observe that ϕ induces the Frobenius

automorphism for the extension Φm over Kp, and that [π]T ≡ T p mod ω, we get

cm,ω,β(T )p/cϕm,ω,β([π]T ) ≡ 1 mod ω,

which shows that gm,β(T ) ∈ Im[[T ]].
Lemma 2.1. Let m′ ≥m ≥ 0 and let Trm′,m denote the trace map from Im′[[T ]]

to Im[[T ]]. Then, for each β in U′∞,

gm,β(T ) = Trm′,m(gm′,β(T )).
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Proof. This is clear from Lemma 2 of Yager[18], which asserts the norm compat-
ibility of Coleman power series. The only point is the Galois action commutes with
the logarithmic operator.

The following theorem provides the key to the rest of this paper.

Theorem 2.2. For each β in U′∞, there is a unique power series gβ(T1, T2) ∈
I [[T1, T2]] such that

gβ(T1, T2) ≡ ∑
σ∈Gal(Fm/K)

(gσm,β(T1))pm
(1 + T2)χp∗(σ) mod ((1 + T2)pm+1 − 1)

Proof. Observe firstly that (1+T2)χp∗ (σ) is well defined modulo ((1+T2)pm+1−1)
for all σ ∈ Gal(Fm/K). All that we need check is the appropriate compatibilities are
satisfied. Let m′ ≥m. Then by Lemma 2.1 we have

(gσm,β(T1))pm
= ∑
θ∈Gal(Fm′/K)

θ∣Fm=σ

(gθm′,β(T1))pm′

Consequently

∑
θ∈Gal(Fm′ /K)

θ∣Fm=σ

(gθm′,β(T1))pm′
(1 + T2)χp∗ (θ)

≡ (gσm,β(T1))pm
(1 + T2)χp∗(σ) mod ((1 + T2)pm+1 − 1)

which is sufficient to prove the theorem.

We write λ ∶ Ê ≃ Ga for the logarithm map of Ê, where Ga is the additive formal
group. Let k ≥ 1 and j ≥ 0. We define for each β ∈U∞:
(3) δk,j(β) = (λ′(T1)−1 ∂

∂T1
)k((1 + T2) ∂

∂T2
)jgβ(T1, T2)∣(0,0).

The following lemma summarizes the basic properties of these maps.

Lemma 2.3. Let k ≥ 1 and j ≥ 0. Then δk,j is a homomorphism of Zp-modules

from U∞ to I , and for all β ∈U∞ and all σ ∈ G,
(4) δk,j(βσ) = χp(σ)kχp∗(σ)−jδk,j(β).

In particular, if β ∈U(i1,i2)∞ , then δk,j(β) = 0 unless (k,−j) ≡ (i1, i2) mod (p−1), and
if h(T1, T2) ∈ Λ,
(5) δk,j(h(T1, T2)β) = h(uk − 1, u−j − 1)δk,j(β).

Proof. It is clear that δk,j is a Zp-homomorphism. Note that for each σ ∈ G and
n ≥ 0, uσn = [χp(σ)](un), so by definition we have

gm,βσ(T ) = gσm,β([χp(σ)]T ),
and from this it is easy to see that

gβσ(T1, T2) = gβ([χp(σ)]T1, (1 + T2)χp∗(σ)−1 − 1).
Then equation(4) is evident from the definition of δk,j . The next assertion follows
from the first two if we take σ ∈ ∆. For equation(5), it is just a restatement of
equation(3) if we take h(T1, T2) to be either 1 + T1 (corresponding to γ1) or 1 + T2
(corresponding to γ2), and follows in general by linearity and continuity.
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3. Elliptic units. We will define and establish a number of results about elliptic
units in this section. Let g=(g) be an integral ideal of K which divides f. For each
integer m ≥ 0, we write gm(resp. gm) for gp∗m+1(resp. gπ∗m+1), where we recall
that π∗ = ψ(p∗). Let ∆m be the Galois group of K(Egm)/K(Eg). Plainly ∆m is
isomorphic to Gal(Fm/K), and Gal(K(Egm)/Fm) is isomorphic to Gal(K(Eg)/K)
under the natural restriction maps, since (p∗,g) = 1. We use σa denote the Artin
symbol of a for the extension K(Egm)/K for every integral ideal which is prime to
fp∗. Let us first define some rational functions which are crucial for our definition of
elliptic units.

Lemma 3.1. Let λ be an element in OK/O×K which is prime to 6, then there

exists a unique cE(λ) in K× such that the rational function

Rλ(P ) = cE(λ) ∏
R∈(Eλ/{0})/±1

(x(P ) − x(R))−1

satisfies:

(6) Rλ(α(P )) = ∏
R∈Eα

Rλ(P ⊕R)

for all α ∈ OK with (α,λ) = 1. Moreover cE(λ) can only be divisible by primes where

E has bad reduction, in particular it is a unit at the prime p.

Proof. See the Appendix of Coates[2].

We choose a primitive gm-division point Vgm
on E for each non-negative integer

m such that π∗Vgm+1 = Vgm
. Let Bg be a minimal set of integral ideals of K, prime to

fp∗, such that Gal(K(Egm)/Fm) = {σv ∶ v ∈ Bg}, and similarly let Bm be a minimal
set of integral ideals of K, prime to fp∗, such that ∆m = {σu ∶ u ∈ Bm}. If g = (1) we
set Bg = {(1)}. For each λ ∈ OK/O×K which satisfies (λ,6pf) = 1, we put

(7) Rλ,Vgm
(P ) =Rλ(P ⊕ Vgm

)

and

(8) Λλ,Vgm
(P ) = ∏

v∈Bg

Rλ,V
σv
gm
(P ).

Obviously Rλ(P ) and Λλ,Vgm
(P ) are rational functions on E with coefficients in K

and Fm respectively.
The following proposition was proved in Coates-Sujatha[4]:

Proposition 3.2. Let Λλ,Vgm
(t) and Rλ,Vgm

(t) be the t-expansions of

Λλ,Vgm
(P ) and Rλ,Vgm

(P ) respectively, then we have:

(i) Rλ,Vgm
(t) and Λλ,Vgm

(t) are units in I [[t]].
(ii) Λλ,V σp

gm
(ψ(p)P ) = ∏

R∈Ep

Λλ,Vgm
(P ⊕R).

(iii) Λλ,Vgm
(ψ(p∗)P ) = ∏

R∈Ep∗

Λλ,Vgm+1
(P ⊕R).

Proof. We will use Vm to instead Vgm
for simplicity. To proof the first statement,

we see it suffices to show that for each primitive gm-division point Vm and each
R ∈ Eλ/{0}, the t-expansion of

x(P ⊕ Vm) − x(R)
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is a unit in I [[t]]. Note that neither Vm nor R can lie in the kernel of the formal
group of E at p since (gm,p) = (λ,p) = 1. Thus all of the coordinates x(Vm), y(Vm),
x(R), y(R) must lie in I . In particular, it follows from the expansion of x(P ) as a
power series in t that

x(P ) − x(Vm) = t−2(1 +
∞
∑
n=1

αnt
n),

where all of the coefficients αn belong to I . As y = −x/t, we conclude easily that

y(P )− y(Vm)
x(P ) − x(Vm) = −t

−1(1 +
∞
∑
n=1

βnt
n),

where all of the coefficients βn belong to I . Now, by the addition law on E, we have

x(P ⊕Vm)−x(R) = ( y(P ) − y(Vm)
x(P ) − x(Vm))

2+a1( y(P )− y(Vm)
x(P ) − x(Vm))−a2−x(P )−x(Vm)−x(R).

which is obviously a unit in I [[t]] from the explicit t-expansion above.
For the second statement, we first note that V

σp

m = πVm. Then by the definitions
(7) and (8), and the equation (6), we have

Λλ,V σp
m
(πP ) = ∏

v∈Bg

Rλ,(πVm)σv (πP )

= ∏
v∈Bg

Rλ(π(P ⊕ V σv

m ))

= ∏
v∈Bg

∏
R∈Ep

Rλ(P ⊕ V σv

m ⊕R)

= ∏
R∈Ep

Λλ,Vm
(P ⊕R)

The last statement is similar:

Λλ,Vm
(π∗P ) = ∏

v∈Bg

Rλ,V
σv
m
(π∗P )

= ∏
v∈Bg

Rλ(π∗P ⊕ V σv

m )

= ∏
v∈Bg

Rλ(π∗(P ⊕ V σv

m+1))

= ∏
v∈Bg

∏
R∈Ep∗

Rλ(P ⊕ V σv

m+1 ⊕R)

= ∏
R∈Ep∗

Λλ,Vm+1(P ⊕R)

Let I denote the set of elements of OK/O×K which are prime to 6pf, and let

S = {ν ∶ I → Z∣ ν(λ) = 0 for almost all λ ∈ I and ∑
λ∈I
(Nλ − 1)ν(λ) = 0},
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where Nλ denote the norm of λ. If ν ∈ S, we set

Λν,Vgm
(P ) =∏

λ∈I
Λλ,Vgm

(P )ν(λ)

Let Pn be the πn+1-division point of E corresponding to un ∈ Êπn+1 , and choose
εn ∈ O such that εnπ

∗ ≡ 1 mod pn+1. Observe that π∗ is a unit in Zp, and that we
have [π∗−(m+1)]un corresponding to εm+1n Pn.

Robert[12] has shown that Λν,Vgm
(εm+1n Pn) is a unit of Kn,m. The reader could

also see De Shalit[8] for more details. Let P(z,L) be the Weierstrass P-function of
L, then we have the Weierstrass isomorphism ξ(z,L) between C/L and E(C) defined
by

ξ(z,L) = (P(z,L) − a
2
1 + 4a2
12

,
1

2
(P ′(z,L) − a1(P(z,L) − a

2
1 + 4a2
12

) − a3)).

From now on, we will fix the primitive gm-division point Vgm
to be ξ(ρm,L) for each

g divides f and non-negative integer m, where ρm = Ω∞

gm
.

We set:

C′n,m(g) = {Λν,Vgm
(εm+1n Pn)∣ν ∈ S}.

Obviously C′n,m(g) is a group of units of Kn,m, and it is stable under the action of G
by Lemma 20 of Coates-Wiles[5].

Lemma 3.3. Let g be an integral ideal divides f, ν ∈ S, and put

en,m(g, ν) = Λϕ−nν,Vgm
(εm+1n Pn), e(g, ν) = (en,m(g, ν)).

Then e(g, ν) ∈U′∞.
Proof. We only need to show en,m(g, ν) is just the image of en+1,m+1(g, ν) under

the norm map Nm+1,m
n+1,n from Kn+1,m+1 to Kn,m. Take P = εm+2n+1 Pn+1 and P = εm+2n Pn

in Proposition 3.2 (ii) and (iii) respectively, we see that

Nm+1
n+1,n(Λϕ

−(n+1)

ν,Vgm+1
(εm+2n+1 Pn+1)) = Λϕ

−n

ν,Vgm+1
(εm+2n Pn)

and

Nm+1,m
n (Λϕ

−n

ν,Vgm+1
(εm+2n Pn)) = Λϕ−nν,Vgm

(εm+1n Pn)

where Nm+1
n+1,n and Nm+1,m

n are the norm maps from Kn+1,m+1 to Kn,m+1 and from
Kn,m+1 to Kn,m respectively. Now this lemma follows from the compatibility of the
norm maps.

Theorem 3.4. Let ν ∈ S. Then the Coleman power series cm,e(g,ν)(T ) ∈ Im[[T ]]
attached to e(g, ν) are given by

cm,e(g,ν)(T ) = Λν,Vgm
(π∗−(m+1)T ).

Proof. Proposition 3.2 (i) tells us that Λν,Vgm
(π∗−(m+1)T ) ∈ Im[[T ]], then the

theorem is an direct consequence from the definition of Coleman power series and
e(g, ν).
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Finally, we define a group for each pair of non-negative integers n and m as
follows:

C̄′n,m = ∏
i1,i2 mod (p−1)

(C̄′n,m(gi1,i2))(i1,i2)

where gi1,i2 = (gi1,i2) is the conductor of the Grossencharacter ψi1−i2 and C̄′n,m(gi1,i2)
is the closure of C′n,m(gi1,i2) in U′n,m. By definition it is also stable under the action

of G. We shall denote e(ν) the unit whose (i1, i2) -th branch is just e(gi1,i2 , ν)(i1,i2).
We write C̄′∞ for the projective limits of the C̄′n,m with respect to the norm maps,

clearly e(ν) ∈ C̄′∞ for all ν ∈ S. We will use < β > to denote the projection from U′∞
to U∞ for each β ∈U′∞.

4. Eisenstein series and Yager’s p-adic period. Let us first recall some basic
definitions of certain Eisenstein-Kronecker series, see Weil[14], Coates-Wiles[5], and
Yager[19] for details. For each positive integer k, we write Kk(z, s) for the analytic
continuation to the whole complex s-plane of

Kk(z, s) = ∑
w∈L,w≠−z

z +w
∣z +w∣2s , Re(s) > 1 + k/2,

and for integers k > j ≥ 0 we set

Ej,k(z) = (k − 1)!(2π/
√
dK)j ∣Ω∞∣−2jKk+j(z, k),

Ek(z) = E0,k(z).

Clearly both Kk(z, s) and Ej,k(z) are periodic in z with period lattice L. The values
of the Eisenstein-Kronecker series at division points of L are closely related to the
values of Hecke L-functions, see Coates-Wiles[5] and Yager[19]. We now give a slightly
different form.

We define δg = [K(Eg) ∶ R(g)] ×mg, where mg denotes the number of roots of
unity which are congruent to 1 mod g and R(g) is the ray class field of K modulo g.
It’s clear that δg divides wK , which is the number of roots of unity in K. Recall that
Bm, Bg, and ρm are defined in the section above.

Lemma 4.1. Let k > j ≥ 0 be such that the conductor of ψk+j divides g, then we

have

δg(k − 1)!( 2π√
dK
)jΩ−(k+j)∞ (1 − ψ̄

k+j(p∗)
(Np∗)k )Lg(ψ̄k+j , k)

= Ngjm

g
k+j
m

∑
u∈Bm

∑
v∈Bg

Ej,k(ψ(uv)ρm).

Proof. We divide the proof into 4 steps.
1. As v runs over Bg, u runs over Bm, and c runs over gm, the ideal (ψ(uv)+ c) runs
over all integral ideals of K which prime to gp∗, precisely δg times. This is easily
deduced from the fact that Gal(R(g)/K) = (OK/g)×/µ̃K , where µ̃K is the image of
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the group of roots of unity µK in (OK/g)× and g ≠ (1).
2. From the infinite sum expansions of the Hecke L-functions we have

(1 − ψ̄
k+j(p∗)
(Np∗)k )Lg(ψ̄k+j , k) = Lgp∗(ψ̄k+j , k).

3. For v ∈ Bg, u ∈ Bm, and c ∈ gm, we have

ψ̄k+j((ψ(uv) + c)) = ψ̄k+j(uv)ψ̄k+j((1 + c
ψ(uv)))

= ψ̄k+j(uv)(1 + c
ψ(uv))

k+j

= (ψ(uv) + c)k+j

The second equality is true since the conductor of ψk+j divides g.
4. We compare the infinite sum expansions of the two sides of the equation in this
lemma:

δgLgp∗(ψ̄k+j , k) = ∑
u∈Bm

∑
v∈Bg

∑
c∈gm

ψ̄k+j((ψ(uv)+c))
∣ψ(uv)+c∣2k

= ∑
u∈Bm

∑
v∈Bg

∑
c∈gm

(ψ(uv)+c)k+j

∣ψ(uv)+c∣2k

= Ng
j
m

gk+jm

Ωk+j∞ ∣Ω∞∣−2j ∑
u∈Bm

∑
v∈Bg

∑
w∈L

(ψ(uv)ρm+w)
k+j

∣ψ(uv)ρm+w∣2k

Now the lemma follows from the definition of Ej,k(z).
The following lemma relates the Kronecker-Eisenstein series to certain logarithmic

derivatives of those rational functions defined in last section. We will use Rλ,Vgm
(z)

and Λλ,Vgm
(z) for their expansions at z respectively.

Lemma 4.2. Suppose λ ∈ I, then for any u ∈ Bm, v ∈ Bg and k ≥ 1, we have

( d
dz
)k logRλ,V

σuv
gm
(z) ∣z=0=

(9) (−1)k−1((Nλ)Ek(ψ(uv)ρm) −ψk((λ))Ek(ψ(λuv)ρm))
and consequently for any u ∈ Bm, k ≥ 1 and ν ∈ S, we have

( d
dz
)k logΛν,V σu

gm
(π∗−(m+1)z) ∣z=0= (−1)k−1π∗−k(m+1)

(10) × ∑
v∈Bg

∑
λ∈I

ν(λ)((Nλ)Ek(ψ(uv)ρm) −ψk((λ))Ek(ψ(λuv)ρm))

Proof. The lemma is almost a re-writing version of Corollary 12 of Yager[18].

Yager[19] used these Eisenstein series to construct a canonical p-adic period:
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Yager’s Theorem. There exists a non-negative integer r such that

Ωp = −pr( lim
m→∞

ḡmE1(ρm))−1

is a p-adic period, i.e. there is an isomorphism : t = δ(w) = Ωpw + ... between the

multiplicative formal group Gm and Ê with the leading coefficient Ωp ∈I
×. Moreover,

Ωp is independent of the choice of the ideal g, and r is zero except finite good ordinary

primes.

Furthermore it was shown in De Shalit[8] that r is always zero, so we can define
Ωp = −( lim

m→∞
π̄∗

m
E1( Ω∞

π∗m
))−1 to be the canonical p-adic period appeared in Theorem

0.1. The following lemma shows the usefulness of Yager’s p-adic period.

Lemma 4.3. For all integers k > j ≥ 0 and m > 0 and for all u ∈ Bm, v ∈ Bg we

have

(Ngjm/gk+jm )Ej,k(ψ(uv)ρm)

≡ Ω−jp χp∗(σu)g−km Ek(ψ(uv)ρm) mod pmI .

Proof. See Yager[19], Lemma 5.2, only notice the fact that χp∗(σuv) = χp∗(σu)
since σv ∈ Gal(K(Eg)/K).

5. Two Λ-homomorphisms. Recall that δ(T1) = ΩpT1 + ... is a power series in

I [[T1]], where δ(⋅) is the isomorphism between Gm and Ê which defined in Yager’s
Theorem. Let β ∈U∞ and put hβ(T1, T2) = gβ(δ(T1), T2), where gβ(T1, T2) is defined
in Theorem 2.1.

Lemma 5.1. The I -valued measure on Z
2
p corresponding to hβ(T1, T2) for each

β ∈ U∞ is supported on Z
×
p × Z×p . Moreover let Di be the operator (1 + Ti)∂/∂Ti on

I [[T1, T2]] for i = 1,2, and let k > j ≥ 0 be two integers, we have that

(11) Dk
1D

j
2
hβ(T1, T2)∣(0,0) = Ωkpδk,j(β).

Proof. Firstly, from equation (2) we have

(gm,β(T ))ω = log cm,ω,β(T ) − 1

p
∑
η∈Êπ

log cm,ω,β(T ⊕ η)

for each prime ω of Fm over p. By compositing with δ(T1) we get

(gm,β(δ(T1)))ω = log cm,ω,β(δ(T1)) − 1

p
∑
ζp=1

log cm,ω,β(ζ(1 + δ(T1)) − 1),

which shows that the one-variable p-adic measure corresponding to (gm,β(δ(T1)))ω is
supported on Z

×
p by Lemma 19 of Yager[18]. Moreover from Theorem 2.2 we have

hβ(T1, T2) ≡ ∑
σ∈Gal(Fm/K)

(gσm,β(δ(T1)))pm
(1 + T2)χp∗ (σ) mod ((1 + T2)pm+1 − 1).

Since χp∗ takes values in Z
×
p , it follows from equation (32) of Yager[18] that the

two-variable measure corresponding to hβ(T1, T2) is supported on Z
×
p × Z×p .



182 Y. KANG

Secondly, let ι(T ) ∈ I [[T ]] be the inverse of δ(T ), then by the uniqueness of the
exponential map of Ê we see that ι(T ) = exp(Ω−1p λ(T ))− 1, which shows

(Ωpλ
′(T )−1 d

dT
f(T ))∣T=δ(T1) = (1 + T1)

d

dT1
f(T1).

Now equation (11) follows from the definition (3) of δk,j .

Now we get a two variable p-adic measure µβ ∈ I (G) which corresponds to
hβ(T1, T2) for each β ∈U∞, since G is isomorphic to Z

×
p × Z×p . Using this measure we

can define a Λ-homomorphism as the following theorem. Here we need some basic
results of the two-variable Γ-transform, which could be found in Yager[18].

Theorem 5.2. Let i1 and i2 be integers modulo (p − 1), and let β ∈ U∞. Then

there is a unique power series G
(i1,i2)
β (T1, T2) ∈I [[T1, T2]] such that for all k > j ≥ 0

satisfying (k,−j) ≡ (i1, i2) mod (p − 1),
(12) G

(i1,i2)
β (uk − 1, u−j − 1) = Ωkpδk,j(β).

Moreover, if h ∈ Λ,
(13) G

(i1,i2)
hβ (T1, T2) = h(T1, T2)G (i1,i2)β (T1, T2).

In particular, the map β → G
(i1,i2)
β is a Λ-homomorphism from U∞ to I [[T1, T2]].

Proof. By Lemma 16 of Yager[18], we know that there exists a power series

h
(i1,−i2)
β (T1, T2) ∈I [[T1, T2]] such that

h
(i1,−i2)
β (uk − 1, uj − 1) = Γ(i1,−i2)hβ

(k, j),

where Γ
(i1,−i2)
hβ

(s1, s2) is the (i1,−i2)-th Γ-transform of hβ or µβ . Furthermore, we

could connect this value with some derivative of the original power series from Lemma
18 of Yager[18]:

Γ
(i1,−i2)
hβ

(k, j) =Dk
1D

j
2
hβ(T1, T2)∣(0,0).

Set G
(i1,i2)
β (T1, T2) = h(i1,−i2)β (T1, (1+T2)−1 −1), then it’s followed from equation (11)

of Lemma 5.1 that equation (12) will be satisfied. Such a power series is clearly
unique, and so equation (13) follows immediately from equation (5) of Lemma 2.3.

Wintenberger[17] has studied the structure of U∞, and Yager[18] used his result
to give another Λ-homomorphism which will be stated as follows:

Lemma 5.3. Let i1 and i2 be integers mod (p − 1). Then there is an in-

jection W (i1,i2) ∶ U(i1,i2)∞ → Λ which is a homomorphism of Λ-modules. More-

over, if (i1, i2) ≢ (1,1) mod (p − 1, (p − 1)/r0), W (i1,i2) is an isomorphism; and if

(i1, i2) ≡ (1,1)mod (p−1, (p−1)/r0), the image of W (i1,i2) is the ideal of Λ generated

by 1 + T1 − u and (1 + T2)pM − upM .

Proof. See Lemma 24 of Yager[18].

In future, we shall denote the image ofW (i1,i2) by H(i1,i2). The following theorem
proved in Yager[18] establish a connection between the two Λ-homomorphisms G

(i1,i2)

and W (i1,i2).
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Theorem 5.4. Let i1 and i2 be integers modulo p − 1. Then there is a power

series Φ(i1,i2)(T1, T2) ∈ I [[T1, T2]] such that, for all β ∈U(i1,i2)∞ ,

(14) G
(i1,i2)
β (T1, T2) = Φ(i1,i2)(T1, T2)W (i1,i2)(β)

Proof. See Theorem 27 of Yager[18].

6. p-adic interpolation of special values of L-functions. In this section we
shall produce power series giving p-adic interpolations of the numbers L∞(ψ̄k+j , k),
and prove Theorem 0.1. In the process we shall determine the image under W (i1,i2)

of the Λ-submodule D of U∞ generated by {< e(ν) >∶ ν ∈ S}.
Before doing that, we shall make some remarks about the relationship between

this submodule D and the group C̄′n,m which is defined in the end of Section 3. We

denote C̄′n,m⋂Un,m and C̄′∞⋂U∞ by C̄n,m and C̄∞ respectively. It is plain that C̄∞
is a Λ-submodule ofU∞ containingD. Moreover, the image of D under the projection
map from U∞ to Un,m is precisely C̄n,m.

We now begin to consider the values of the homomorphisms δk,j at < e(ν) > for
any two integers k > j ≥ 0. Recall that gk,−j is the generator of gk,−j , where gk,−j is
the conductor of ψk+j , and δgk,−j

is the integer defined in Section 4. We will denote
gk,−j and δgk,−j

by g and c respectively for simplicity. The following theorem could
be seen as a primitive version of Theorem 15 of Yager[18], which was proved using
the formulae in Katz[9]. Here we will calculate the values directly using the formulae
stated in the previous sections.

Theorem 6.1. Let ν ∈ S and let k and j be integers such that k > j ≥ 0. g and c

are defined as above. Then we have

δk,j(< e(ν) >) = (−1)k−1(k − 1)!cgk∑
λ∈I

ν(λ)(Nλ −ψk((λ))ψ̄−j((λ)))

(15) ×( 2π√
dK
)jΩjpΩ−(k+j)∞ L∞(ψ̄k+j , k).

Proof. By Lemma 2.3, we have δk,j(< e(ν) >) = δk,j(< e(ν) >(k,−j)), and it’s
easy to see that < e(ν) >(k,−j) coincides with < e(g, ν) >(k,−j) where we simply write
g = (g) to be the conductor of ψk+j , so we get δk,j(< e(ν) >) = δk,j(< e(g, ν) >). Let
β =< e(g, ν) >, now we begin to calculate the logarithmic derivative explicitly using
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Definition (3), Theorem 2.2 and lemmas in Section 4:

δk,j(β) = (λ′(T1)−1 ∂
∂T1
)k((1 + T2) ∂

∂T2
)jgβ(T1, T2)∣(0,0)

≡ ∑
σ∈Gal(Fm/K)

(λ′(T1)−1 ∂
∂T1
)k((gσm,β(T1))pm

) ∣T1=0

×((1 + T2) ∂
∂T2
)j((1 + T2)χp∗(σ)) ∣T2=0 mod pmI

= ∑
u∈Bm

χ
j
p∗
(σu)(1 − πk+j/pj+1)( ddz )k logΛν,V σu

gm
(π∗−(m+1)z) ∣z=0

= (−1)k−1π∗−k(m+1)(1 − πk+j/pj+1) ∑
u∈Bm

∑
v∈Bg

∑
λ∈I

ν(λ)((Nλ)χj
p∗
(σu)

×Ek(ψ(uv)ρm) −ψk((λ))χjp∗(σu)Ek(ψ(λuv)ρm))

= (−1)k−1π∗−k(m+1) ∑
u∈Bm

∑
v∈Bg

∑
λ∈I

ν(λ)((Nλ) −ψk((λ))ψ̄−j((λ)))

×χj
p∗
(σu)(1 − πk+j/pj+1)Ek(ψ(uv)ρm)

≡ (−1)k−1gkΩjp ∑
u∈Bm

∑
v∈Bg

∑
λ∈I

ν(λ)((Nλ) −ψk((λ))ψ̄−j((λ)))

×(Ngjm/gk+jm )(1 − πk+j/pj+1)Ej,k(ψ(uv)ρm) mod pmI

= (−1)k−1(k − 1)!cgk ∑
λ∈I

ν(λ)(Nλ − ψk((λ))ψ̄−j((λ)))

×( 2π√
dK
)jΩjpΩ−(k+j)∞ L∞(ψ̄k+j , k)

Since m can be arbitrary, the proof is complete.

In order to get rid of some extra terms, we give the following lemma proved in
Yager[18]. If ν ∈ S and i1 and i2 are integers modulo p − 1, we define

h(i1,i2)ν (T1, T2) =∑
λ∈I

ν(λ)(Nλ − ωi1(ψ((λ)))ωi2(ψ̄((λ)))

×(1 + T1)l(ψ((λ)))(1 + T2)l(ψ̄((λ)))),
where ω is the Teichmüller character on Zp, so we can write x = ω(x) < x > for x ∈ Zp,
and l is the homomorphism from Z

×
p to Zp such that < x >= ul(x) for all x ∈ Z×p .

Observe that for all (k,−j) ≡ (i1, i2) mod (p − 1),
h(i1,i2)ν (uk − 1, u−j − 1) =∑

λ∈I
ν(λ)(Nλ −ψk((λ))ψ̄−j((λ))).

Lemma 6.2. Let H(i1,i2) be the Λ-module generated by {h(i1,i2)ν (T1, T2) ∶ ν ∈ S}.
Then H(i1,i2) = Λ unless (i1, i2) ≡ (0,0) or (1,1)mod (p − 1), H(0,0) is the Λ-module

generated by T1 and T2 and H(1,1) is the module generated by T1+1−u and T2+1−u.
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Proof. See Lemma 28 of Yager[18].

Theorem 6.3. Let i1 and i2 be integers modulo p − 1. Then there is a power

series G
(i1,i2)(T1, T2) ∈ I [[T1, T2]] such that for all k > j ≥ 0 satisfying (k,−j) ≡

(i1, i2)mod (p − 1),
(16) G

(i1,i2)(uk − 1, u−j − 1) = (k − 1)!Ωk+jp Ω−(k+j)∞ ( 2π√
dK
)jL∞(ψ̄k+j , k).

Moreover

(17) W (i1,i2)(D(i1,i2)) = Φ(i1,i2)(T1, T2)−1G (i1,i2)(T1, T2)H(i1,i2).
Proof. The proof is similar to Theorem 29 of Yager[18], only notice the complex

L-function in Theorem 6.1 is primitive. Equations (12) and (15) together show that

if ν ∈ S, the value of G
(i1,i2)
<e(ν)>)(T1, T2) at (uk − 1, u−j − 1) is

(−1)k−1(k − 1)!cgk∑
λ∈I

ν(λ)(Nλ − ψk((λ))ψ̄−j((λ)))( 2π√
dK
)jΩk+jp Ω−(k+j)∞ L∞(ψ̄k+j , k).

Observe that (−1)i1cωi1(g)(1 + T1)l(g) is a unit power series in Λ whose value at
(uk − 1, u−j − 1) is (−1)k−1cgk whenever (k,−j) ≡ (i1, i2) mod (p − 1), here c and g

have the same meaning with in Theorem 6.1. It follows by linearity of equation (13)
in Theorem 5.2 that for each element h ∈H(i1,i2) there is a corresponding element eh
of D such that:

(18) G
(i1,i2)
eh

(uk−1, u−j−1) = h(uk−1, u−j−1)(k−1)!( 2π√
dK
)jΩk+jp Ω−(k+j)∞ L∞(ψ̄k+j , k).

And conversely for each e in D, there is an h ∈H(i1,i2) such that (18) holds.
The theorem is now clear from Lemma 6.2 and Theorem 5.4 unless (i1, i2) ≡ (0,0)

or (1,1)mod (p − 1).
Suppose (i1, i2) ≡ (0,0)mod (p−1), and let e0 be the element of D corresponding

to the power series T2 in H(0,0) as in equation (18). Observe that G
(0,0)
e0 (uk −1,0) = 0

for all k ≥ 1 such that k ≡ 0 mod (p − 1), and so G
(0,0)
e0 (T1, T2) = T2G (0,0)(T1, T2) for

some power series G
(0,0)(T1, T2) ∈ I [[T1, T2]]. It is clear from equation (18) that

G
(0,0)(T1, T2) has the desired properties.

Suppose (i1, i2) ≡ (1,1)mod (p−1), and let e1 be the element of D corresponding

to the power series T1 + 1 − u in H(1,1). Observe that G
(1,1)
e1 (u − 1, u−j − 1) = 0

for all j ≥ 0 such that j ≡ −1 mod (p − 1)(note that since we could use Eisen-
stein series to instead the L-values, the restriction that k > j would not cause any

problem), and so G
(1,1)
e1 (T1, T2) = (T1 + 1 − u)G (1,1)(T1, T2) for some power series

G
(1,1)(T1, T2) ∈ I [[T1, T2]]. It is clear from equation (18) that G

(0,0)(T1, T2) has the
desired properties. This completes the proof.

Proof of Theorem 0.1. Firstly by Lemma A.1.1 of Coates-Sujatha[3], we know
there exists a unique element µ ∈ Λ(G) such that

µ(i1,i2) = G
(i1,i2)(T1, T2)

for i1 and i2 modulo p − 1. Secondly, by Lemma 3.6.2 of Coates-Sujatha[3] we get:

∫G χ
k
pχ
−j
p∗
dµ = G

(i1,i2)(uk − 1, u−j − 1),
for (k,−j) ≡ (i1, i2)mod (p − 1), which complete the proof of Theorem 0.1.
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7. The structure of Y∞.

Theorem 7.1. Let i1 and i2 be integers modulo p − 1. Then there is an element

G(i1,i2)(T1, T2) of Λ which generates the same ideal in I [[T1, T2]] as G
(i1,i2)(T1, T2).

Moreover, Y
(i1,i2)
∞ is isomorphic to H(i1,i2)/G(i1,i2)(T1, T2)H(i1,i2).

Proof. The proof is similar to Theorem 30 of Yager[18], only notice that the
power series G

(i1,i2)(T1, T2) here interpolates the primitive complex L-functions. We
recall that in Section 5 we defined H(i1,i2) to be the image of W (i1,i2) and that this
is Λ unless (i1, i2) ≡ (1,1) mod (p − 1, (p − 1)/r0), in which case H(i1,i2) is generated
by T1 + 1 − u and (T2 + 1)pM − upM .

The projection map pn,m ∶ U(i1,i2)∞ → U
(i1,i2)
n,m has as its image those elements

of U
(i1,i2)
n,m for which the local norm to Kp of each component is 1. It is clear that

⋂
n,m≥0

ker pn,m = 1. As we have already observed

(19) pn,m(D(i1,i2)) = C̄(i1,i2)n,m .

Let jn,m be the composition of pn,m with the canonical surjection of U
(i1,i2)
n,m

onto U
(i1,i2)
n,m /C̄(i1,i2)n,m . The image of jn,m is precisely the image of Y

(i1,i2)
∞ under the

projection onto U
(i1,i2)
n,m /C̄(i1,i2)n,m . In view of equation (19), it is plain that the kernel

of jn,m is D(i1,i2)ker pn,m, and that jn,m is a Λ-homomorphism. Thus

Y (i1,i2)∞ ≅ lim←ÐU(i1,i2)∞ /D(i1,i2)ker pn,m.

But ⋂
n,m≥0

ker pn,m = 1 and so it follows that Y
(i1,i2)
∞ ≅U(i1,i2)∞ /D(i1,i2). The theorem

is now clear from Theorems 5.4 and 6.3.

Proof of Theorem 0.2. We see from the the above theorem that we have the
following exact sequence of Λ-modules:

0→ A→
H(i1,i2)

G(i1,i2)(T1, T2)H(i1,i2)
→

Λ

G(i1,i2)(T1, T2)
→

Λ

H(i1,i2) +G(i1,i2)(T1, T2)Λ → 0,

where

A = H
(i1,i2)⋂G(i1,i2)(T1, T2)Λ
G(i1,i2)(T1, T2)H(i1,i2)

.

ClearlyA injects into Λ/H(i1,i2), andH(i1,i2) andH(i1,i2)+G(i1,i2)(T1, T2)Λ are clearly

contained in no proper principal ideal of Λ, and so Y
(i1,i2)
∞ is pseudo-isomorphic to

Λ/G(i1,i2)(T1, T2)Λ, which means G(i1,i2)(T1, T2) is a characteristic power series of

Y
(i1,i2)
∞ . Theorem 7.1 also tells us that G(i1,i2)(T1, T2) generates the same ideal with
µ(i1,i2) = G

(i1,i2)(T1, T2). This proves Theorem 0.2.
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